1
|
Seeger T, Hoffmann S. Advances in human induced pluripotent stem cell (hiPSC)-based disease modelling in cardiogenetics. MED GENET-BERLIN 2025; 37:137-146. [PMID: 40207041 PMCID: PMC11976404 DOI: 10.1515/medgen-2025-2009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Human induced pluripotent stem cell (hiPSC)-based disease modelling has significantly advanced the field of cardiogenetics, providing a precise, patient-specific platform for studying genetic causes of heart diseases. Coupled with genome editing technologies such as CRISPR/Cas, hiPSC-based models not only allow the creation of isogenic lines to study mutation-specific cardiac phenotypes, but also enable the targeted modulation of gene expression to explore the effects of genetic and epigenetic deficits at the cellular and molecular level. hiPSC-based models of heart disease range from two-dimensional cultures of hiPSC-derived cardiovascular cell types, such as various cardiomyocyte subtypes, endothelial cells, pericytes, vascular smooth muscle cells, cardiac fibroblasts, immune cells, etc., to cardiac tissue cultures including organoids, microtissues, engineered heart tissues, and microphysiological systems. These models are further enhanced by multi-omics approaches, integrating genomic, transcriptomic, epigenomic, proteomic, and metabolomic data to provide a comprehensive view of disease mechanisms. In particular, advances in cardiovascular tissue engineering enable the development of more physiologically relevant systems that recapitulate native heart architecture and function, allowing for more accurate modelling of cardiac disease, drug screening, and toxicity testing, with the overall goal of personalised medical approaches, where therapies can be tailored to individual genetic profiles. Despite significant progress, challenges remain in the maturation of hiPSC-derived cardiomyocytes and the complexity of reproducing adult heart conditions. Here, we provide a concise update on the most advanced methods of hiPSC-based disease modelling in cardiogenetics, with a focus on genome editing and cardiac tissue engineering.
Collapse
Affiliation(s)
| | - Sandra Hoffmann
- University Hospital HeidelbergInstitute of Human GeneticsHeidelbergGermany
| |
Collapse
|
2
|
Saraithong P, Krajcarski P, Kusaka Y, Yamada M, Matsumoto J, Cunningham H, Salih S, Jones D, Baddhan D, Hausner C, Anumonwo J, Rosenzweig A, Navarro MM, Diaz LV, Criscione J, Kim DH, Herron TJ. AI-guided laser purification of human iPSC-derived cardiomyocytes for next-generation cardiac cell manufacturing. Commun Biol 2025; 8:745. [PMID: 40360739 PMCID: PMC12075813 DOI: 10.1038/s42003-025-08162-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/02/2025] [Indexed: 05/15/2025] Open
Abstract
Current methods for producing cardiomyocytes from human induced pluripotent stem cells (hiPSCs) using 2D monolayer differentiation are often hampered by batch-to-batch variability and inefficient purification processes. Here, we introduce CM-AI, a novel artificial intelligence-guided laser cell processing platform designed for rapid, label-free purification of hiPSC-derived cardiomyocytes (hiPSC-CMs). This approach significantly reduces processing time without the need for chronic metabolic selection or antibody-based sorting. By integrating real-time cellular morphology analysis and targeted laser ablation, CM-AI selectively removes non-cardiomyocyte populations with high precision. This streamlined process preserves cardiomyocyte viability and function, offering a scalable and efficient solution for cardiac regenerative medicine, disease modeling, and drug discovery.
Collapse
Affiliation(s)
- Prakaimuk Saraithong
- Frankel Cardiovascular Regeneration Core Laboratory University of Michigan, Ann Arbor, MI, USA
| | - Peyton Krajcarski
- Frankel Cardiovascular Regeneration Core Laboratory University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | | | | | | | - Hailey Cunningham
- Frankel Cardiovascular Regeneration Core Laboratory University of Michigan, Ann Arbor, MI, USA
| | - Sama Salih
- Frankel Cardiovascular Regeneration Core Laboratory University of Michigan, Ann Arbor, MI, USA
| | - Darby Jones
- Frankel Cardiovascular Regeneration Core Laboratory University of Michigan, Ann Arbor, MI, USA
| | - Devika Baddhan
- Frankel Cardiovascular Regeneration Core Laboratory University of Michigan, Ann Arbor, MI, USA
| | - Christian Hausner
- Frankel Cardiovascular Regeneration Core Laboratory University of Michigan, Ann Arbor, MI, USA
| | - Justus Anumonwo
- Department of Internal Medicine-Cardiology, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Anthony Rosenzweig
- Department of Internal Medicine-Cardiology, University of Michigan, Ann Arbor, MI, USA
- Michigan Medicine Stanley and Judith Frankel Institute for Heart & Brain Health, Ann Arbor, MI, USA
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | | | - Luis Villa Diaz
- Departments of Biological Sciences and Bioengineering, Oakland University, Rochester, MI, USA
| | - Joseph Criscione
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Deok-Ho Kim
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Department of Medicine, Johns Hopkins University, Baltimore, MD, USA.
- Center for Microphysiological Systems, Johns Hopkins University, Baltimore, MD, USA.
| | - Todd J Herron
- Frankel Cardiovascular Regeneration Core Laboratory University of Michigan, Ann Arbor, MI, USA.
- Department of Internal Medicine-Cardiology, University of Michigan, Ann Arbor, MI, USA.
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
3
|
Kargaran PK, Garmany A, Garmany R, Stutzman MJ, Sadeghian M, Ackerman MJ, Perez-Terzic CM, Terzic A, Behfar A. Maturation of human induced pluripotent stem cell-derived cardiomyocytes promoted by Brachyury priming. Sci Rep 2025; 15:14399. [PMID: 40275010 PMCID: PMC12022343 DOI: 10.1038/s41598-025-97676-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 04/07/2025] [Indexed: 04/26/2025] Open
Abstract
Cardiac differentiation of human induced pluripotent stem cells is readily achievable, yet derivation of mature cardiomyocytes has been a recognized limitation. Here, a mesoderm priming approach was engineered to boost the maturation of cardiomyocyte progeny derived from pluripotent stem cells under standard cardiac differentiation conditions. Functional and structural hallmarks of maturity were assessed through multiparametric evaluation of cardiomyocytes derived from induced pluripotent stem cells following transfection of the mesoderm transcription factor Brachyury prior to initiation of lineage differentiation. Transfection with Brachyury resulted in earlier induction of a cardiopoietic state as hallmarked by early upregulation of the cardiac-specific transcription factors NKX2.5, GATA4, TBX20. Enhanced sarcomere maturity following Brachyury conditioning was documented by an increase in the proportion of cells expressing the ventricular isoform of myosin light chain and an increase in sarcomere length. Mesoderm primed cells displayed increased reliance on mitochondrial respiration as determined by increased mitochondrial size and a greater basal oxygen consumption rate. Further, Brachyury priming drove maturation of calcium handling enabling transfected cells to maintain calcium transient morphology at higher external field stimulation rates and augmented both calcium release and sequestration kinetics. In addition, transfected cells displayed a more mature action potential morphology with increased depolarization and repolarization kinetics. Derived cells transfected with Brachyury demonstrated increased toxicity response to doxorubicin as determined by a compromise in calcium transient morphology. Thus, Brachyury pre-treatment here achieved a streamlined strategy to promote maturity of human pluripotent stem cell-derived cardiomyocytes establishing a generalizable platform ready for deployment.
Collapse
Affiliation(s)
- Parisa K Kargaran
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
- Center for Regenerative Biotherapeutics, Mayo Clinic, Rochester, MN, USA
- Van Cleve Cardiac Regenerative Medicine Program, Mayo Clinic, Rochester, MN, USA
| | - Armin Garmany
- Center for Regenerative Biotherapeutics, Mayo Clinic, Rochester, MN, USA
- Marriott Heart Disease Research Program, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Alix School of Medicine, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, USA
| | - Ramin Garmany
- Mayo Clinic Alix School of Medicine, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, USA
- Windland Smith Rice Sudden Death Genomics Laboratory, Windland Smith Rice Genetic Heart Rhythm Clinic, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Marissa J Stutzman
- Windland Smith Rice Sudden Death Genomics Laboratory, Windland Smith Rice Genetic Heart Rhythm Clinic, Mayo Clinic, Rochester, MN, USA
| | - Maryam Sadeghian
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Michael J Ackerman
- Windland Smith Rice Sudden Death Genomics Laboratory, Windland Smith Rice Genetic Heart Rhythm Clinic, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | | | - Andre Terzic
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
- Center for Regenerative Biotherapeutics, Mayo Clinic, Rochester, MN, USA
- Marriott Heart Disease Research Program, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
- Department of Medical Genetics, Mayo Clinic, Rochester, MN, USA
| | - Atta Behfar
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA.
- Center for Regenerative Biotherapeutics, Mayo Clinic, Rochester, MN, USA.
- Van Cleve Cardiac Regenerative Medicine Program, Mayo Clinic, Rochester, MN, USA.
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
4
|
Mun D, Kang JY, Park M, Yoo G, Yun N, Hwang Y, Joung B. Pathogenic KCNH2-G53S variant in the PAS domain influences the electrophysiological phenotype in long QT syndrome type 2. Front Cardiovasc Med 2025; 12:1524909. [PMID: 40271129 PMCID: PMC12014601 DOI: 10.3389/fcvm.2025.1524909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 03/27/2025] [Indexed: 04/25/2025] Open
Abstract
Background Long QT syndrome type 2 (LQT2) is an arrythmia caused by loss-of-function mutations in KCNH2, leading to impaired Kv11.1 channel function. Objective To better understand LQT2, we examined the electrophysiological differences related to the G53S variant, which is located within the PAS domain of KCNH2, using patient-specific human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (hiPSC-CMs). Methods We generated hiPSC-CMs from a patient harboring the KCNH2G53S variant and a healthy control using non-integrative Sendai virus-mediated reprogramming. Their electrophysiological properties were assessed using microelectrode arrays (MEA), and Ca2+ dynamics were characterized using Fluo-4 dye. Results The patient harboring KCNH2G53S experienced aborted sudden cardiac death at 22 years of age, was diagnosed with LQT, and had an implantable cardioverter-defibrillator (ICD) implanted. KCNH2G53S hiPSC-CMs expressed less KCNH2 than normal CMs. Transcriptomic analysis of KCNH2G53S hiPSC-CMs revealed 3,857 differentially expressed genes, highlighting significant changes in pathways related to LQT2 development. Action potential duration was significantly longer in KCNH2G53S hiPSC-CMs than in control (545.3 ± 176.3 ms vs. 339.9 ± 44.5 ms; P = 0.019). Corrected field potential duration was significantly longer in KCNH2G53S hiPSC-CMs than in control (318.0 ± 66.3 ms vs. 234.5 ± 21.0 ms; P = 0.015), indicating altered electrophysiology. KCNH2G53S hiPSC-CMs exhibited significantly increased calcium transient amplitude and prolonged calcium wave duration under isoproterenol stimulation, indicating exacerbated abnormal calcium handling. Conclusion Our analysis of hiPSC-CMs carrying a heterozygous KCNH2G53S mutation, which showed abnormal electrophysiology and impaired calcium handling, provides a basis for developing improved management strategies for patients with LQT2.
Collapse
Affiliation(s)
- Dasom Mun
- Division of Cardiology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ji-Young Kang
- Division of Cardiology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Malgeum Park
- Division of Cardiology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Gyeongseo Yoo
- Division of Cardiology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Nuri Yun
- GNTPharma Science and Technology Center for Health, Incheon, Republic of Korea
| | - YouMi Hwang
- Division of Cardiology, Department of Internal Medicine, St. Vincent’s Hospital, The Catholic University College of Medicine, Suwon, Republic of Korea
- Catholic Research Institute for Intractable Cardiovascular Disease (CRID), College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Boyoung Joung
- Division of Cardiology, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
5
|
Dababneh SF, Babini H, Jiménez-Sábado V, Teves SS, Kim KH, Tibbits GF. Dissecting cardiovascular disease-associated noncoding genetic variants using human iPSC models. Stem Cell Reports 2025; 20:102467. [PMID: 40118058 PMCID: PMC12069897 DOI: 10.1016/j.stemcr.2025.102467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/21/2025] [Accepted: 02/22/2025] [Indexed: 03/23/2025] Open
Abstract
Advancements in genomics have revealed hundreds of loci associated with cardiovascular diseases, highlighting the role genetic variants play in disease pathogenesis. Notably, most variants lie within noncoding genomic regions that modulate transcription factor binding, chromatin accessibility, and thereby the expression levels and cell type specificity of gene transcripts. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have emerged as a powerful tool to delineate the pathogenicity of such variants and elucidate the underlying transcriptional mechanisms. Our review discusses the basics of noncoding variant-mediated pathogenesis, the methodologies utilized, and how hiPSC-based heart models can be leveraged to dissect the mechanisms of noncoding variants.
Collapse
Affiliation(s)
- Saif F Dababneh
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Cellular and Regenerative Medicine Centre, BC Children's Hospital Research Institute, 938 West 28th Avenue, Vancouver, BC V5Z 4H4, Canada
| | - Hosna Babini
- Cellular and Regenerative Medicine Centre, BC Children's Hospital Research Institute, 938 West 28th Avenue, Vancouver, BC V5Z 4H4, Canada; Departments of Molecular Biology and Biochemistry / Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Verónica Jiménez-Sábado
- Cellular and Regenerative Medicine Centre, BC Children's Hospital Research Institute, 938 West 28th Avenue, Vancouver, BC V5Z 4H4, Canada; Departments of Molecular Biology and Biochemistry / Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Sheila S Teves
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Kyoung-Han Kim
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; University of Ottawa Heart Institute, Ottawa, ON K1Y 4W7, Canada
| | - Glen F Tibbits
- Cellular and Regenerative Medicine Centre, BC Children's Hospital Research Institute, 938 West 28th Avenue, Vancouver, BC V5Z 4H4, Canada; Departments of Molecular Biology and Biochemistry / Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC V5A 1S6, Canada; School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 2B9, Canada.
| |
Collapse
|
6
|
Li W, Luo X, Strano A, Arun S, Gamm O, Poetsch MS, Hasse M, Steiner RP, Fischer K, Pöche J, Ulbricht Y, Lesche M, Trimaglio G, El-Armouche A, Dahl A, Mirtschink P, Guan K, Schubert M. Comprehensive promotion of iPSC-CM maturation by integrating metabolic medium with nanopatterning and electrostimulation. Nat Commun 2025; 16:2785. [PMID: 40118846 PMCID: PMC11928738 DOI: 10.1038/s41467-025-58044-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 03/03/2025] [Indexed: 03/24/2025] Open
Abstract
The immaturity of human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) is a major limitation for their use in drug screening to identify pro-arrhythmogenic or cardiotoxic molecules. Here, we demonstrate an approach that combines lipid-enriched maturation medium with a high concentration of calcium, nanopatterning of culture surfaces and electrostimulation to generate iPSC-CMs with advanced electrophysiological, structural and metabolic phenotypes. Systematic testing reveals that electrostimulation is the key driver of enhanced mitochondrial development and metabolic maturation and improved electrophysiological properties of iPSC-CMs. Increased calcium concentration strongly promotes electrophysiological maturation, while nanopatterning primarily facilitates sarcomere organisation with minor effect on electrophysiological properties. Transcriptome analysis reveals that activation of HMCES and TFAM targets contributes to mitochondrial development, whereas downregulation of MAPK/PI3K and SRF targets is associated with iPSC-CM polyploidy. These findings provide mechanistic insights into iPSC-CM maturation, paving the way for pharmacological responses that more closely resemble those of adult CMs.
Collapse
Affiliation(s)
- Wener Li
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, Dresden, Germany
| | - Xiaojing Luo
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, Dresden, Germany
| | - Anna Strano
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, Dresden, Germany
| | - Shakthi Arun
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, Dresden, Germany
| | - Oliver Gamm
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, Dresden, Germany
| | - Mareike S Poetsch
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, Dresden, Germany
| | - Marcel Hasse
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, Dresden, Germany
| | - Robert-Patrick Steiner
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, Dresden, Germany
| | - Konstanze Fischer
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, Dresden, Germany
| | - Jessie Pöche
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, Dresden, Germany
| | - Ying Ulbricht
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, Dresden, Germany
| | - Mathias Lesche
- DRESDEN-concept Genome Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Giulia Trimaglio
- Institute of Clinical Chemistry and Laboratory Medicine, Department of Clinical Pathobiochemistry, University Hospital Dresden, Dresden, Germany
- National Center for Tumor Diseases, Partner Site Dresden, 01307 Dresden, and German Cancer Research Center, Heidelberg, Germany
| | - Ali El-Armouche
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, Dresden, Germany
| | - Andreas Dahl
- DRESDEN-concept Genome Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Peter Mirtschink
- Institute of Clinical Chemistry and Laboratory Medicine, Department of Clinical Pathobiochemistry, University Hospital Dresden, Dresden, Germany
| | - Kaomei Guan
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, Dresden, Germany.
| | - Mario Schubert
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
7
|
Osten F, Bodenschatz AK, Ivaskevica K, Kröhn S, Piep B, Holler T, Teske J, Montag J, Iorga B, Weber N, Zweigerdt R, Kraft T, Meissner JD. Differential impact of substrates on myosin heavy and light chain expression in human stem cell-derived cardiomyocytes at single-cell level. J Muscle Res Cell Motil 2025:10.1007/s10974-025-09690-2. [PMID: 39948277 DOI: 10.1007/s10974-025-09690-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/01/2025] [Indexed: 04/20/2025]
Abstract
To fully exploit the potential of human pluripotent stem cell-derived cardiomyocytes, ideally they should acquire a mature, adult ventricular-like phenotype. Predominant expression of the β-isoform of myosin heavy chain (β-MyHC) and the ventricular isoform of myosin regulatory light chain 2 (MLC2v) is a marker of human adult cardiac ventricle. Yet predominant co-expression of these isoforms is rarely reported by current culture protocols. Here, we assessed the impact of different substrates on β-MyHC and MLC2v expression in single human embryonic stem cell-derived CMs (hESC-CMs). As substrates, surface materials with differing stiffness as defined by Young's modulus were combined with either laminin, a single-component coating, or Matrigel, a multi-component coating including growth factors. Semi-quantitative single-cell immunofluorescence analysis demonstrated that surfaces with supraphysiological stiffness in combination with laminin are sufficient for promotion of predominant β-MyHC expression, but not for predominant MLC2v expression in hESC-CMs. Accordingly, mechanical stimuli likely promote expression of β-MyHC in these cultures. Culture on matrices with a lower stiffness than glass in combination with growth factor-containing Matrigel led to only moderate increases in MLC2v expression, possibly more dependent on growth factors, suggesting different regulation of expression. Integrin-related downstream signal transducers, integrin-linked and cardiac troponin I-interacting kinase, as well as modulation of intracellular Ca2+-concentration and epigenetic signaling did not affect MyHC/MLC2 isoform expression. The data indicate that expression of adult ventricular markers β-MyHC and MLC2v depends on different stimuli like substrate stiffness and growth factors. To conclude, multiple stimuli appear to be necessary to promote an adult ventricular phenotype.
Collapse
Affiliation(s)
- Felix Osten
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany.
| | - Alea K Bodenschatz
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Karina Ivaskevica
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Simon Kröhn
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Birgit Piep
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Tim Holler
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Jana Teske
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Judith Montag
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
- Faculty of Medicine, MSB Medical School Berlin, Berlin, Germany
| | - Bogdan Iorga
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
- Department of Analytical Chemistry and Physical Chemistry, Faculty of Chemistry, University of Bucharest, Bucharest, Romania
| | - Natalie Weber
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | - Robert Zweigerdt
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Theresia Kraft
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Joachim D Meissner
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
8
|
Huang K, Ashraf M, Rohani L, Luo Y, Sacayanan A, Huang H, Haegert A, Volik S, Sar F, LeBihan S, Liew J, Backx PH, Roberts JD, Tibbits GF, Churko JM, Sanatani S, Collins C, Brunham LR, Laksman Z. Atrial Fibrillation Related Titin Truncation Is Associated With Atrial Myopathy in Patient-Derived Induced Pluripotent Stem Cell Disease Models. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2025; 18:e004412. [PMID: 39851047 DOI: 10.1161/circgen.123.004412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/09/2024] [Indexed: 01/25/2025]
Abstract
BACKGROUND Protein-truncating mutations in the titin gene are associated with increased risk of atrial fibrillation. However, little is known about the underlying pathophysiology. METHODS We identified a heterozygous titin truncating variant (TTNtv) in a patient with unexplained early onset atrial fibrillation and normal ventricular function. We generated patient-specific atrial- and ventricular-like induced pluripotent stem cell-derived cardiomyocytes and engineered heart tissue to evaluate the impact of the TTNtv on electrophysiology, sarcomere structure, contractility, and gene expression. RESULTS We demonstrate that the TTNtv increases susceptibility to pacing-induced arrhythmia, promotes sarcomere disorganization, and reduces contractile force in atrial induced pluripotent stem cell-derived cardiomyocytes compared with their CRISPR/Cas9-corrected isogenic controls. In ventricular induced pluripotent stem cell-derived cardiomyocytes, this variant was associated with abnormal electrophysiology and sarcomere organization without a reduction in contractile force compared with their isogenic controls. RNA-sequencing revealed an upregulation of cell adhesion and extracellular matrix genes in the presence of the TTNtv for both atrial and ventricular engineered heart tissues. CONCLUSIONS In a patient with unexplained atrial fibrillation, induced pluripotent stem cell-derived cardiomyocytes with a TTNtv showed structural and electrophysiological abnormalities in both atrial and ventricular models, while only atrial engineered heart tissues demonstrated reduced contractility. The observed chamber-specific effect suggests that structural disorganization and reduced contractile function may be associated with atrial myopathy in the presence of truncated titin.
Collapse
Affiliation(s)
- Kate Huang
- Centre for Heart Lung Innovation (K.H., M.A., L.R., Y.L., A.S., H.H., L.R.B., Z.L.), University of British Columbia, Vancouver
- Experimental Medicine Program, Department of Medicine (K.H., Y.L., H.H., L.R.B., Z.L.), University of British Columbia, Vancouver
| | - Mishal Ashraf
- Centre for Heart Lung Innovation (K.H., M.A., L.R., Y.L., A.S., H.H., L.R.B., Z.L.), University of British Columbia, Vancouver
- School of Biomedical Engineering (M.A., L.R., A.S., G.F.T., Z.L.), University of British Columbia, Vancouver
| | - Leili Rohani
- Centre for Heart Lung Innovation (K.H., M.A., L.R., Y.L., A.S., H.H., L.R.B., Z.L.), University of British Columbia, Vancouver
- School of Biomedical Engineering (M.A., L.R., A.S., G.F.T., Z.L.), University of British Columbia, Vancouver
| | - Yinhan Luo
- Centre for Heart Lung Innovation (K.H., M.A., L.R., Y.L., A.S., H.H., L.R.B., Z.L.), University of British Columbia, Vancouver
- Experimental Medicine Program, Department of Medicine (K.H., Y.L., H.H., L.R.B., Z.L.), University of British Columbia, Vancouver
| | - Ardin Sacayanan
- Centre for Heart Lung Innovation (K.H., M.A., L.R., Y.L., A.S., H.H., L.R.B., Z.L.), University of British Columbia, Vancouver
- School of Biomedical Engineering (M.A., L.R., A.S., G.F.T., Z.L.), University of British Columbia, Vancouver
| | - Haojun Huang
- Centre for Heart Lung Innovation (K.H., M.A., L.R., Y.L., A.S., H.H., L.R.B., Z.L.), University of British Columbia, Vancouver
- Experimental Medicine Program, Department of Medicine (K.H., Y.L., H.H., L.R.B., Z.L.), University of British Columbia, Vancouver
| | - Anne Haegert
- Genomics Core Facility, Vancouver Prostate Centre (A.H., S.V., F.S., S.L.), University of British Columbia, Vancouver
| | - Stanislav Volik
- Genomics Core Facility, Vancouver Prostate Centre (A.H., S.V., F.S., S.L.), University of British Columbia, Vancouver
| | - Funda Sar
- Genomics Core Facility, Vancouver Prostate Centre (A.H., S.V., F.S., S.L.), University of British Columbia, Vancouver
| | - Stéphane LeBihan
- Genomics Core Facility, Vancouver Prostate Centre (A.H., S.V., F.S., S.L.), University of British Columbia, Vancouver
| | - Janet Liew
- Department of Medicine (J.L., L.R.B., Z.L.), University of British Columbia, Vancouver
| | - Peter H Backx
- Department of Biology, York University, Toronto, Ontario, Canada (P.H.B.)
| | - Jason D Roberts
- Population Health Research Institute, McMaster University and Hamilton Health Sciences, Ontario, Canada (J.D.R.)
| | - Glen F Tibbits
- School of Biomedical Engineering (M.A., L.R., A.S., G.F.T., Z.L.), University of British Columbia, Vancouver
- Molecular Cardiac Physiology Group, Departments of Biomedical Physiology and Kinesiology and Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada (G.F.T.)
- Cellular and Regenerative Medicine Centre, British Columbia Children's Hospital Research Institution, Vancouver, Canada (G.F.T.)
| | - Jared M Churko
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson (J.M.C.)
| | - Shubhayan Sanatani
- Division of Cardiology, Department of Pediatrics, Children's Heart Centre, BC Children's Hospital (S.S.), University of British Columbia, Vancouver
| | - Colin Collins
- Vancouver Prostate Centre (C.C.), University of British Columbia, Vancouver
| | - Liam R Brunham
- Centre for Heart Lung Innovation (K.H., M.A., L.R., Y.L., A.S., H.H., L.R.B., Z.L.), University of British Columbia, Vancouver
- Experimental Medicine Program, Department of Medicine (K.H., Y.L., H.H., L.R.B., Z.L.), University of British Columbia, Vancouver
- Department of Medicine (J.L., L.R.B., Z.L.), University of British Columbia, Vancouver
- Department of Medical Genetics (L.R.B.), University of British Columbia, Vancouver
| | - Zachary Laksman
- Centre for Heart Lung Innovation (K.H., M.A., L.R., Y.L., A.S., H.H., L.R.B., Z.L.), University of British Columbia, Vancouver
- Experimental Medicine Program, Department of Medicine (K.H., Y.L., H.H., L.R.B., Z.L.), University of British Columbia, Vancouver
- School of Biomedical Engineering (M.A., L.R., A.S., G.F.T., Z.L.), University of British Columbia, Vancouver
- Department of Medicine (J.L., L.R.B., Z.L.), University of British Columbia, Vancouver
| |
Collapse
|
9
|
Grant ZL, Kuang S, Zhang S, Horrillo AJ, Rao KS, Kameswaran V, Joubran C, Lau PK, Dong K, Yang B, Bartosik WM, Zemke NR, Ren B, Kathiriya IS, Pollard KS, Bruneau BG. Dose-dependent sensitivity of human 3D chromatin to a heart disease-linked transcription factor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.09.632202. [PMID: 39829922 PMCID: PMC11741296 DOI: 10.1101/2025.01.09.632202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Dosage-sensitive transcription factors (TFs) underlie altered gene regulation in human developmental disorders, and cell-type specific gene regulation is linked to the reorganization of 3D chromatin during cellular differentiation. Here, we show dose-dependent regulation of chromatin organization by the congenital heart disease (CHD)-linked, lineage-restricted TF TBX5 in human cardiomyocyte differentiation. Genome organization, including compartments, topologically associated domains, and chromatin loops, are sensitive to reduced TBX5 dosage in a human model of CHD, with variations in response across individual cells. Regions normally bound by TBX5 are especially sensitive, while co-occupancy with CTCF partially protects TBX5-bound TAD boundaries and loop anchors. These results highlight the importance of lineage-restricted TF dosage in cell-type specific 3D chromatin dynamics, suggesting a new mechanism for TF-dependent disease.
Collapse
Affiliation(s)
| | | | - Shu Zhang
- Gladstone Institutes; San Francisco, CA, USA
- Bioinformatics Graduate Program, University of California, San Francisco; San Francisco, CA, USA
| | - Abraham J. Horrillo
- Gladstone Institutes; San Francisco, CA, USA
- TETRAD Graduate Program, University of California, San Francisco; San Francisco, CA, USA
| | | | | | | | - Pik Ki Lau
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine; La Jolla, CA, USA
- Center for Epigenomics, University of California, San Diego School of Medicine; La Jolla, CA, USA
| | - Keyi Dong
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine; La Jolla, CA, USA
- Center for Epigenomics, University of California, San Diego School of Medicine; La Jolla, CA, USA
| | - Bing Yang
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine; La Jolla, CA, USA
- Center for Epigenomics, University of California, San Diego School of Medicine; La Jolla, CA, USA
| | - Weronika M. Bartosik
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine; La Jolla, CA, USA
- Center for Epigenomics, University of California, San Diego School of Medicine; La Jolla, CA, USA
| | - Nathan R. Zemke
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine; La Jolla, CA, USA
- Center for Epigenomics, University of California, San Diego School of Medicine; La Jolla, CA, USA
| | - Bing Ren
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine; La Jolla, CA, USA
- Center for Epigenomics, University of California, San Diego School of Medicine; La Jolla, CA, USA
| | - Irfan S. Kathiriya
- Gladstone Institutes; San Francisco, CA, USA
- Department of Anesthesia and Perioperative Care, University of California, San Francisco; San Francisco, CA, USA
| | - Katherine S. Pollard
- Gladstone Institutes; San Francisco, CA, USA
- Department of Epidemiology & Biostatistics, University of California, San Francisco; San Francisco, CA, USA
- Chan Zuckerberg Biohub; San Francisco, CA, USA
| | - Benoit G. Bruneau
- Gladstone Institutes; San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA
- Department of Pediatrics, Cardiovascular Research Institute, Institute for Human Genetics, and the Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco; San Francisco, CA, USA
| |
Collapse
|
10
|
Lu J, Zhang L, Cao H, Ma X, Bai Z, Zhu H, Qi Y, Zhang S, Zhang P, He Z, Yang H, Liu Z, Jia W. The Low Tumorigenic Risk and Subtypes of Cardiomyocytes Derived from Human-induced Pluripotent Stem Cells. Curr Stem Cell Res Ther 2025; 20:317-335. [PMID: 40351082 DOI: 10.2174/011574888x318139240621051224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/21/2024] [Accepted: 05/02/2024] [Indexed: 05/14/2025]
Abstract
BACKGROUND Clinical application of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) is a promising approach for the treatment of heart diseases. However, the tumorigenicity of hiPSC-CMs remains a concern for their clinical applications and the composition of the hiPSC-CM subtypes need to be clearly identified. METHODS In the present study, hiPSC-CMs were induced from hiPSCs via modulation of Wnt signaling followed by glucose deprivation purification. The structure, function, subpopulation composition, and tumorigenic risk of hiPSC-CMs were evaluated by single-cell RNA sequencing (scRNAseq), whole exome sequencing (WES), and integrated molecular biology, cell biology, electrophysiology, and/or animal experiments. RESULTS The high purity of hiPSC-CMs, determined by flow cytometry analysis, was generated. ScRNAseq analysis of differentiation day (D) 25 hiPSC-CMs did not identify the transcripts representative of undifferentiated hiPSCs. WES analysis showed a few newly acquired confidently identified mutations and no mutations in tumor susceptibility genes. Further, no tumor formation was observed after transplanting hiPSC-CMs into NOD-SCID mice for 3 months. Moreover, D25 hiPSC-CMs were composed of subtypes of ventricular-like cells (23.19%) and atrial-like cells (66.45%) in different cell cycle stages or mature levels, based on the scRNAseq analysis. Furthermore, a subpopulation of more mature ventricular cells (3.21%) was identified, which displayed significantly up-regulated signaling pathways related to myocardial contraction and action potentials. Additionally, a subpopulation of cardiomyocytes in an early differentiation stage (3.44%) experiencing nutrient stress-induced injury and heading toward apoptosis was observed. CONCLUSIONS This study confirmed the biological safety of hiPSC-CMs and described the composition and expression profile of cardiac subtypes in hiPSC-CMs which provide standards for quality control and theoretical supports for the translational applications of hiPSC-CMs.
Collapse
Affiliation(s)
- Jizhen Lu
- National Stem Cell Translational Resource Center/GMP Laboratory of Stem Cell Transformation Medicine Industry Base, Shanghai East Hospital (East Hospital Affiliated to Tongji University), Tongji University School of Life Sciences and Technology, Shanghai, People's Republic of China
| | - Lu Zhang
- National Stem Cell Translational Resource Center/GMP Laboratory of Stem Cell Transformation Medicine Industry Base, Shanghai East Hospital (East Hospital Affiliated to Tongji University), Tongji University School of Life Sciences and Technology, Shanghai, People's Republic of China
| | - Hongxia Cao
- National Stem Cell Translational Resource Center/GMP Laboratory of Stem Cell Transformation Medicine Industry Base, Shanghai East Hospital (East Hospital Affiliated to Tongji University), Tongji University School of Life Sciences and Technology, Shanghai, People's Republic of China
| | - Xiaoxue Ma
- National Stem Cell Translational Resource Center/GMP Laboratory of Stem Cell Transformation Medicine Industry Base, Shanghai East Hospital (East Hospital Affiliated to Tongji University), Tongji University School of Life Sciences and Technology, Shanghai, People's Republic of China
| | - Zhihui Bai
- National Stem Cell Translational Resource Center/GMP Laboratory of Stem Cell Transformation Medicine Industry Base, Shanghai East Hospital (East Hospital Affiliated to Tongji University), Tongji University School of Life Sciences and Technology, Shanghai, People's Republic of China
| | - Hanyu Zhu
- National Stem Cell Translational Resource Center/GMP Laboratory of Stem Cell Transformation Medicine Industry Base, Shanghai East Hospital (East Hospital Affiliated to Tongji University), Tongji University School of Life Sciences and Technology, Shanghai, People's Republic of China
| | - Yiyao Qi
- National Stem Cell Translational Resource Center/GMP Laboratory of Stem Cell Transformation Medicine Industry Base, Shanghai East Hospital (East Hospital Affiliated to Tongji University), Tongji University School of Life Sciences and Technology, Shanghai, People's Republic of China
| | - Shoumei Zhang
- National Stem Cell Translational Resource Center/GMP Laboratory of Stem Cell Transformation Medicine Industry Base, Shanghai East Hospital (East Hospital Affiliated to Tongji University), Tongji University School of Life Sciences and Technology, Shanghai, People's Republic of China
| | - Peng Zhang
- Translational Medical Center for Stem Cell Therapy & Institute for Heart Failure and Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine and Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, People's Republic of China
- Laboratory of Molecular Cardiology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), Shanghai, People's Republic of China
| | - Zhiying He
- National Stem Cell Translational Resource Center/GMP Laboratory of Stem Cell Transformation Medicine Industry Base, Shanghai East Hospital (East Hospital Affiliated to Tongji University), Tongji University School of Life Sciences and Technology, Shanghai, People's Republic of China
| | - Huangtian Yang
- Translational Medical Center for Stem Cell Therapy & Institute for Heart Failure and Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine and Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, People's Republic of China
- Laboratory of Molecular Cardiology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), Shanghai, People's Republic of China
| | - Zhongmin Liu
- National Stem Cell Translational Resource Center/GMP Laboratory of Stem Cell Transformation Medicine Industry Base, Shanghai East Hospital (East Hospital Affiliated to Tongji University), Tongji University School of Life Sciences and Technology, Shanghai, People's Republic of China
| | - Wenwen Jia
- National Stem Cell Translational Resource Center/GMP Laboratory of Stem Cell Transformation Medicine Industry Base, Shanghai East Hospital (East Hospital Affiliated to Tongji University), Tongji University School of Life Sciences and Technology, Shanghai, People's Republic of China
| |
Collapse
|
11
|
Reyat JS, Sommerfeld LC, O’Reilly M, Roth Cardoso V, Thiemann E, Khan AO, O’Shea C, Harder S, Müller C, Barlow J, Stapley RJ, Chua W, Kabir SN, Grech O, Hummel O, Hübner N, Kääb S, Mont L, Hatem SN, Winters J, Zeemering S, Morgan NV, Rayes J, Gehmlich K, Stoll M, Brand T, Schweizer M, Piasecki A, Schotten U, Gkoutos GV, Lorenz K, Cuello F, Kirchhof P, Fabritz L. PITX2 deficiency leads to atrial mitochondrial dysfunction. Cardiovasc Res 2024; 120:1907-1923. [PMID: 39129206 PMCID: PMC11630043 DOI: 10.1093/cvr/cvae169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 04/27/2024] [Accepted: 05/23/2024] [Indexed: 08/13/2024] Open
Abstract
AIMS Reduced left atrial PITX2 is associated with atrial cardiomyopathy and atrial fibrillation (AF). PITX2 is restricted to left atrial cardiomyocytes (aCMs) in the adult heart. The links between PITX2 deficiency, atrial cardiomyopathy, and AF are not fully understood. METHODS AND RESULTS To identify mechanisms linking PITX2 deficiency to AF, we generated and characterized PITX2-deficient human aCMs derived from human induced pluripotent stem cells (hiPSC) and their controls. PITX2-deficient hiPSC-derived atrial cardiomyocytes showed shorter and disorganized sarcomeres and increased mononucleation. Electron microscopy found an increased number of smaller mitochondria compared with isogenic controls. Mitochondrial protein expression was altered in PITX2-deficient hiPSC-derived atrial cardiomyocytes. Single-nuclear RNA-sequencing found differences in cellular respiration pathways and differentially expressed mitochondrial and ion channel genes in PITX2-deficient hiPSC-derived atrial cardiomyocytes. PITX2 repression in hiPSC-derived atrial cardiomyocytes replicated dysregulation of cellular respiration. Mitochondrial respiration was shifted to increased glycolysis in PITX2-deficient hiPSC-derived atrial cardiomyocytes. PITX2-deficient human hiPSC-derived atrial cardiomyocytes showed higher spontaneous beating rates. Action potential duration was more variable with an overall prolongation of early repolarization, consistent with metabolic defects. Gene expression analyses confirmed changes in mitochondrial genes in left atria from 42 patients with AF compared with 43 patients with sinus rhythm. Dysregulation of left atrial mitochondrial (COX7C) and metabolic (FOXO1) genes was associated with PITX2 expression in human left atria. CONCLUSION PITX2 deficiency causes atrial mitochondrial dysfunction and a metabolic shift to glycolysis in human aCMs. PITX2-dependent metabolic changes can contribute to the structural and functional defects found in PITX2-deficient atria.
Collapse
Affiliation(s)
- Jasmeet S Reyat
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Wolfson Drive, B15 2TT Birmingham, UK
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, OX3 9DU Oxford, UK
| | - Laura C Sommerfeld
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Wolfson Drive, B15 2TT Birmingham, UK
- Department of Cardiology, University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
- University Center of Cardiovascular Sciences, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Molly O’Reilly
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Wolfson Drive, B15 2TT Birmingham, UK
| | - Victor Roth Cardoso
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Wolfson Drive, B15 2TT Birmingham, UK
- Institute of Cancer Genomics, College of Medical and Dental Sciences, University of Birmingham, B15 2TT Birmingham, UK
| | - Ellen Thiemann
- Department of Cardiology, University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Abdullah O Khan
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Wolfson Drive, B15 2TT Birmingham, UK
| | - Christopher O’Shea
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Wolfson Drive, B15 2TT Birmingham, UK
| | - Sönke Harder
- Institut für Klinische Chemie und Laboratoriumsmedizin, Massenspektrometrische Proteomanalytik, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Christian Müller
- UKE Bioinformatics Core, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Jonathan Barlow
- Cellular Health and Metabolism Facility, College of Life and Environmental Sciences, University of Birmingham, B15 2TT Birmingham, UK
| | - Rachel J Stapley
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Wolfson Drive, B15 2TT Birmingham, UK
| | - Winnie Chua
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Wolfson Drive, B15 2TT Birmingham, UK
| | - S Nashitha Kabir
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Wolfson Drive, B15 2TT Birmingham, UK
| | - Olivia Grech
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Wolfson Drive, B15 2TT Birmingham, UK
| | - Oliver Hummel
- Max Delbrück Centrum for Molecular Medicine, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Norbert Hübner
- Max Delbrück Centrum for Molecular Medicine, Robert-Rössle-Straße 10, 13125 Berlin, Germany
- Charite—Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Germany
| | - Stefan Kääb
- Department of Medicine I, University Hospital Munich, Ludwig Maximilian University of Munich (LMU), Marchioninistraße 15, 81377 Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Lluis Mont
- Hospital Clínic, Universitat de Barcelona, Villarroel, 170, 08036, Barcelona, Catalonia, Spain
- Institut de Recerca Biomèdica, August Pi- i Sunyer, Roselló, 149-153, 08036 Barcelona, Catalonia, Spain
- Centro Investigación Biomedica en Red Cardiovascular, Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, 28029 Madrid, Spain
| | - Stéphane N Hatem
- INSERM UMRS1166, ICAN—Institute of Cardiometabolism and Nutrition, Sorbonne University, Institute of Cardiology, Pitié-Salpêtrière Hospital, 91 Boulevard de l’Hôpital, 75013 Paris, France
| | - Joris Winters
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Minderbroedersberg 4-66211 LK Maastricht, The Netherlands
| | - Stef Zeemering
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Minderbroedersberg 4-66211 LK Maastricht, The Netherlands
| | - Neil V Morgan
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Wolfson Drive, B15 2TT Birmingham, UK
| | - Julie Rayes
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Wolfson Drive, B15 2TT Birmingham, UK
| | - Katja Gehmlich
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Wolfson Drive, B15 2TT Birmingham, UK
| | - Monika Stoll
- Institute of Human Genetics, Genetic Epidemiology, WWU Münster, Albert-Schweitzer-Campus 1, D3, Domagkstraße 3, 48149 Münster, Germany
- Cardiovascular Research Institute Maastricht, Genetic Epidemiology and Statistical Genetics, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Theresa Brand
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Straße 9, 97078 Würzburg, Germany
| | - Michaela Schweizer
- Department of Morphology and Electron Microscopy, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Angelika Piasecki
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Ulrich Schotten
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Minderbroedersberg 4-66211 LK Maastricht, The Netherlands
| | - Georgios V Gkoutos
- Institute of Cancer Genomics, College of Medical and Dental Sciences, University of Birmingham, B15 2TT Birmingham, UK
| | - Kristina Lorenz
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Straße 9, 97078 Würzburg, Germany
- Leibniz-Institut für Analytische Wissenschaften—ISAS—e.V., ISAS City, Bunsen-Kirchhoff-Straße 11, 44139 Dortmund, Germany
| | - Friederike Cuello
- DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Paulus Kirchhof
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Wolfson Drive, B15 2TT Birmingham, UK
- Department of Cardiology, University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Larissa Fabritz
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Wolfson Drive, B15 2TT Birmingham, UK
- Department of Cardiology, University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
- University Center of Cardiovascular Sciences, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| |
Collapse
|
12
|
Begovic M, Schneider L, Zhou X, Hamdani N, Akin I, El-Battrawy I. The Role of Human-Induced Pluripotent Stem Cells in Studying Cardiac Channelopathies. Int J Mol Sci 2024; 25:12034. [PMID: 39596103 PMCID: PMC11593457 DOI: 10.3390/ijms252212034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/22/2024] [Accepted: 11/03/2024] [Indexed: 11/28/2024] Open
Abstract
Cardiac channelopathies are inherited diseases that increase the risk of sudden cardiac death. While different genes have been associated with inherited channelopathies, there are still subtypes, e.g., catecholaminergic polymorphic ventricular tachycardia and Brugada syndrome, where the genetic cause remains unknown. Various models, including animal models, heterologous expression systems, and the human-induced pluripotent stem-cell-derived cardiomyocytes (hiPSCs-CMs) model, have been used to study the pathophysiological mechanisms of channelopathies. Recently, researchers have focused on using hiPSCs-CMs to understand the genotype-phenotype correlation and screen drugs. By combining innovative techniques such as Clustered Regularly Interspaced Short Palindromic Repeats/Clustered Regularly Interspaced Short Palindromic Repeats associated protein 9 (CRISPR/Cas9)-mediated genome editing, and three-dimensional (3D) engineered heart tissues, we can gain new insights into the pathophysiological mechanisms of channelopathies. This approach holds promise for improving personalized drug treatment. This review highlights the role of hiPSCs-CMs in understanding the pathomechanism of Brugada syndrome and catecholaminergic polymorphic ventricular tachycardia and how these models can be utilized for drug screening.
Collapse
Affiliation(s)
- Merima Begovic
- Institute of Physiology, Department of Cellular and Translational Physiology, Ruhr-University Bochum, 44801 Bochum, Germany; (M.B.); (L.S.); (N.H.)
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, St. Josef Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Luca Schneider
- Institute of Physiology, Department of Cellular and Translational Physiology, Ruhr-University Bochum, 44801 Bochum, Germany; (M.B.); (L.S.); (N.H.)
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, St. Josef Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Xiaobo Zhou
- Cardiology, Angiology, Haemostaseology, and Medical Intensive Care, Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany;
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Nazha Hamdani
- Institute of Physiology, Department of Cellular and Translational Physiology, Ruhr-University Bochum, 44801 Bochum, Germany; (M.B.); (L.S.); (N.H.)
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, St. Josef Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
- Department of Physiology, Cardiovascular Research Institute, University Maastricht, 6229HX Maastricht, The Netherlands
- HCEMM-SU Cardiovascular Comorbidities Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Intézet címe Semmelweis University, 1089 Budapest, Hungary
- Department of Cardiology and Rhythmology, St. Josef Hospital, Ruhr University, 44791 Bochum, Germany
| | - Ibrahim Akin
- Cardiology, Angiology, Haemostaseology, and Medical Intensive Care, Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany;
| | - Ibrahim El-Battrawy
- Institute of Physiology, Department of Cellular and Translational Physiology, Ruhr-University Bochum, 44801 Bochum, Germany; (M.B.); (L.S.); (N.H.)
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, St. Josef Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
- Department of Cardiology and Rhythmology, St. Josef Hospital, Ruhr University, 44791 Bochum, Germany
| |
Collapse
|
13
|
Schulz C, Eschenhagen T, Christ T. Atrial hiPSC-CM as a Pharmacologic Model to Evaluate Anti-AF Drugs: Some Lessons From I Kur. J Cardiovasc Pharmacol 2024; 84:479-485. [PMID: 39270001 DOI: 10.1097/fjc.0000000000001631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024]
Abstract
ABSTRACT Human induced pluripotent stem cells (hiPSC) and atrial hiPSC-derived cardiomyocytes (hiPSC-CM) have entered the arena of preclinical atrial fibrillation research. A central question is whether they reproduce the physiologic contribution of atrial selective potassium currents (such as the ultrarapid potassium current, I Kur ) to repolarization. Of note, 2 studies in single atrial hiPSC-CM reported prolongation of action potential duration by I Kur block indicating that I Kur might in fact represent a valuable target for the treatment of human atrial fibrillation. However, the results and interpretation are at odds with the literature on I Kur block in human atria and the results of clinical studies. We believe that the discrepancies indicate that experiments in single atrial CM (both adult atrial CM and atrial hiPSC-CM) might be misleading. Under particular experimental conditions, atrial hiPSC-CMs may not closely resemble the electrophysiology of the human atrium. Therefore, we recapitulate here methodological issues evaluating potential value of the I Kur as an antiarrhythmic target when investigated in animal models, in human atrial tissues, and finally in atrial hiPSC-CM.
Collapse
Affiliation(s)
- Carl Schulz
- Department of Cardiology, University Heart and Vascular Center Hamburg, Hamburg, Germany
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany ; and
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Luebeck/Greifswald, Hamburg, Germany
| | - Thomas Eschenhagen
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany ; and
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Luebeck/Greifswald, Hamburg, Germany
| | - Torsten Christ
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany ; and
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Luebeck/Greifswald, Hamburg, Germany
| |
Collapse
|
14
|
Kakizuka T, Natsume T, Nagai T. Compact lens-free imager using a thin-film transistor for long-term quantitative monitoring of stem cell culture and cardiomyocyte production. LAB ON A CHIP 2024. [PMID: 39436381 DOI: 10.1039/d4lc00528g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
With advancements in human induced pluripotent stem cell (hiPSC) technology, there is an increasing demand for quality control techniques to manage the long-term process of target cell production effectively. While monitoring systems designed for use within incubators are promising for assessing culture quality, existing systems still face challenges in terms of compactness, throughput, and available metrics. To address these limitations, we have developed a compact and high-throughput lens-free imaging device named INSPCTOR. The device is as small as a standard culture plate, which allows for the installation of multiple units within an incubator. INSPCTOR utilises a large thin-film transistor image sensor, enabling simultaneous observation of six independent culture environments, each approximately 1 cm2. With this device, we successfully monitored the confluency of hiPSC cultures and identified the onset timing of epithelial-to-mesenchymal transition during mesodermal induction. Additionally, we quantified the beating frequency and conduction of hiPSC-derived cardiomyocytes by using high-speed imaging modes. This enabled us to identify the onset of spontaneous beating during differentiation and assess chronotropic responses in drug evaluations. Moreover, by tracking beating frequency over 10 days of cardiomyocyte maturation, we identified week-scale and daily-scale fluctuations, the latter of which correlated with cellular metabolic activity. The metrics derived from this device would enhance the reproducibility and quality of target cell production.
Collapse
Affiliation(s)
- Taishi Kakizuka
- SANKEN, The University of Osaka, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan.
- Transdimensional Life Imaging Division, Institute for Open and Transdisciplinary Research Initiatives, The University of Osaka, Yamadaoka 2-1, Suita, Osaka 565-0871, Japan
| | - Tohru Natsume
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, 2-3-26 Aoumi, Koto-ku, Tokyo 135-0064, Japan
| | - Takeharu Nagai
- SANKEN, The University of Osaka, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan.
- Transdimensional Life Imaging Division, Institute for Open and Transdisciplinary Research Initiatives, The University of Osaka, Yamadaoka 2-1, Suita, Osaka 565-0871, Japan
| |
Collapse
|
15
|
Hu Y, Zou Y, Qiao L, Lin L. Integrative proteomic and metabolomic elucidation of cardiomyopathy with in vivo and in vitro models and clinical samples. Mol Ther 2024; 32:3288-3312. [PMID: 39233439 PMCID: PMC11489546 DOI: 10.1016/j.ymthe.2024.08.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/16/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024] Open
Abstract
Cardiomyopathy is a prevalent cardiovascular disease that affects individuals of all ages and can lead to life-threatening heart failure. Despite its variety in types, each with distinct characteristics and causes, our understanding of cardiomyopathy at a systematic biology level remains incomplete. Mass spectrometry-based techniques have emerged as powerful tools, providing a comprehensive view of the molecular landscape and aiding in the discovery of biomarkers and elucidation of mechanisms. This review highlights the significant potential of integrating proteomic and metabolomic approaches with specialized databases to identify biomarkers and therapeutic targets across different types of cardiomyopathies. In vivo and in vitro models, such as genetically modified mice, patient-derived or induced pluripotent stem cells, and organ chips, are invaluable in exploring the pathophysiological complexities of this disease. By integrating omics approaches with these sophisticated modeling systems, our comprehension of the molecular underpinnings of cardiomyopathy can be greatly enhanced, facilitating the development of diagnostic markers and therapeutic strategies. Among the promising therapeutic targets are those involved in extracellular matrix remodeling, sarcomere damage, and metabolic remodeling. These targets hold the potential to advance precision therapy in cardiomyopathy, offering hope for more effective treatments tailored to the specific molecular profiles of patients.
Collapse
Affiliation(s)
- Yiwei Hu
- Department of Chemistry, Zhongshan Hospital, and Minhang Hospital, Fudan University, Shanghai 200000, China
| | - Yunzeng Zou
- Department of Chemistry, Zhongshan Hospital, and Minhang Hospital, Fudan University, Shanghai 200000, China.
| | - Liang Qiao
- Department of Chemistry, Zhongshan Hospital, and Minhang Hospital, Fudan University, Shanghai 200000, China.
| | - Ling Lin
- Department of Chemistry, Zhongshan Hospital, and Minhang Hospital, Fudan University, Shanghai 200000, China.
| |
Collapse
|
16
|
Du X, Jia H, Chang Y, Zhao Y, Song J. Progress of organoid platform in cardiovascular research. Bioact Mater 2024; 40:88-103. [PMID: 38962658 PMCID: PMC11220467 DOI: 10.1016/j.bioactmat.2024.05.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 07/05/2024] Open
Abstract
Cardiovascular disease is a significant cause of death in humans. Various models are necessary for the study of cardiovascular diseases, but once cellular and animal models have some defects, such as insufficient fidelity. As a new technology, organoid has certain advantages and has been used in many applications in the study of cardiovascular diseases. This article aims to summarize the application of organoid platforms in cardiovascular diseases, including organoid construction schemes, modeling, and application of cardiovascular organoids. Advances in cardiovascular organoid research have provided many models for different cardiovascular diseases in a variety of areas, including myocardium, blood vessels, and valves. Physiological and pathological models of different diseases, drug research models, and methods for evaluating and promoting the maturation of different kinds of organ tissues are provided for various cardiovascular diseases, including cardiomyopathy, myocardial infarction, and atherosclerosis. This article provides a comprehensive overview of the latest research progress in cardiovascular organ tissues, including construction protocols for cardiovascular organoid tissues and their evaluation system, different types of disease models, and applications of cardiovascular organoid models in various studies. The problems and possible solutions in organoid development are summarized.
Collapse
Affiliation(s)
- Xingchao Du
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science, PUMC, 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Hao Jia
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science, PUMC, 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Yuan Chang
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science, PUMC, 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Yiqi Zhao
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science, PUMC, 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Jiangping Song
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science, PUMC, 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| |
Collapse
|
17
|
Mei J, Jiang XY, Tian HX, Rong DC, Song JN, Wang L, Chen YS, Wong RCB, Guo CX, Wang LS, Wang LY, Wang PY, Yin JY. Anoikis in cell fate, physiopathology, and therapeutic interventions. MedComm (Beijing) 2024; 5:e718. [PMID: 39286778 PMCID: PMC11401975 DOI: 10.1002/mco2.718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/16/2024] [Accepted: 08/18/2024] [Indexed: 09/19/2024] Open
Abstract
The extracellular matrix (ECM) governs a wide spectrum of cellular fate processes, with a particular emphasis on anoikis, an integrin-dependent form of cell death. Currently, anoikis is defined as an intrinsic apoptosis. In contrast to traditional apoptosis and necroptosis, integrin correlates ECM signaling with intracellular signaling cascades, describing the full process of anoikis. However, anoikis is frequently overlooked in physiological and pathological processes as well as traditional in vitro research models. In this review, we summarized the role of anoikis in physiological and pathological processes, spanning embryonic development, organ development, tissue repair, inflammatory responses, cardiovascular diseases, tumor metastasis, and so on. Similarly, in the realm of stem cell research focused on the functional evolution of cells, anoikis offers a potential solution to various challenges, including in vitro cell culture models, stem cell therapy, cell transplantation, and engineering applications, which are largely based on the regulation of cell fate by anoikis. More importantly, the regulatory mechanisms of anoikis based on molecular processes and ECM signaling will provide new strategies for therapeutic interventions (drug therapy and cell-based therapy) in disease. In summary, this review provides a systematic elaboration of anoikis, thus shedding light on its future research.
Collapse
Affiliation(s)
- Jie Mei
- Department of Clinical Pharmacology Xiangya Hospital, Central South University Changsha Hunan China
- Institute of Clinical Pharmacology Hunan Key Laboratory of Pharmacogenetics Central South University Changsha Hunan China
- Engineering Research Center of Applied Technology of Pharmacogenomics Ministry of Education Changsha Hunan China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital, Central South University Changsha Hunan China
- Oujiang Laboratory Key Laboratory of Alzheimer's Disease of Zhejiang Province Institute of Aging Wenzhou Medical University Wenzhou Zhejiang China
| | - Xue-Yao Jiang
- Oujiang Laboratory Key Laboratory of Alzheimer's Disease of Zhejiang Province Institute of Aging Wenzhou Medical University Wenzhou Zhejiang China
| | - Hui-Xiang Tian
- Department of Clinical Pharmacology Xiangya Hospital, Central South University Changsha Hunan China
- Institute of Clinical Pharmacology Hunan Key Laboratory of Pharmacogenetics Central South University Changsha Hunan China
- Engineering Research Center of Applied Technology of Pharmacogenomics Ministry of Education Changsha Hunan China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital, Central South University Changsha Hunan China
| | - Ding-Chao Rong
- Department of Clinical Pharmacology Xiangya Hospital, Central South University Changsha Hunan China
| | - Jia-Nan Song
- Oujiang Laboratory Key Laboratory of Alzheimer's Disease of Zhejiang Province Institute of Aging Wenzhou Medical University Wenzhou Zhejiang China
- School of Life Sciences Westlake University Hangzhou Zhejiang China
| | - Luozixian Wang
- Oujiang Laboratory Key Laboratory of Alzheimer's Disease of Zhejiang Province Institute of Aging Wenzhou Medical University Wenzhou Zhejiang China
- Centre for Eye Research Australia Royal Victorian Eye and Ear Hospital Melbourne Victoria Australia
- Ophthalmology Department of Surgery The University of Melbourne Melbourne Victoria Australia
| | - Yuan-Shen Chen
- Department of Clinical Pharmacology Xiangya Hospital, Central South University Changsha Hunan China
- Institute of Clinical Pharmacology Hunan Key Laboratory of Pharmacogenetics Central South University Changsha Hunan China
- Engineering Research Center of Applied Technology of Pharmacogenomics Ministry of Education Changsha Hunan China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital, Central South University Changsha Hunan China
| | - Raymond C B Wong
- Centre for Eye Research Australia Royal Victorian Eye and Ear Hospital Melbourne Victoria Australia
- Ophthalmology Department of Surgery The University of Melbourne Melbourne Victoria Australia
| | - Cheng-Xian Guo
- Center of Clinical Pharmacology the Third Xiangya Hospital Central South University Changsha Hunan China
| | - Lian-Sheng Wang
- Department of Clinical Pharmacology Xiangya Hospital, Central South University Changsha Hunan China
- Institute of Clinical Pharmacology Hunan Key Laboratory of Pharmacogenetics Central South University Changsha Hunan China
- Engineering Research Center of Applied Technology of Pharmacogenomics Ministry of Education Changsha Hunan China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital, Central South University Changsha Hunan China
| | - Lei-Yun Wang
- Department of Pharmacy Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology Wuhan Hubei Province China
| | - Peng-Yuan Wang
- Oujiang Laboratory Key Laboratory of Alzheimer's Disease of Zhejiang Province Institute of Aging Wenzhou Medical University Wenzhou Zhejiang China
| | - Ji-Ye Yin
- Department of Clinical Pharmacology Xiangya Hospital, Central South University Changsha Hunan China
- Institute of Clinical Pharmacology Hunan Key Laboratory of Pharmacogenetics Central South University Changsha Hunan China
- Engineering Research Center of Applied Technology of Pharmacogenomics Ministry of Education Changsha Hunan China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital, Central South University Changsha Hunan China
| |
Collapse
|
18
|
Hannemann J, Wasser K, Mileva Y, Kleinsang F, Schubert M, Schwedhelm E, Guan K, Wachter R, Böger R. Symmetric Dimethylarginine Predicts Previously Undetected Atrial Fibrillation in Patients With Ischemic Stroke. J Am Heart Assoc 2024; 13:e034994. [PMID: 39190577 PMCID: PMC11646540 DOI: 10.1161/jaha.124.034994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/01/2024] [Indexed: 08/29/2024]
Abstract
BACKGROUND Atrial fibrillation (AF) is a stroke risk factor that often remains undetected at hospital admission. Long-term Holter monitoring helps to identify patients with previously unrecognized AF. Asymmetric (ADMA) and symmetric dimethylarginine (SDMA) are elevated in AF in cross-sectional studies. We analyzed ADMA, SDMA, and other L-arginine metabolites to assess their association with AF in the Find-AF trial. METHODS AND RESULTS We included 280 patients presenting with acute cerebral ischemia. Patients presenting in sinus rhythm received 7-day Holter-ECG. Biomarkers were quantified by ultra-performance liquid chromatography-tandem mass spectrometry. We also analyzed protein methylation and L-arginine-related metabolites in human induced pluripotent stem cell-derived cardiomyocytes in vitro. ADMA and SDMA were elevated in 44 patients who presented with AF. SDMA, but not ADMA, was significantly elevated in patients newly diagnosed with AF in Holter-ECG as compared with those in sinus rhythm. SDMA plasma concentration >0.571 μmol/L significantly predicted presence of AF in Holter-ECG (area under the curve=0.676 [0.530-0.822]; P=0.029; sensitivity 0.786, specificity 0.572). SDMA levels further increased in patients with AF during the first 24 hours in hospital, and ADMA levels remained stable. In vitro, induced pluripotent stem cell-derived cardiomyocytes showed increased symmetric protein methylation and elevated SDMA during rapid pacing (2.0 Hz versus 0.5 Hz), whereas asymmetric protein methylation and ADMA were unchanged. CONCLUSIONS SDMA at admission was significantly elevated in stroke patients presenting with AF and showed a moderate but significant prospective association with previously unrecognized AF. Thus, stroke patients with elevated SDMA concentration at admission may specifically benefit from extended Holter-ECG monitoring.
Collapse
Affiliation(s)
- Juliane Hannemann
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg‐EppendorfHamburgGermany
| | | | - Yoana Mileva
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg‐EppendorfHamburgGermany
| | - Fiona Kleinsang
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg‐EppendorfHamburgGermany
| | - Mario Schubert
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav CarusTechnical University of DresdenGermany
| | - Edzard Schwedhelm
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg‐EppendorfHamburgGermany
| | - Kaomei Guan
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav CarusTechnical University of DresdenGermany
| | - Rolf Wachter
- Department of CardiologyUniversity Hospital LeipzigLeipzigGermany
- Clinic for Cardiology and PneumologyUniversity Medicine GöttingenGöttingenGermany
- German Cardiovascular Research Center (DZHK), partner site GöttingenGermany
| | - Rainer Böger
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg‐EppendorfHamburgGermany
- German Cardiovascular Research Center (DZHK), partner site Hamburg‐Lübeck‐KielHamburgGermany
| |
Collapse
|
19
|
Vyas V, Sandhar B, Keane JM, Wood EG, Blythe H, Jones A, Shahaj E, Fanti S, Williams J, Metic N, Efremova M, Ng HL, Nageswaran G, Byrne S, Feldhahn N, Marelli-Berg F, Chain B, Tinker A, Finlay MC, Longhi MP. Tissue-resident memory T cells in epicardial adipose tissue comprise transcriptionally distinct subsets that are modulated in atrial fibrillation. NATURE CARDIOVASCULAR RESEARCH 2024; 3:1067-1082. [PMID: 39271815 PMCID: PMC11399095 DOI: 10.1038/s44161-024-00532-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 07/29/2024] [Indexed: 09/15/2024]
Abstract
Atrial fibrillation (AF) is the most common sustained arrhythmia and carries an increased risk of stroke and heart failure. Here we investigated how the immune infiltrate of human epicardial adipose tissue (EAT), which directly overlies the myocardium, contributes to AF. Flow cytometry analysis revealed an enrichment of tissue-resident memory T (TRM) cells in patients with AF. Cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) and single-cell T cell receptor (TCR) sequencing identified two transcriptionally distinct CD8+ TRM cells that are modulated in AF. Spatial transcriptomic analysis of EAT and atrial tissue identified the border region between the tissues to be a region of intense inflammatory and fibrotic activity, and the addition of TRM populations to atrial cardiomyocytes demonstrated their ability to differentially alter calcium flux as well as activate inflammatory and apoptotic signaling pathways. This study identified EAT as a reservoir of TRM cells that can directly modulate vulnerability to cardiac arrhythmia.
Collapse
Affiliation(s)
- Vishal Vyas
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Department of Cardiology, Barts Heart Centre, St. Bartholomew's Hospital, London, UK
| | - Balraj Sandhar
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Jack M Keane
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Elizabeth G Wood
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Hazel Blythe
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Aled Jones
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Eriomina Shahaj
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Silvia Fanti
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Jack Williams
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Nasrine Metic
- Cancer Research UK, Barts Centre, Queen Mary University of London, London, UK
| | - Mirjana Efremova
- Cancer Research UK, Barts Centre, Queen Mary University of London, London, UK
| | - Han Leng Ng
- Department of Immunology and Inflammation, Centre for Haematology, Faculty of Medicine, Imperial College London, London, UK
| | - Gayathri Nageswaran
- UCL Division of Infection and Immunity, University College London, London, UK
| | - Suzanne Byrne
- UCL Division of Infection and Immunity, University College London, London, UK
| | - Niklas Feldhahn
- Department of Immunology and Inflammation, Centre for Haematology, Faculty of Medicine, Imperial College London, London, UK
| | - Federica Marelli-Berg
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Benny Chain
- UCL Division of Infection and Immunity, University College London, London, UK
| | - Andrew Tinker
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Malcolm C Finlay
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Department of Cardiology, Barts Heart Centre, St. Bartholomew's Hospital, London, UK
| | - M Paula Longhi
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
20
|
Kistamás K, Lamberto F, Vaiciuleviciute R, Leal F, Muenthaisong S, Marte L, Subías-Beltrán P, Alaburda A, Arvanitis DN, Zana M, Costa PF, Bernotiene E, Bergaud C, Dinnyés A. The Current State of Realistic Heart Models for Disease Modelling and Cardiotoxicity. Int J Mol Sci 2024; 25:9186. [PMID: 39273136 PMCID: PMC11394806 DOI: 10.3390/ijms25179186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/18/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
One of the many unresolved obstacles in the field of cardiovascular research is an uncompromising in vitro cardiac model. While primary cell sources from animal models offer both advantages and disadvantages, efforts over the past half-century have aimed to reduce their use. Additionally, obtaining a sufficient quantity of human primary cardiomyocytes faces ethical and legal challenges. As the practically unlimited source of human cardiomyocytes from induced pluripotent stem cells (hiPSC-CM) is now mostly resolved, there are great efforts to improve their quality and applicability by overcoming their intrinsic limitations. The greatest bottleneck in the field is the in vitro ageing of hiPSC-CMs to reach a maturity status that closely resembles that of the adult heart, thereby allowing for more appropriate drug developmental procedures as there is a clear correlation between ageing and developing cardiovascular diseases. Here, we review the current state-of-the-art techniques in the most realistic heart models used in disease modelling and toxicity evaluations from hiPSC-CM maturation through heart-on-a-chip platforms and in silico models to the in vitro models of certain cardiovascular diseases.
Collapse
Affiliation(s)
- Kornél Kistamás
- BioTalentum Ltd., Aulich Lajos Str 26, H-2100 Gödöllő, Hungary
| | - Federica Lamberto
- BioTalentum Ltd., Aulich Lajos Str 26, H-2100 Gödöllő, Hungary
- Department of Physiology and Animal Health, Institute of Physiology and Animal Nutrition, Hungarian University of Agriculture and Life Sciences, Páter Károly Str 1, H-2100 Gödöllő, Hungary
| | - Raminta Vaiciuleviciute
- Department of Regenerative Medicine, State Research Institute Innovative Medicine Centre, Santariskiu g. 5, LT-08406 Vilnius, Lithuania
| | - Filipa Leal
- Biofabics Lda, Rua Alfredo Allen 455, 4200-135 Porto, Portugal
| | | | - Luis Marte
- Digital Health Unit, Eurecat-Centre Tecnològic de Catalunya, 08005 Barcelona, Spain
| | - Paula Subías-Beltrán
- Digital Health Unit, Eurecat-Centre Tecnològic de Catalunya, 08005 Barcelona, Spain
| | - Aidas Alaburda
- Department of Regenerative Medicine, State Research Institute Innovative Medicine Centre, Santariskiu g. 5, LT-08406 Vilnius, Lithuania
- Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekio al. 7, LT-10257 Vilnius, Lithuania
| | - Dina N Arvanitis
- Laboratory for Analysis and Architecture of Systems-French National Centre for Scientific Research (LAAS-CNRS), 7 Avenue du Colonel Roche, F-31400 Toulouse, France
| | - Melinda Zana
- BioTalentum Ltd., Aulich Lajos Str 26, H-2100 Gödöllő, Hungary
| | - Pedro F Costa
- Biofabics Lda, Rua Alfredo Allen 455, 4200-135 Porto, Portugal
| | - Eiva Bernotiene
- Department of Regenerative Medicine, State Research Institute Innovative Medicine Centre, Santariskiu g. 5, LT-08406 Vilnius, Lithuania
- Faculty of Fundamental Sciences, Vilnius Tech, Sauletekio al. 11, LT-10223 Vilnius, Lithuania
| | - Christian Bergaud
- Laboratory for Analysis and Architecture of Systems-French National Centre for Scientific Research (LAAS-CNRS), 7 Avenue du Colonel Roche, F-31400 Toulouse, France
| | - András Dinnyés
- BioTalentum Ltd., Aulich Lajos Str 26, H-2100 Gödöllő, Hungary
- Department of Physiology and Animal Health, Institute of Physiology and Animal Nutrition, Hungarian University of Agriculture and Life Sciences, Páter Károly Str 1, H-2100 Gödöllő, Hungary
| |
Collapse
|
21
|
Yousefi R, Dennerlein S. Analysis of mitochondrial translation using click chemistry. Methods Enzymol 2024; 706:533-547. [PMID: 39455233 DOI: 10.1016/bs.mie.2024.07.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
Mitochondria contain their own gene expression machinery, which synthesizes core subunits of the oxidative phosphorylation system. Monitoring mitochondrial translation within spatial compartments of cells is difficult. Here we describe a method to visualize mitochondrial translation within defined parts of cells, using a click chemistry approach. This method can be applied to different cell types such as neurons and allows detection of newly synthesized mitochondrial proteins in spatial resolution using microscopy techniques. Furthermore, using click chemistry, mitochondrial translation can also be monitored by standard SDS-PAGE. The described method avenues the analysis of newly synthesized mitochondrial encoded proteins in the cellular context, by avoiding the usage of radioactive components.
Collapse
Affiliation(s)
- Roya Yousefi
- Institute for Cellular Biochemistry, University Medical Center Goettingen, Goettingen, Germany
| | - Sven Dennerlein
- Institute for Cellular Biochemistry, University Medical Center Goettingen, Goettingen, Germany.
| |
Collapse
|
22
|
Fakuade FE, Hubricht D, Möller V, Sobitov I, Liutkute A, Döring Y, Seibertz F, Gerloff M, Pronto JRD, Haghighi F, Brandenburg S, Alhussini K, Ignatyeva N, Bonhoff Y, Kestel S, El-Essawi A, Jebran AF, Großmann M, Danner BC, Baraki H, Schmidt C, Sossalla S, Kutschka I, Bening C, Maack C, Linke WA, Heijman J, Lehnart SE, Kensah G, Ebert A, Mason FE, Voigt N. Impaired Intracellular Calcium Buffering Contributes to the Arrhythmogenic Substrate in Atrial Myocytes From Patients With Atrial Fibrillation. Circulation 2024; 150:544-559. [PMID: 38910563 PMCID: PMC11319087 DOI: 10.1161/circulationaha.123.066577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 05/31/2024] [Indexed: 06/25/2024]
Abstract
BACKGROUND Alterations in the buffering of intracellular Ca2+, for which myofilament proteins play a key role, have been shown to promote cardiac arrhythmia. It is interesting that although studies report atrial myofibrillar degradation in patients with persistent atrial fibrillation (persAF), the intracellular Ca2+ buffering profile in persAF remains obscure. Therefore, we aimed to investigate the intracellular buffering of Ca2+ and its potential arrhythmogenic role in persAF. METHODS Transmembrane Ca2+ fluxes (patch-clamp) and intracellular Ca2+ signaling (fluo-3-acetoxymethyl ester) were recorded simultaneously in myocytes from right atrial biopsies of sinus rhythm (Ctrl) and patients with persAF, alongside human atrial subtype induced pluripotent stem cell-derived cardiac myocytes (iPSC-CMs). Protein levels were quantified by immunoblotting of human atrial tissue and induced pluripotent stem cell-derived cardiac myocytes. Mouse whole heart and atrial electrophysiology were measured on a Langendorff system. RESULTS Cytosolic Ca2+ buffering was decreased in atrial myocytes of patients with persAF because of a depleted amount of Ca2+ buffers. In agreement, protein levels of selected Ca2+ binding myofilament proteins, including cTnC (cardiac troponin C), a major cytosolic Ca2+ buffer, were significantly lower in patients with persAF. Small interfering RNA (siRNA)-mediated knockdown of cTnC (si-cTNC) in atrial iPSC-CM phenocopied the reduced cytosolic Ca2+ buffering observed in persAF. Si-cTnC treated atrial iPSC-CM exhibited a higher predisposition to spontaneous Ca2+ release events and developed action potential alternans at low stimulation frequencies. Last, indirect reduction of cytosolic Ca2+ buffering using blebbistatin in an ex vivo mouse whole heart model increased vulnerability to tachypacing-induced atrial arrhythmia, validating the direct mechanistic link between impaired cytosolic Ca2+ buffering and atrial arrhythmogenesis. CONCLUSIONS Our findings suggest that loss of myofilament proteins, particularly reduced cTnC protein levels, causes diminished cytosolic Ca2+ buffering in persAF, thereby potentiating the occurrence of spontaneous Ca2+ release events and atrial fibrillation susceptibility. Strategies targeting intracellular buffering may represent a promising therapeutic lead in persAF management.
Collapse
Affiliation(s)
- Funsho E. Fakuade
- Cluster of Excellence “Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells” (F.E.F., A.L., F.S., F.H., S.E.L., A.E., N.V.), Georg-August-University Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Lower Saxony, Germany (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., F.H., S.B., N.I., Y.B., S.K., A.E.-E., A.F.J., M. Großmann, B.C.D., H.B., I.K., W.A.L., S.E.L., G.K., A.E., F.E.M., N.V.)
- Institute of Pharmacology and Toxicology (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., Y.B., S.K., F.E.M., N.V.), University Medical Center Göttingen, Germany
| | - Dominik Hubricht
- DZHK (German Centre for Cardiovascular Research), partner site Lower Saxony, Germany (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., F.H., S.B., N.I., Y.B., S.K., A.E.-E., A.F.J., M. Großmann, B.C.D., H.B., I.K., W.A.L., S.E.L., G.K., A.E., F.E.M., N.V.)
- Institute of Pharmacology and Toxicology (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., Y.B., S.K., F.E.M., N.V.), University Medical Center Göttingen, Germany
| | - Vanessa Möller
- DZHK (German Centre for Cardiovascular Research), partner site Lower Saxony, Germany (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., F.H., S.B., N.I., Y.B., S.K., A.E.-E., A.F.J., M. Großmann, B.C.D., H.B., I.K., W.A.L., S.E.L., G.K., A.E., F.E.M., N.V.)
- Institute of Pharmacology and Toxicology (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., Y.B., S.K., F.E.M., N.V.), University Medical Center Göttingen, Germany
| | - Izzatullo Sobitov
- DZHK (German Centre for Cardiovascular Research), partner site Lower Saxony, Germany (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., F.H., S.B., N.I., Y.B., S.K., A.E.-E., A.F.J., M. Großmann, B.C.D., H.B., I.K., W.A.L., S.E.L., G.K., A.E., F.E.M., N.V.)
- Institute of Pharmacology and Toxicology (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., Y.B., S.K., F.E.M., N.V.), University Medical Center Göttingen, Germany
| | - Aiste Liutkute
- Cluster of Excellence “Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells” (F.E.F., A.L., F.S., F.H., S.E.L., A.E., N.V.), Georg-August-University Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Lower Saxony, Germany (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., F.H., S.B., N.I., Y.B., S.K., A.E.-E., A.F.J., M. Großmann, B.C.D., H.B., I.K., W.A.L., S.E.L., G.K., A.E., F.E.M., N.V.)
- Institute of Pharmacology and Toxicology (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., Y.B., S.K., F.E.M., N.V.), University Medical Center Göttingen, Germany
| | - Yannic Döring
- DZHK (German Centre for Cardiovascular Research), partner site Lower Saxony, Germany (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., F.H., S.B., N.I., Y.B., S.K., A.E.-E., A.F.J., M. Großmann, B.C.D., H.B., I.K., W.A.L., S.E.L., G.K., A.E., F.E.M., N.V.)
- Institute of Pharmacology and Toxicology (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., Y.B., S.K., F.E.M., N.V.), University Medical Center Göttingen, Germany
| | - Fitzwilliam Seibertz
- Cluster of Excellence “Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells” (F.E.F., A.L., F.S., F.H., S.E.L., A.E., N.V.), Georg-August-University Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Lower Saxony, Germany (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., F.H., S.B., N.I., Y.B., S.K., A.E.-E., A.F.J., M. Großmann, B.C.D., H.B., I.K., W.A.L., S.E.L., G.K., A.E., F.E.M., N.V.)
- Institute of Pharmacology and Toxicology (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., Y.B., S.K., F.E.M., N.V.), University Medical Center Göttingen, Germany
| | - Marcus Gerloff
- DZHK (German Centre for Cardiovascular Research), partner site Lower Saxony, Germany (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., F.H., S.B., N.I., Y.B., S.K., A.E.-E., A.F.J., M. Großmann, B.C.D., H.B., I.K., W.A.L., S.E.L., G.K., A.E., F.E.M., N.V.)
- Institute of Pharmacology and Toxicology (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., Y.B., S.K., F.E.M., N.V.), University Medical Center Göttingen, Germany
| | - Julius Ryan D. Pronto
- DZHK (German Centre for Cardiovascular Research), partner site Lower Saxony, Germany (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., F.H., S.B., N.I., Y.B., S.K., A.E.-E., A.F.J., M. Großmann, B.C.D., H.B., I.K., W.A.L., S.E.L., G.K., A.E., F.E.M., N.V.)
- Institute of Pharmacology and Toxicology (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., Y.B., S.K., F.E.M., N.V.), University Medical Center Göttingen, Germany
| | - Fereshteh Haghighi
- Cluster of Excellence “Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells” (F.E.F., A.L., F.S., F.H., S.E.L., A.E., N.V.), Georg-August-University Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Lower Saxony, Germany (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., F.H., S.B., N.I., Y.B., S.K., A.E.-E., A.F.J., M. Großmann, B.C.D., H.B., I.K., W.A.L., S.E.L., G.K., A.E., F.E.M., N.V.)
- Department of Thoracic and Cardiovascular Surgery (F.H., A.E.-E., A.F.J., M. Großmann, B.C.D., H.B., I.K., G.K.), University Medical Center Göttingen, Germany
| | - Sören Brandenburg
- DZHK (German Centre for Cardiovascular Research), partner site Lower Saxony, Germany (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., F.H., S.B., N.I., Y.B., S.K., A.E.-E., A.F.J., M. Großmann, B.C.D., H.B., I.K., W.A.L., S.E.L., G.K., A.E., F.E.M., N.V.)
- Department of Cardiology and Pneumology (S.B., N.I., W.A.L., S.E.L., A.E.), Heart Research Center Göttingen, University Medical Center Göttingen, Germany
| | - Khaled Alhussini
- Department of Thoracic and Cardiovascular Surgery (K.A., C.B.), University Clinic Würzburg, Germany
- Comprehensive Heart Failure Center Würzburg (K.A., C.B., C.M.), University Clinic Würzburg, Germany
| | - Nadezda Ignatyeva
- DZHK (German Centre for Cardiovascular Research), partner site Lower Saxony, Germany (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., F.H., S.B., N.I., Y.B., S.K., A.E.-E., A.F.J., M. Großmann, B.C.D., H.B., I.K., W.A.L., S.E.L., G.K., A.E., F.E.M., N.V.)
- Department of Cardiology and Pneumology (S.B., N.I., W.A.L., S.E.L., A.E.), Heart Research Center Göttingen, University Medical Center Göttingen, Germany
| | - Yara Bonhoff
- DZHK (German Centre for Cardiovascular Research), partner site Lower Saxony, Germany (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., F.H., S.B., N.I., Y.B., S.K., A.E.-E., A.F.J., M. Großmann, B.C.D., H.B., I.K., W.A.L., S.E.L., G.K., A.E., F.E.M., N.V.)
- Institute of Pharmacology and Toxicology (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., Y.B., S.K., F.E.M., N.V.), University Medical Center Göttingen, Germany
| | - Stefanie Kestel
- DZHK (German Centre for Cardiovascular Research), partner site Lower Saxony, Germany (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., F.H., S.B., N.I., Y.B., S.K., A.E.-E., A.F.J., M. Großmann, B.C.D., H.B., I.K., W.A.L., S.E.L., G.K., A.E., F.E.M., N.V.)
- Institute of Pharmacology and Toxicology (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., Y.B., S.K., F.E.M., N.V.), University Medical Center Göttingen, Germany
| | - Aschraf El-Essawi
- Cluster of Excellence “Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells” (F.E.F., A.L., F.S., F.H., S.E.L., A.E., N.V.), Georg-August-University Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Lower Saxony, Germany (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., F.H., S.B., N.I., Y.B., S.K., A.E.-E., A.F.J., M. Großmann, B.C.D., H.B., I.K., W.A.L., S.E.L., G.K., A.E., F.E.M., N.V.)
- Department of Thoracic and Cardiovascular Surgery (F.H., A.E.-E., A.F.J., M. Großmann, B.C.D., H.B., I.K., G.K.), University Medical Center Göttingen, Germany
- Department of Thoracic and Cardiovascular Surgery, Klinikum Braunschweig, Germany (A.E.-E.)
| | - Ahmad Fawad Jebran
- DZHK (German Centre for Cardiovascular Research), partner site Lower Saxony, Germany (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., F.H., S.B., N.I., Y.B., S.K., A.E.-E., A.F.J., M. Großmann, B.C.D., H.B., I.K., W.A.L., S.E.L., G.K., A.E., F.E.M., N.V.)
- Department of Thoracic and Cardiovascular Surgery (F.H., A.E.-E., A.F.J., M. Großmann, B.C.D., H.B., I.K., G.K.), University Medical Center Göttingen, Germany
| | - Marius Großmann
- DZHK (German Centre for Cardiovascular Research), partner site Lower Saxony, Germany (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., F.H., S.B., N.I., Y.B., S.K., A.E.-E., A.F.J., M. Großmann, B.C.D., H.B., I.K., W.A.L., S.E.L., G.K., A.E., F.E.M., N.V.)
- Department of Thoracic and Cardiovascular Surgery (F.H., A.E.-E., A.F.J., M. Großmann, B.C.D., H.B., I.K., G.K.), University Medical Center Göttingen, Germany
| | - Bernhard C. Danner
- DZHK (German Centre for Cardiovascular Research), partner site Lower Saxony, Germany (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., F.H., S.B., N.I., Y.B., S.K., A.E.-E., A.F.J., M. Großmann, B.C.D., H.B., I.K., W.A.L., S.E.L., G.K., A.E., F.E.M., N.V.)
- Department of Thoracic and Cardiovascular Surgery (F.H., A.E.-E., A.F.J., M. Großmann, B.C.D., H.B., I.K., G.K.), University Medical Center Göttingen, Germany
| | - Hassina Baraki
- DZHK (German Centre for Cardiovascular Research), partner site Lower Saxony, Germany (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., F.H., S.B., N.I., Y.B., S.K., A.E.-E., A.F.J., M. Großmann, B.C.D., H.B., I.K., W.A.L., S.E.L., G.K., A.E., F.E.M., N.V.)
- Department of Thoracic and Cardiovascular Surgery (F.H., A.E.-E., A.F.J., M. Großmann, B.C.D., H.B., I.K., G.K.), University Medical Center Göttingen, Germany
| | - Constanze Schmidt
- Department of Cardiology, University Hospital Heidelberg, Germany (C.S.)
- German Center for Cardiovascular Research Partner Site Heidelberg/Mannheim, Heidelberg University (C.S.)
| | - Samuel Sossalla
- Department of Cardiology, University Hospital Giessen & Kerckhoff Clinic, Germany (S.S.)
- Department of Cardiology, Bad Nauheim & German Center for Cardiovascular Research Partner Site Rhine-Main, Germany (S.S.)
| | - Ingo Kutschka
- DZHK (German Centre for Cardiovascular Research), partner site Lower Saxony, Germany (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., F.H., S.B., N.I., Y.B., S.K., A.E.-E., A.F.J., M. Großmann, B.C.D., H.B., I.K., W.A.L., S.E.L., G.K., A.E., F.E.M., N.V.)
- Department of Thoracic and Cardiovascular Surgery (F.H., A.E.-E., A.F.J., M. Großmann, B.C.D., H.B., I.K., G.K.), University Medical Center Göttingen, Germany
| | - Constanze Bening
- Department of Thoracic and Cardiovascular Surgery (K.A., C.B.), University Clinic Würzburg, Germany
- Comprehensive Heart Failure Center Würzburg (K.A., C.B., C.M.), University Clinic Würzburg, Germany
| | - Christoph Maack
- Comprehensive Heart Failure Center Würzburg (K.A., C.B., C.M.), University Clinic Würzburg, Germany
| | - Wolfgang A. Linke
- DZHK (German Centre for Cardiovascular Research), partner site Lower Saxony, Germany (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., F.H., S.B., N.I., Y.B., S.K., A.E.-E., A.F.J., M. Großmann, B.C.D., H.B., I.K., W.A.L., S.E.L., G.K., A.E., F.E.M., N.V.)
- Department of Cardiology and Pneumology (S.B., N.I., W.A.L., S.E.L., A.E.), Heart Research Center Göttingen, University Medical Center Göttingen, Germany
- Institute of Physiology II, University of Münster, Germany (W.A.L.)
| | - Jordi Heijman
- Gottfried Schatz Research Center, Division of Medical Physics and Biophysics, Medical University of Graz, Austria (J.H.)
- Department of Cardiology, Maastricht University Medical Centre and Cardiovascular Research Institute Maastricht, Maastricht University, The Netherlands (J.H.)
| | - Stephan E. Lehnart
- Cluster of Excellence “Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells” (F.E.F., A.L., F.S., F.H., S.E.L., A.E., N.V.), Georg-August-University Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Lower Saxony, Germany (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., F.H., S.B., N.I., Y.B., S.K., A.E.-E., A.F.J., M. Großmann, B.C.D., H.B., I.K., W.A.L., S.E.L., G.K., A.E., F.E.M., N.V.)
- Department of Cardiology and Pneumology (S.B., N.I., W.A.L., S.E.L., A.E.), Heart Research Center Göttingen, University Medical Center Göttingen, Germany
| | - George Kensah
- DZHK (German Centre for Cardiovascular Research), partner site Lower Saxony, Germany (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., F.H., S.B., N.I., Y.B., S.K., A.E.-E., A.F.J., M. Großmann, B.C.D., H.B., I.K., W.A.L., S.E.L., G.K., A.E., F.E.M., N.V.)
- Department of Thoracic and Cardiovascular Surgery (F.H., A.E.-E., A.F.J., M. Großmann, B.C.D., H.B., I.K., G.K.), University Medical Center Göttingen, Germany
| | - Antje Ebert
- DZHK (German Centre for Cardiovascular Research), partner site Lower Saxony, Germany (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., F.H., S.B., N.I., Y.B., S.K., A.E.-E., A.F.J., M. Großmann, B.C.D., H.B., I.K., W.A.L., S.E.L., G.K., A.E., F.E.M., N.V.)
- Department of Cardiology and Pneumology (S.B., N.I., W.A.L., S.E.L., A.E.), Heart Research Center Göttingen, University Medical Center Göttingen, Germany
| | - Fleur E. Mason
- DZHK (German Centre for Cardiovascular Research), partner site Lower Saxony, Germany (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., F.H., S.B., N.I., Y.B., S.K., A.E.-E., A.F.J., M. Großmann, B.C.D., H.B., I.K., W.A.L., S.E.L., G.K., A.E., F.E.M., N.V.)
- Institute of Pharmacology and Toxicology (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., Y.B., S.K., F.E.M., N.V.), University Medical Center Göttingen, Germany
| | - Niels Voigt
- Cluster of Excellence “Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells” (F.E.F., A.L., F.S., F.H., S.E.L., A.E., N.V.), Georg-August-University Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Lower Saxony, Germany (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., F.H., S.B., N.I., Y.B., S.K., A.E.-E., A.F.J., M. Großmann, B.C.D., H.B., I.K., W.A.L., S.E.L., G.K., A.E., F.E.M., N.V.)
- Institute of Pharmacology and Toxicology (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., Y.B., S.K., F.E.M., N.V.), University Medical Center Göttingen, Germany
| |
Collapse
|
23
|
Zhou X, Liu J, Wu F, Mao J, Wang Y, Zhu J, Hong K, Xie H, Li B, Qiu X, Xiao X, Wen C. The application potential of iMSCs and iMSC-EVs in diseases. Front Bioeng Biotechnol 2024; 12:1434465. [PMID: 39135947 PMCID: PMC11317264 DOI: 10.3389/fbioe.2024.1434465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/17/2024] [Indexed: 08/15/2024] Open
Abstract
The immune system, functioning as the body's "defense army", plays a role in surveillance, defense. Any disruptions in immune system can lead to the development of immune-related diseases. Extensive researches have demonstrated the crucial immunoregulatory role of mesenchymal stem cells (MSCs) in these diseases. Of particular interest is the ability to induce somatic cells under specific conditions, generating a new cell type with stem cell characteristics known as induced pluripotent stem cell (iPSC). The differentiation of iPSCs into MSCs, specifically induced pluripotent stem cell-derived mesenchymal stem cells (iMSCs), hold promise as a potential solution to the challenges of MSCs, potentially serving as an alternative to traditional drug therapies. Moreover, the products of iMSCs, termed induced pluripotent stem cell-derived mesenchymal stem cell-derived extracellular vesicles (iMSC-EVs), may exhibit functions similar to iMSCs. With the biological advantages of EVs, they have become the focus of "cell-free therapy". Here, we provided a comprehensive summary of the biological impact of iMSCs on immune cells, explored the applications of iMSCs and iMSC-EVs in diseases, and briefly discussed the fundamental characteristics of EVs. Finally, we overviewed the current advantages and challenges associated with iMSCs and iMSC-EVs. It is our hope that this review related to iMSCs and iMSC-EVs will contribute to the development of new approaches for the treatment of diseases.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jinyu Liu
- Department of Obstetrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Feifeng Wu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jueyi Mao
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yang Wang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Junquan Zhu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Kimsor Hong
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Haotian Xie
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Binbin Li
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xinying Qiu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiangbin Xiao
- Department of Cardiovascular, People’s Hospital of Jianyang, Jianyang, China
| | - Chuan Wen
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
24
|
Busley AV, Gutiérrez-Gutiérrez Ó, Hammer E, Koitka F, Mirzaiebadizi A, Steinegger M, Pape C, Böhmer L, Schroeder H, Kleinsorge M, Engler M, Cirstea IC, Gremer L, Willbold D, Altmüller J, Marbach F, Hasenfuss G, Zimmermann WH, Ahmadian MR, Wollnik B, Cyganek L. Mutation-induced LZTR1 polymerization provokes cardiac pathology in recessive Noonan syndrome. Cell Rep 2024; 43:114448. [PMID: 39003740 DOI: 10.1016/j.celrep.2024.114448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/03/2024] [Accepted: 06/20/2024] [Indexed: 07/16/2024] Open
Abstract
Noonan syndrome patients harboring causative variants in LZTR1 are particularly at risk to develop severe and early-onset hypertrophic cardiomyopathy. In this study, we investigate the mechanistic consequences of a homozygous variant LZTR1L580P by using patient-specific and CRISPR-Cas9-corrected induced pluripotent stem cell (iPSC) cardiomyocytes. Molecular, cellular, and functional phenotyping in combination with in silico prediction identify an LZTR1L580P-specific disease mechanism provoking cardiac hypertrophy. The variant is predicted to alter the binding affinity of the dimerization domains facilitating the formation of linear LZTR1 polymers. LZTR1 complex dysfunction results in the accumulation of RAS GTPases, thereby provoking global pathological changes of the proteomic landscape ultimately leading to cellular hypertrophy. Furthermore, our data show that cardiomyocyte-specific MRAS degradation is mediated by LZTR1 via non-proteasomal pathways, whereas RIT1 degradation is mediated by both LZTR1-dependent and LZTR1-independent pathways. Uni- or biallelic genetic correction of the LZTR1L580P missense variant rescues the molecular and cellular disease phenotype, providing proof of concept for CRISPR-based therapies.
Collapse
Affiliation(s)
- Alexandra Viktoria Busley
- Stem Cell Unit, Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany; DZHK (German Center for Cardiovascular Research), Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Óscar Gutiérrez-Gutiérrez
- Stem Cell Unit, Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany; DZHK (German Center for Cardiovascular Research), Göttingen, Germany
| | - Elke Hammer
- DZHK (German Center for Cardiovascular Research), Greifswald, Germany; Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Fabian Koitka
- Stem Cell Unit, Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany; DZHK (German Center for Cardiovascular Research), Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Amin Mirzaiebadizi
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Martin Steinegger
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Constantin Pape
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany; Institute of Computer Science, Georg-August University Göttingen, Göttingen, Germany
| | - Linda Böhmer
- Stem Cell Unit, Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany
| | - Henning Schroeder
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Mandy Kleinsorge
- Stem Cell Unit, Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany; DZHK (German Center for Cardiovascular Research), Göttingen, Germany
| | - Melanie Engler
- Institute of Applied Physiology, University of Ulm, Ulm, Germany
| | | | - Lothar Gremer
- Institute of Physical Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Biological Information Processing, Structural Biochemistry (IBI-7), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Dieter Willbold
- Institute of Physical Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Biological Information Processing, Structural Biochemistry (IBI-7), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Janine Altmüller
- Cologne Center for Genomics, University of Cologne, Faculty of Medicine, and University Hospital Cologne, Cologne, Germany; Genomics Platform, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine-Berlin, Berlin, Germany
| | - Felix Marbach
- Institute of Human Genetics, University Hospital Cologne, Cologne, Germany; Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Gerd Hasenfuss
- Stem Cell Unit, Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany; DZHK (German Center for Cardiovascular Research), Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Wolfram-Hubertus Zimmermann
- DZHK (German Center for Cardiovascular Research), Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany; Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany; Translational Neuroinflammation and Automated Microscopy, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Göttingen, Germany
| | - Mohammad Reza Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Bernd Wollnik
- DZHK (German Center for Cardiovascular Research), Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany; Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Lukas Cyganek
- Stem Cell Unit, Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany; DZHK (German Center for Cardiovascular Research), Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany; Translational Neuroinflammation and Automated Microscopy, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Göttingen, Germany.
| |
Collapse
|
25
|
Lickiss B, Hunker J, Bhagwan J, Linder P, Thomas U, Lotay H, Broadbent S, Dragicevic E, Stoelzle-Feix S, Turner J, Gossmann M. Chamber-specific contractile responses of atrial and ventricular hiPSC-cardiomyocytes to GPCR and ion channel targeting compounds: A microphysiological system for cardiac drug development. J Pharmacol Toxicol Methods 2024; 128:107529. [PMID: 38857637 DOI: 10.1016/j.vascn.2024.107529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/15/2024] [Accepted: 06/05/2024] [Indexed: 06/12/2024]
Abstract
Human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (CMs) have found utility for conducting in vitro drug screening and disease modelling to gain crucial insights into pharmacology or disease phenotype. However, diseases such as atrial fibrillation, affecting >33 M people worldwide, demonstrate the need for cardiac subtype-specific cells. Here, we sought to investigate the base characteristics and pharmacological differences between commercially available chamber-specific atrial or ventricular hiPSC-CMs seeded onto ultra-thin, flexible PDMS membranes to simultaneously measure contractility in a 96 multi-well format. We investigated the effects of GPCR agonists (acetylcholine and carbachol), a Ca2+ channel agonist (S-Bay K8644), an HCN channel antagonist (ivabradine) and K+ channel antagonists (4-AP and vernakalant). We observed differential effects between atrial and ventricular hiPSC-CMs on contractile properties including beat rate, beat duration, contractile force and evidence of arrhythmias at a range of concentrations. As an excerpt of the compound analysis, S-Bay K8644 treatment showed an induced concentration-dependent transient increase in beat duration of atrial hiPSC-CMs, whereas ventricular cells showed a physiological increase in beat rate over time. Carbachol treatment produced marked effects on atrial cells, such as increased beat duration alongside a decrease in beat rate over time, but only minimal effects on ventricular cardiomyocytes. In the context of this chamber-specific pharmacology, we not only add to contractile characterization of hiPSC-CMs but propose a multi-well platform for medium-throughput early compound screening. Overall, these insights illustrate the key pharmacological differences between chamber-specific cardiomyocytes and their application on a multi-well contractility platform to gain insights for in vitro cardiac liability studies and disease modelling.
Collapse
Affiliation(s)
| | - Jan Hunker
- innoVitro GmbH, Artilleriestr 2, 52428 Jülich, Germany
| | - Jamie Bhagwan
- Axol Bioscience Ltd, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Peter Linder
- innoVitro GmbH, Artilleriestr 2, 52428 Jülich, Germany
| | - Ulrich Thomas
- Nanion Technologies GmbH, Ganghoferstr 70A, 80339 Munich, Germany
| | - Hardeep Lotay
- Axol Bioscience Ltd, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Steven Broadbent
- Axol Bioscience Ltd, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Elena Dragicevic
- Nanion Technologies GmbH, Ganghoferstr 70A, 80339 Munich, Germany
| | | | - Jan Turner
- Axol Bioscience Ltd, Babraham Research Campus, Cambridge CB22 3AT, UK
| | | |
Collapse
|
26
|
Zhang H, Sen P, Hamers J, Sittig T, Woestenburg B, Moretti A, Dendorfer A, Merkus D. Retinoic acid modulation guides human-induced pluripotent stem cell differentiation towards left or right ventricle-like cardiomyocytes. Stem Cell Res Ther 2024; 15:184. [PMID: 38902843 PMCID: PMC11191368 DOI: 10.1186/s13287-024-03741-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/23/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND Cardiomyocytes (CMs) derived from human induced pluripotent stem cells (hiPSCs) by traditional methods are a mix of atrial and ventricular CMs and many other non-cardiomyocyte cells. Retinoic acid (RA) plays an important role in regulation of the spatiotemporal development of the embryonic heart. METHODS CMs were derived from hiPSC (hi-PCS-CM) using different concentrations of RA (Control without RA, LRA with 0.05μM and HRA with 0.1 μM) between day 3-6 of the differentiation process. Engineered heart tissues (EHTs) were generated by assembling hiPSC-CM at high cell density in a low collagen hydrogel. RESULTS In the HRA group, hiPSC-CMs exhibited highest expression of contractile proteins MYH6, MYH7 and cTnT. The expression of TBX5, NKX2.5 and CORIN, which are marker genes for left ventricular CMs, was also the highest in the HRA group. In terms of EHT, the HRA group displayed the highest contraction force, the lowest beating frequency, and the highest sensitivity to hypoxia and isoprenaline, which means it was functionally more similar to the left ventricle. RNAsequencing revealed that the heightened contractility of EHT within the HRA group can be attributed to the promotion of augmented extracellular matrix strength by RA. CONCLUSION By interfering with the differentiation process of hiPSC with a specific concentration of RA at a specific time, we were able to successfully induce CMs and EHTs with a phenotype similar to that of the left ventricle or right ventricle.
Collapse
Affiliation(s)
- Hengliang Zhang
- Walter Brendel Center for Experimental Medicine (WBex), University Clinic Munich, LMU Munich, 81377, Munich, Germany
- Center for Cardiovascular Research (DZHK), Munich Heart Alliance (MHA), Partner Site Munich, 81377, Munich, Germany
- The First Affiliated Hospital, College of Clinical Medicine of Henan, University of Science and Technology, Luoyang, China
| | - Payel Sen
- Walter Brendel Center for Experimental Medicine (WBex), University Clinic Munich, LMU Munich, 81377, Munich, Germany
- Center for Cardiovascular Research (DZHK), Munich Heart Alliance (MHA), Partner Site Munich, 81377, Munich, Germany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU), LMU Munich, Munich, Germany
| | - Jules Hamers
- Walter Brendel Center for Experimental Medicine (WBex), University Clinic Munich, LMU Munich, 81377, Munich, Germany
- Center for Cardiovascular Research (DZHK), Munich Heart Alliance (MHA), Partner Site Munich, 81377, Munich, Germany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU), LMU Munich, Munich, Germany
| | - Theresa Sittig
- Walter Brendel Center for Experimental Medicine (WBex), University Clinic Munich, LMU Munich, 81377, Munich, Germany
- Center for Cardiovascular Research (DZHK), Munich Heart Alliance (MHA), Partner Site Munich, 81377, Munich, Germany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU), LMU Munich, Munich, Germany
| | - Brent Woestenburg
- Walter Brendel Center for Experimental Medicine (WBex), University Clinic Munich, LMU Munich, 81377, Munich, Germany
| | - Allessandra Moretti
- Center for Cardiovascular Research (DZHK), Munich Heart Alliance (MHA), Partner Site Munich, 81377, Munich, Germany
- First Department of Medicine, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Cardiology, Munich, Germany
- Regenerative Medicine in Cardiovascular Diseases, First Department of Medicine, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Andreas Dendorfer
- Walter Brendel Center for Experimental Medicine (WBex), University Clinic Munich, LMU Munich, 81377, Munich, Germany
- Center for Cardiovascular Research (DZHK), Munich Heart Alliance (MHA), Partner Site Munich, 81377, Munich, Germany
| | - Daphne Merkus
- Walter Brendel Center for Experimental Medicine (WBex), University Clinic Munich, LMU Munich, 81377, Munich, Germany.
- Center for Cardiovascular Research (DZHK), Munich Heart Alliance (MHA), Partner Site Munich, 81377, Munich, Germany.
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU), LMU Munich, Munich, Germany.
- Division of Experimental Cardiology, Dept of Cardiology, Erasmus University Medical Center, 3000CA, Rotterdam, The Netherlands.
| |
Collapse
|
27
|
Schmidt S, Li W, Schubert M, Binnewerg B, Prönnecke C, Zitzmann FD, Bulst M, Wegner S, Meier M, Guan K, Jahnke HG. Novel high-dense microelectrode array based multimodal bioelectronic monitoring system for cardiac arrhythmia re-entry analysis. Biosens Bioelectron 2024; 252:116120. [PMID: 38394704 DOI: 10.1016/j.bios.2024.116120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/26/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024]
Abstract
In recent decades, significant progress has been made in the treatment of heart diseases, particularly in the field of personalized medicine. Despite the development of genetic tests, phenotyping and risk stratification are performed based on clinical findings and invasive in vivo techniques, such as stimulation conduction mapping techniques and programmed ventricular pacing. Consequently, label-free non-invasive in vitro functional analysis systems are urgently needed for more accurate and effective in vitro risk stratification, model-based therapy planning, and clinical safety profile evaluation of drugs. To overcome these limitations, a novel multilayer high-density microelectrode array (HD-MEA), with an optimized configuration of 512 sensing and 4 pacing electrodes on a sensor area of 100 mm2, was developed for the bioelectronic detection of re-entry arrhythmia patterns. Together with a co-developed front-end, we monitored label-free and in parallel cardiac electrophysiology based on field potential monitoring and mechanical contraction using impedance spectroscopy at the same microelectrode. In proof of principle experiments, human induced pluripotent stem cell (hiPS)-derived cardiomyocytes were cultured on HD-MEAs and used to demonstrate the sensitive quantification of contraction strength modulation by cardioactive drugs such as blebbistatin (IC50 = 4.2 μM), omecamtiv and levosimendan. Strikingly, arrhythmia-typical rotor patterns (re-entry) can be induced by optimized electrical stimulation sequences and detected with high spatial resolution. Therefore, we provide a novel cardiac re-entry analysis system as a promising reference point for diagnostic approaches based on in vitro assays using patient-specific hiPS-derived cardiomyocytes.
Collapse
Affiliation(s)
- Sabine Schmidt
- Centre for Biotechnology and Biomedicine, Biochemical Cell Technology, Leipzig University, Deutscher Platz 5, D-04103, Leipzig, Germany
| | - Wener Li
- Institute of Pharmacology and Toxicology, Carl Gustav Carus Medical Faculty, Technical University Dresden, Fetscherstraße 74, D-01307, Dresden, Germany
| | - Mario Schubert
- Institute of Pharmacology and Toxicology, Carl Gustav Carus Medical Faculty, Technical University Dresden, Fetscherstraße 74, D-01307, Dresden, Germany
| | - Björn Binnewerg
- Institute of Pharmacology and Toxicology, Carl Gustav Carus Medical Faculty, Technical University Dresden, Fetscherstraße 74, D-01307, Dresden, Germany
| | - Christoph Prönnecke
- Centre for Biotechnology and Biomedicine, Biochemical Cell Technology, Leipzig University, Deutscher Platz 5, D-04103, Leipzig, Germany
| | - Franziska D Zitzmann
- Centre for Biotechnology and Biomedicine, Biochemical Cell Technology, Leipzig University, Deutscher Platz 5, D-04103, Leipzig, Germany
| | - Martin Bulst
- Sciospec Scientific Instruments GmbH, Leipziger Str. 43b, D-04828, Bennewitz, Germany
| | - Sebastian Wegner
- Sciospec Scientific Instruments GmbH, Leipziger Str. 43b, D-04828, Bennewitz, Germany
| | - Matthias Meier
- Centre for Biotechnology and Biomedicine, Biochemical Cell Technology, Leipzig University, Deutscher Platz 5, D-04103, Leipzig, Germany; Helmholtz Pioneer Campus, Helmholtz Zentrum Munich, Neuherberg, Germany
| | - Kaomei Guan
- Institute of Pharmacology and Toxicology, Carl Gustav Carus Medical Faculty, Technical University Dresden, Fetscherstraße 74, D-01307, Dresden, Germany
| | - Heinz-Georg Jahnke
- Centre for Biotechnology and Biomedicine, Biochemical Cell Technology, Leipzig University, Deutscher Platz 5, D-04103, Leipzig, Germany.
| |
Collapse
|
28
|
Manda V, Pavelka J, Lau E. Proteomics applications in next generation induced pluripotent stem cell models. Expert Rev Proteomics 2024; 21:217-228. [PMID: 38511670 PMCID: PMC11065590 DOI: 10.1080/14789450.2024.2334033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 03/08/2024] [Indexed: 03/22/2024]
Abstract
INTRODUCTION Induced pluripotent stem (iPS) cell technology has transformed biomedical research. New opportunities now exist to create new organoids, microtissues, and body-on-a-chip systems for basic biology investigations and clinical translations. AREAS COVERED We discuss the utility of proteomics for attaining an unbiased view into protein expression changes during iPS cell differentiation, cell maturation, and tissue generation. The ability to discover cell-type specific protein markers during the differentiation and maturation of iPS-derived cells has led to new strategies to improve cell production yield and fidelity. In parallel, proteomic characterization of iPS-derived organoids is helping to realize the goal of bridging in vitro and in vivo systems. EXPERT OPINIONS We discuss some current challenges of proteomics in iPS cell research and future directions, including the integration of proteomic and transcriptomic data for systems-level analysis.
Collapse
Affiliation(s)
- Vyshnavi Manda
- Department of Medicine, Division of Cardiology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Consortium for Fibrosis Research and Translation, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Jay Pavelka
- Department of Medicine, Division of Cardiology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Consortium for Fibrosis Research and Translation, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Edward Lau
- Department of Medicine, Division of Cardiology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Consortium for Fibrosis Research and Translation, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
29
|
Seibertz F, Voigt N. High-throughput methods for cardiac cellular electrophysiology studies: the road to personalized medicine. Am J Physiol Heart Circ Physiol 2024; 326:H938-H949. [PMID: 38276947 PMCID: PMC11279751 DOI: 10.1152/ajpheart.00599.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 01/27/2024]
Abstract
Personalized medicine refers to the tailored application of medical treatment at an individual level, considering the specific genotype or phenotype of each patient for targeted therapy. In the context of cardiovascular diseases, implementing personalized medicine is challenging due to the high costs involved and the slow pace of identifying the pathogenicity of genetic variants, deciphering molecular mechanisms of disease, and testing treatment approaches. Scalable cellular models such as human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) serve as useful in vitro tools that reflect individual patient genetics and retain clinical phenotypes. High-throughput functional assessment of these constructs is necessary to rapidly assess cardiac pathogenicity and test new therapeutics if personalized medicine is to become a reality. High-throughput photometry recordings of single cells coupled with potentiometric probes offer cost-effective alternatives to traditional patch-clamp assessments of cardiomyocyte action potential characteristics. Importantly, automated patch-clamp (APC) is rapidly emerging in the pharmaceutical industry and academia as a powerful method to assess individual membrane-bound ionic currents and ion channel biophysics over multiple cells in parallel. Now amenable to primary cell and hiPSC-CM measurement, APC represents an exciting leap forward in the characterization of a multitude of molecular mechanisms that underlie clinical cardiac phenotypes. This review provides a summary of state-of-the-art high-throughput electrophysiological techniques to assess cardiac electrophysiology and an overview of recent works that successfully integrate these methods into basic science research that could potentially facilitate future implementation of personalized medicine at a clinical level.
Collapse
Affiliation(s)
- Fitzwilliam Seibertz
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells," Georg-August University Göttingen, Göttingen, Germany
- Nanion Technologies, GmbH, Munich, Germany
| | - Niels Voigt
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells," Georg-August University Göttingen, Göttingen, Germany
| |
Collapse
|
30
|
Rapöhn M, Cyganek L, Voigt N, Hasenfuß G, Lehnart SE, Wegener JW. Noninvasive analysis of contractility during identical maturations revealed two phenotypes in ventricular but not in atrial iPSC-CM. Am J Physiol Heart Circ Physiol 2024; 326:H599-H611. [PMID: 38180453 PMCID: PMC11221812 DOI: 10.1152/ajpheart.00527.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/06/2023] [Accepted: 01/02/2024] [Indexed: 01/06/2024]
Abstract
Patient-derived induced pluripotent stem cells (iPSCs) can be differentiated into atrial and ventricular cardiomyocytes to allow for personalized drug screening. A hallmark of differentiation is the manifestation of spontaneous beating in a two-dimensional (2-D) cell culture. However, an outstanding observation is the high variability in this maturation process. We valued that contractile parameters change during differentiation serving as an indicator of maturation. Consequently, we recorded noninvasively spontaneous motion activity during the differentiation of male iPSC toward iPSC cardiomyocytes (iPSC-CMs) to further analyze similar maturated iPSC-CMs. Surprisingly, our results show that identical differentiations into ventricular iPSC-CMs are variable with respect to contractile parameters resulting in two distinct subpopulations of ventricular-like cells. In contrast, differentiation into atrial iPSC-CMs resulted in only one phenotype. We propose that the noninvasive and cost-effective recording of contractile activity during maturation using a smartphone device may help to reduce the variability in results frequently reported in studies on ventricular iPSC-CMs.NEW & NOTEWORTHY Differentiation of induced pluripotent stem cells (iPSCs) into iPSC-derived cardiomyocytes (iPSC-CMs) exhibits a high variability in mature parameters. Here, we monitored noninvasively contractile parameters of iPSC-CM during full-time differentiation using a smartphone device. Our results show that parallel maturations of iPSCs into ventricular iPSC-CMs, but not into atrial iPSC-CMs, resulted in two distinct subpopulations of iPSC-CMs. These findings suggest that our cost-effective method may help to compare iPSC-CMs at the same maturation level.
Collapse
Affiliation(s)
- Marcel Rapöhn
- Department of Cardiology and Pulmonology, University Medical Center of Göttingen, Göttingen, Germany
| | - Lukas Cyganek
- Department of Cardiology and Pulmonology, University Medical Center of Göttingen, Göttingen, Germany
- German Centre for Cardiovascular Research (Deutsches Zentrum für Herz-Kreislaufforschung), Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells," University of Göttingen, Göttingen, Germany
| | - Niels Voigt
- German Centre for Cardiovascular Research (Deutsches Zentrum für Herz-Kreislaufforschung), Göttingen, Germany
- Department of Pharmacology and Toxicology, University Medical Center of Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells," University of Göttingen, Göttingen, Germany
| | - Gerd Hasenfuß
- Department of Cardiology and Pulmonology, University Medical Center of Göttingen, Göttingen, Germany
- German Centre for Cardiovascular Research (Deutsches Zentrum für Herz-Kreislaufforschung), Göttingen, Germany
| | - Stephan E Lehnart
- Department of Cardiology and Pulmonology, University Medical Center of Göttingen, Göttingen, Germany
- German Centre for Cardiovascular Research (Deutsches Zentrum für Herz-Kreislaufforschung), Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells," University of Göttingen, Göttingen, Germany
| | - Jörg W Wegener
- Department of Cardiology and Pulmonology, University Medical Center of Göttingen, Göttingen, Germany
- German Centre for Cardiovascular Research (Deutsches Zentrum für Herz-Kreislaufforschung), Göttingen, Germany
| |
Collapse
|
31
|
Lee SG, Song GE, Seok J, Kim J, Kim MW, Rhee J, Park S, Jeong KS, Lee S, Lee YH, Jeong Y, Chung HM, Kim CY. Evaluation of the cardiotoxicity potential of bisphenol analogues in human induced pluripotent stem cells derived cardiomyocytes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116108. [PMID: 38364764 DOI: 10.1016/j.ecoenv.2024.116108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 01/31/2024] [Accepted: 02/09/2024] [Indexed: 02/18/2024]
Abstract
The importance of evaluating the cardiotoxicity potential of common chemicals as well as new drugs is increasing as a result of the development of animal alternative test methods using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM). Bisphenol A (BPA), which is used as a main material in plastics, is known as an endocrine-disrupting chemical, and recently reported to cause cardiotoxicity through inhibition of ion channels in CMs even with acute exposure. Accordingly, the need for the development of alternatives to BPA has been highlighted, and structural analogues including bisphenol AF, C, E, F, and S have been developed. However, cardiotoxicity data for analogues of bisphenol are not well known. In this study, in order to evaluate the cardiotoxicity potential of analogues, including BPA, a survival test of hiPSC-CMs and a dual-cardiotoxicity evaluation based on a multi-electrode array were performed. Acute exposure to all bisphenol analogues did not affect survival rate, but spike amplitude, beat period, and field potential duration were decreased in a dose-dependent manner in most of the bisphenols except bisphenol S. In addition, bisphenols, except for bisphenol S, reduced the contractile force of hiPSC-CMs and resulted in beating arrest at high doses. Taken together, it can be suggested that the developed bisphenol analogues could cause cardiotoxicity even with acute exposure, and it is considered that the application of the MEA-based dual-cardiotoxicity evaluation method can be an effective help in the development of safe alternatives.
Collapse
Affiliation(s)
- Seul-Gi Lee
- Department of Stem Cell Biology, School of Medicine, Konkuk University, 120 Neungdong-Ro, Gwangjin-Gu, Seoul 05029, Republic of Korea; College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Gyeong-Eun Song
- College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Jin Seok
- College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Jin Kim
- College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Min Woo Kim
- College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Jooeon Rhee
- College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Shinhye Park
- College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Kyu Sik Jeong
- College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Suemin Lee
- College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Yun Hyeong Lee
- College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Youngin Jeong
- College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyung Min Chung
- Department of Stem Cell Biology, School of Medicine, Konkuk University, 120 Neungdong-Ro, Gwangjin-Gu, Seoul 05029, Republic of Korea; Miraecell Bio Co. Ltd., Seoul 04795, Republic of Korea
| | - C-Yoon Kim
- College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
32
|
Yao Y, Gupta D, Yelon D. The MEK-ERK signaling pathway promotes maintenance of cardiac chamber identity. Development 2024; 151:dev202183. [PMID: 38293792 PMCID: PMC10911121 DOI: 10.1242/dev.202183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 01/21/2024] [Indexed: 02/01/2024]
Abstract
Ventricular and atrial cardiac chambers have unique structural and contractile characteristics that underlie their distinct functions. The maintenance of chamber-specific features requires active reinforcement, even in differentiated cardiomyocytes. Previous studies in zebrafish have shown that sustained FGF signaling acts upstream of Nkx factors to maintain ventricular identity, but the rest of this maintenance pathway remains unclear. Here, we show that MEK1/2-ERK1/2 signaling acts downstream of FGF and upstream of Nkx factors to promote ventricular maintenance. Inhibition of MEK signaling, like inhibition of FGF signaling, results in ectopic atrial gene expression and reduced ventricular gene expression in ventricular cardiomyocytes. FGF and MEK signaling both influence ventricular maintenance over a similar timeframe, when phosphorylated ERK (pERK) is present in the myocardium. However, the role of FGF-MEK activity appears to be context-dependent: some ventricular regions are more sensitive than others to inhibition of FGF-MEK signaling. Additionally, in the atrium, although endogenous pERK does not induce ventricular traits, heightened MEK signaling can provoke ectopic ventricular gene expression. Together, our data reveal chamber-specific roles of MEK-ERK signaling in the maintenance of ventricular and atrial identities.
Collapse
Affiliation(s)
- Yao Yao
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Deepam Gupta
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Deborah Yelon
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
33
|
Wegener JW, Mitronova GY, ElShareif L, Quentin C, Belov V, Pochechueva T, Hasenfuss G, Ackermann L, Lehnart SE. A dual-targeted drug inhibits cardiac ryanodine receptor Ca 2+ leak but activates SERCA2a Ca 2+ uptake. Life Sci Alliance 2024; 7:e202302278. [PMID: 38012000 PMCID: PMC10681910 DOI: 10.26508/lsa.202302278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/29/2023] Open
Abstract
In the heart, genetic or acquired mishandling of diastolic [Ca2+] by ryanodine receptor type 2 (RyR2) overactivity correlates with risks of arrhythmia and sudden cardiac death. Strategies to avoid these risks include decrease of Ca2+ release by drugs modulating RyR2 activity or increase in Ca2+ uptake by drugs modulating SR Ca2+ ATPase (SERCA2a) activity. Here, we combine these strategies by developing experimental compounds that act simultaneously on both processes. Our screening efforts identified the new 1,4-benzothiazepine derivative GM1869 as a promising compound. Consequently, we comparatively studied the effects of the known RyR2 modulators Dantrolene and S36 together with GM1869 on RyR2 and SERCA2a activity in cardiomyocytes from wild type and arrhythmia-susceptible RyR2R2474S/+ mice by confocal live-cell imaging. All drugs reduced RyR2-mediated Ca2+ spark frequency but only GM1869 accelerated SERCA2a-mediated decay of Ca2+ transients in murine and human cardiomyocytes. Our data indicate that S36 and GM1869 are more suitable than dantrolene to directly modulate RyR2 activity, especially in RyR2R2474S/+ mice. Remarkably, GM1869 may represent a new dual-acting lead compound for maintenance of diastolic [Ca2+].
Collapse
Affiliation(s)
- Jörg W Wegener
- Department of Cardiology and Pulmonology, Heart Research Center Göttingen, University Medical Center of Göttingen (UMG), Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Gyuzel Y Mitronova
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Lina ElShareif
- Department of Cardiology and Pulmonology, Heart Research Center Göttingen, University Medical Center of Göttingen (UMG), Göttingen, Germany
| | - Christine Quentin
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Vladimir Belov
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Tatiana Pochechueva
- Department of Cardiology and Pulmonology, Heart Research Center Göttingen, University Medical Center of Göttingen (UMG), Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Gerd Hasenfuss
- Department of Cardiology and Pulmonology, Heart Research Center Göttingen, University Medical Center of Göttingen (UMG), Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Lutz Ackermann
- Georg-August University of Göttingen, Institute of Organic and Biomolecular Chemistry, Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Stephan E Lehnart
- Department of Cardiology and Pulmonology, Heart Research Center Göttingen, University Medical Center of Göttingen (UMG), Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| |
Collapse
|
34
|
Takaoka N, Yamane M, Hasegawa A, Obara K, Shirai K, Aki R, Hatakeyama H, Hamada Y, Arakawa N, Tanaka M, Hoffman RM, Amoh Y. Rat hair-follicle-associated pluripotent (HAP) stem cells can differentiate into atrial or ventricular cardiomyocytes in culture controlled by specific supplementation. PLoS One 2024; 19:e0297443. [PMID: 38277391 PMCID: PMC10817212 DOI: 10.1371/journal.pone.0297443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 01/04/2024] [Indexed: 01/28/2024] Open
Abstract
There has been only limited success to differentiate adult stem cells into cardiomyocyte subtypes. In the present study, we have successfully induced beating atrial and ventricular cardiomyocytes from rat hair-follicle-associated pluripotent (HAP) stem cells, which are adult stem cells located in the bulge area. HAP stem cells differentiated into atrial cardiomyocytes in culture with the combination of isoproterenol, activin A, bone morphogenetic protein 4 (BMP4), basic fibroblast growth factor (bFGF), and cyclosporine A (CSA). HAP stem cells differentiated into ventricular cardiomyocytes in culture with the combination of activin A, BMP4, bFGF, inhibitor of Wnt production-4 (IWP4), and vascular endothelial growth factor (VEGF). Differentiated atrial cardiomyocytes were specifically stained for anti-myosin light chain 2a (MLC2a) antibody. Ventricular cardiomyocytes were specially stained for anti-myosin light chain 2v (MLC2v) antibody. Quantitative Polymerase Chain Reaction (qPCR) showed significant expression of MLC2a in atrial cardiomyocytes and MLC2v in ventricular cardiomyocytes. Both differentiated atrial and ventricular cardiomyocytes showed characteristic waveforms in Ca2+ imaging. Differentiated atrial and ventricular cardiomyocytes formed long myocardial fibers and beat as a functional syncytium, having a structure similar to adult cardiomyocytes. The present results demonstrated that it is possible to induce cardiomyocyte subtypes, atrial and ventricular cardiomyocytes, from HAP stem cells.
Collapse
Affiliation(s)
- Nanako Takaoka
- Department of Dermatology, Kitasato University Graduate School of Medical Sciences, Kitasato University School of Medicine, Minami Ward, Sagamihara, Japan
- Department of Dermatology, Kitasato University School of Medicine, Kitasato University School of Medicine, Minami Ward, Sagamihara, Japan
| | - Michiko Yamane
- Department of Dermatology, Kitasato University Graduate School of Medical Sciences, Kitasato University School of Medicine, Minami Ward, Sagamihara, Japan
| | - Ayami Hasegawa
- Department of Dermatology, Kitasato University Graduate School of Medical Sciences, Kitasato University School of Medicine, Minami Ward, Sagamihara, Japan
- Department of Dermatology, Kitasato University School of Medicine, Kitasato University School of Medicine, Minami Ward, Sagamihara, Japan
| | - Koya Obara
- Department of Dermatology, Kitasato University School of Medicine, Kitasato University School of Medicine, Minami Ward, Sagamihara, Japan
| | - Kyoumi Shirai
- Department of Dermatology, Kitasato University School of Medicine, Kitasato University School of Medicine, Minami Ward, Sagamihara, Japan
| | - Ryoichi Aki
- Department of Dermatology, Kitasato University School of Medicine, Kitasato University School of Medicine, Minami Ward, Sagamihara, Japan
| | - Hiroyasu Hatakeyama
- Department of Physiology, Kitasato University School of Medicine, Kitasato University School of Medicine, Minami Ward, Sagamihara, Japan
| | - Yuko Hamada
- Department of Dermatology, Kitasato University School of Medicine, Kitasato University School of Medicine, Minami Ward, Sagamihara, Japan
| | - Nobuko Arakawa
- Department of Dermatology, Kitasato University School of Medicine, Kitasato University School of Medicine, Minami Ward, Sagamihara, Japan
| | - Manabu Tanaka
- Bio-Imaging Center, Kitasato University School of Medicine, Minami Ward, Sagamihara, Japan
| | - Robert M. Hoffman
- AntiCancer, Inc., San Diego, CA, United States of America
- Department of Surgery, University of California, San Diego, CA, United States of America
| | - Yasuyuki Amoh
- Department of Dermatology, Kitasato University School of Medicine, Kitasato University School of Medicine, Minami Ward, Sagamihara, Japan
| |
Collapse
|
35
|
Bloothooft M, Verbruggen B, Seibertz F, van der Heyden MAG, Voigt N, de Boer TP. Recording ten-fold larger I Kr conductances with automated patch clamping using equimolar Cs + solutions. Front Physiol 2024; 15:1298340. [PMID: 38328302 PMCID: PMC10847579 DOI: 10.3389/fphys.2024.1298340] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/09/2024] [Indexed: 02/09/2024] Open
Abstract
Background: The rapid delayed rectifier potassium current (IKr) is important for cardiac repolarization and is most often involved in drug-induced arrhythmias. However, accurately measuring this current can be challenging in human-induced pluripotent stem cell (hiPSC)-derived cardiomyocytes because of its small current density. Interestingly, the ion channel conducting IKr, hERG channel, is not only permeable to K+ ions but also to Cs+ ions when present in equimolar concentrations inside and outside of the cell. Methods: In this study, IhERG was measured from Chinese hamster ovary (CHO)-hERG cells and hiPSC-CM using either Cs+ or K+ as the charge carrier. Equimolar Cs+ has been used in the literature in manual patch-clamp experiments, and here, we apply this approach using automated patch-clamp systems. Four different (pre)clinical drugs were tested to compare their effects on Cs+- and K+-based currents. Results: Using equimolar Cs+ solutions gave rise to approximately ten-fold larger hERG conductances. Comparison of Cs+- and K+-mediated currents upon application of dofetilide, desipramine, moxifloxacin, or LUF7244 revealed many similarities in inhibition or activation properties of the drugs studied. Using equimolar Cs+ solutions gave rise to approximately ten-fold larger hERG conductances. In hiPSC-CM, the Cs+-based conductance is larger compared to the known K+-based conductance, and the Cs+ hERG conductance can be inhibited similarly to the K+-based conductance. Conclusion: Using equimolar Cs+ instead of K+ for IhERG measurements in an automated patch-clamp system gives rise to a new method by which, for example, quick scans can be performed on effects of drugs on hERG currents. This application is specifically relevant when such experiments are performed using cells which express small IKr current densities in combination with small membrane capacitances.
Collapse
Affiliation(s)
- Meye Bloothooft
- Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, Netherlands
| | - Bente Verbruggen
- Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, Netherlands
| | - Fitzwilliam Seibertz
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, Göttingen, Germany
- Nanion Technologies GmbH, Munich, Germany
| | - Marcel A. G. van der Heyden
- Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, Netherlands
| | - Niels Voigt
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, Göttingen, Germany
| | - Teun P. de Boer
- Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
36
|
Zhang W, Wang F, Yin L, Tang Y, Wang X, Huang C. Cadherin-5 facilitated the differentiation of human induced pluripotent stem cells into sinoatrial node-like pacemaker cells by regulating β-catenin. J Cell Physiol 2024; 239:212-226. [PMID: 38149479 DOI: 10.1002/jcp.31161] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/16/2023] [Accepted: 11/10/2023] [Indexed: 12/28/2023]
Abstract
Our study was conducted to investigate whether cadherin-5 (CDH5), a vascular endothelial cell adhesion glycoprotein, could facilitate the differentiation of human induced pluripotent stem cells (hiPSCs) into sinoatrial node-like pacemaker cells (SANLPCs), following previous findings of silk-fibroin hydrogel-induced direct conversion of quiescent cardiomyocytes into pacemaker cells in rats through the activation of CDH5. In this study, the differentiating hiPSCs were treated with CDH5 (40 ng/mL) between Day 5 and 7 during cardiomyocytes differentiation. The findings in the present study demonstrated that CDH5 stimulated the expression of pacemaker-specific markers while suppressing markers associated with working cardiomyocytes, resulting in an increased proportion of SANLPCs among hiPSCs-derived cardiomyocytes (hiPSC-CMs) population. Moreover, CDH5 induced typical electrophysiological characteristics resembling cardiac pacemaker cells in hiPSC-CMs. Further mechanistic investigations revealed that the enriched differentiation of hiPSCs into SANLPCs induced by CDH5 was partially reversed by iCRT14, an inhibitor of β-catenin. Therefore, based on the aforementioned findings, it could be inferred that the regulation of β-catenin by CDH5 played a crucial role in promoting the enriched differentiation of hiPSCs into SANLPCs, which presents a novel avenue for the construction of biological pacemakers in forthcoming research.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Fengyuan Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Lin Yin
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yanhong Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Xi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Congxin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
37
|
Luo Y, Chen Y, Ge L, Zhou G, Chen Y, Zhu D. Competing endogenous RNA network analysis of Turner syndrome patient-specific iPSC-derived cardiomyocytes reveals dysregulation of autosomal heart development genes by altered dosages of X-inactivation escaping non-coding RNAs. Stem Cell Res Ther 2023; 14:376. [PMID: 38124119 PMCID: PMC10734062 DOI: 10.1186/s13287-023-03601-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND A 45,X monosomy (Turner syndrome, TS) is the only chromosome haploinsufficiency compatible with life. Nevertheless, the surviving TS patients still suffer from increased morbidity and mortality, with around one-third of them subjecting to heart abnormalities. How loss of one X chromosome drive these conditions remains largely unknown. METHODS Here, we have generated cardiomyocytes (CMs) from wild-type and TS patient-specific induced pluripotent stem cells and profiled the mRNA, lncRNA and circRNA expression in these cells. RESULTS We observed lower beating frequencies and higher mitochondrial DNA copies per nucleus in TS-CMs. Moreover, we have identified a global transcriptome dysregulation of both coding and non-coding RNAs in TS-CMs. The differentially expressed mRNAs were enriched of heart development genes. Further competing endogenous RNA network analysis revealed putative regulatory circuit of autosomal genes relevant with mitochondrial respiratory chain and heart development, such as COQ10A, RARB and WNT2, mediated by X-inactivation escaping lnc/circRNAs, such as lnc-KDM5C-4:1, hsa_circ_0090421 and hsa_circ_0090392. The aberrant expressions of these genes in TS-CMs were verified by qPCR. Further knockdown of lnc-KDM5C-4:1 in wild-type CMs exhibited significantly reduced beating frequencies. CONCLUSIONS Our study has revealed a genomewide ripple effect of X chromosome halpoinsufficiency at post-transcriptional level and provided insights into the molecular mechanisms underlying heart abnormalities in TS patients.
Collapse
Affiliation(s)
- Yumei Luo
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
- Biologics Test and Evaluation Center, Guangzhou Laboratory, Guangzhou, 510005, China.
| | - Yapei Chen
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Lingxia Ge
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Guanqing Zhou
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Yaoyong Chen
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Detu Zhu
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
- Biologics Test and Evaluation Center, Guangzhou Laboratory, Guangzhou, 510005, China.
| |
Collapse
|
38
|
Seibertz F, Rubio T, Springer R, Popp F, Ritter M, Liutkute A, Bartelt L, Stelzer L, Haghighi F, Pietras J, Windel H, Pedrosa NDI, Rapedius M, Doering Y, Solano R, Hindmarsh R, Shi R, Tiburcy M, Bruegmann T, Kutschka I, Streckfuss-Bömeke K, Kensah G, Cyganek L, Zimmermann WH, Voigt N. Atrial fibrillation-associated electrical remodelling in human induced pluripotent stem cell-derived atrial cardiomyocytes: a novel pathway for antiarrhythmic therapy development. Cardiovasc Res 2023; 119:2623-2637. [PMID: 37677054 PMCID: PMC10730244 DOI: 10.1093/cvr/cvad143] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 07/18/2023] [Accepted: 08/03/2023] [Indexed: 09/09/2023] Open
Abstract
AIMS Atrial fibrillation (AF) is associated with tachycardia-induced cellular electrophysiology alterations which promote AF chronification and treatment resistance. Development of novel antiarrhythmic therapies is hampered by the absence of scalable experimental human models that reflect AF-associated electrical remodelling. Therefore, we aimed to assess if AF-associated remodelling of cellular electrophysiology can be simulated in human atrial-like cardiomyocytes derived from induced pluripotent stem cells in the presence of retinoic acid (iPSC-aCM), and atrial-engineered human myocardium (aEHM) under short term (24 h) and chronic (7 days) tachypacing (TP). METHODS AND RESULTS First, 24-h electrical pacing at 3 Hz was used to investigate whether AF-associated remodelling in iPSC-aCM and aEHM would ensue. Compared to controls (24 h, 1 Hz pacing) TP-stimulated iPSC-aCM presented classical hallmarks of AF-associated remodelling: (i) decreased L-type Ca2+ current (ICa,L) and (ii) impaired activation of acetylcholine-activated inward-rectifier K+ current (IK,ACh). This resulted in action potential shortening and an absent response to the M-receptor agonist carbachol in both iPSC-aCM and aEHM subjected to TP. Accordingly, mRNA expression of the channel-subunit Kir3.4 was reduced. Selective IK,ACh blockade with tertiapin reduced basal inward-rectifier K+ current only in iPSC-aCM subjected to TP, thereby unmasking an agonist-independent constitutively active IK,ACh. To allow for long-term TP, we developed iPSC-aCM and aEHM expressing the light-gated ion-channel f-Chrimson. The same hallmarks of AF-associated remodelling were observed after optical-TP. In addition, continuous TP (7 days) led to (i) increased amplitude of inward-rectifier K+ current (IK1), (ii) hyperpolarization of the resting membrane potential, (iii) increased action potential-amplitude and upstroke velocity as well as (iv) reversibly impaired contractile function in aEHM. CONCLUSIONS Classical hallmarks of AF-associated remodelling were mimicked through TP of iPSC-aCM and aEHM. The use of the ultrafast f-Chrimson depolarizing ion channel allowed us to model the time-dependence of AF-associated remodelling in vitro for the first time. The observation of electrical remodelling with associated reversible contractile dysfunction offers a novel platform for human-centric discovery of antiarrhythmic therapies.
Collapse
Affiliation(s)
- Fitzwilliam Seibertz
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), partner site Göttingen, Germany
- Cluster of Excellence ‘Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells’ (MBExC), University of Göttingen, Göttingen, Germany
| | - Tony Rubio
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), partner site Göttingen, Germany
| | - Robin Springer
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), partner site Göttingen, Germany
| | - Fiona Popp
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), partner site Göttingen, Germany
| | - Melanie Ritter
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), partner site Göttingen, Germany
| | - Aiste Liutkute
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), partner site Göttingen, Germany
| | - Lena Bartelt
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), partner site Göttingen, Germany
| | - Lea Stelzer
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), partner site Göttingen, Germany
| | - Fereshteh Haghighi
- DZHK (German Center for Cardiovascular Research), partner site Göttingen, Germany
- Department of Cardiothoracic and Vascular Surgery, Georg-August-University Göttingen, Göttingen, Germany
| | - Jan Pietras
- DZHK (German Center for Cardiovascular Research), partner site Göttingen, Germany
- Department of Cardiothoracic and Vascular Surgery, Georg-August-University Göttingen, Göttingen, Germany
| | - Hendrik Windel
- DZHK (German Center for Cardiovascular Research), partner site Göttingen, Germany
- Department of Cardiothoracic and Vascular Surgery, Georg-August-University Göttingen, Göttingen, Germany
| | - Núria Díaz i Pedrosa
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), partner site Göttingen, Germany
| | | | - Yannic Doering
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), partner site Göttingen, Germany
| | - Richard Solano
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), partner site Göttingen, Germany
- Department of Cardiothoracic and Vascular Surgery, Georg-August-University Göttingen, Göttingen, Germany
| | - Robin Hindmarsh
- DZHK (German Center for Cardiovascular Research), partner site Göttingen, Germany
- Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University Göttingen, Germany
| | - Runzhu Shi
- DZHK (German Center for Cardiovascular Research), partner site Göttingen, Germany
- Institute for Cardiovascular Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Malte Tiburcy
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), partner site Göttingen, Germany
| | - Tobias Bruegmann
- DZHK (German Center for Cardiovascular Research), partner site Göttingen, Germany
- Cluster of Excellence ‘Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells’ (MBExC), University of Göttingen, Göttingen, Germany
- Institute for Cardiovascular Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Ingo Kutschka
- DZHK (German Center for Cardiovascular Research), partner site Göttingen, Germany
- Department of Cardiothoracic and Vascular Surgery, Georg-August-University Göttingen, Göttingen, Germany
| | - Katrin Streckfuss-Bömeke
- DZHK (German Center for Cardiovascular Research), partner site Göttingen, Germany
- Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University Göttingen, Germany
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
| | - George Kensah
- DZHK (German Center for Cardiovascular Research), partner site Göttingen, Germany
- Department of Cardiothoracic and Vascular Surgery, Georg-August-University Göttingen, Göttingen, Germany
| | - Lukas Cyganek
- DZHK (German Center for Cardiovascular Research), partner site Göttingen, Germany
- Cluster of Excellence ‘Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells’ (MBExC), University of Göttingen, Göttingen, Germany
- Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University Göttingen, Germany
| | - Wolfram H Zimmermann
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), partner site Göttingen, Germany
- Cluster of Excellence ‘Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells’ (MBExC), University of Göttingen, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Göttingen, Germany
- Campus-Institute Data Science (CIDAS), University of Göttingen, Göttingen, Germany
| | - Niels Voigt
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), partner site Göttingen, Germany
- Cluster of Excellence ‘Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells’ (MBExC), University of Göttingen, Göttingen, Germany
| |
Collapse
|
39
|
Liew LC, Poh BM, An O, Ho BX, Lim CYY, Pang JKS, Beh LY, Yang HH, Soh BS. JAK2 as a surface marker for enrichment of human pluripotent stem cells-derived ventricular cardiomyocytes. Stem Cell Res Ther 2023; 14:367. [PMID: 38093391 PMCID: PMC10720068 DOI: 10.1186/s13287-023-03610-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Human pluripotent stem cell (hPSC)-derived cardiomyocytes (CMs) hold great promise for cardiac disease modelling, drug discovery and regenerative medicine. Despite the advancement in various differentiation protocols, the heterogeneity of the generated population composed of diverse cardiac subtypes poses a significant challenge to their practical applications. Mixed populations of cardiac subtypes can compromise disease modelling and drug discovery, while transplanting them may lead to undesired arrhythmias as they may not integrate and synchronize with the host tissue's contractility. It is therefore crucial to identify cell surface markers that could enable high purity of ventricular CMs for subsequent applications. METHODS By exploiting the fact that immature CMs expressing myosin light chain 2A (MLC2A) will gradually express myosin light chain 2 V (MLC2V) protein as they mature towards ventricular fate, we isolated signal regulatory protein alpha (SIRPA)-positive CMs expressing intracellular MLC2A or MLC2V using MARIS (method for analysing RNA following intracellular sorting). Subsequently, RNA sequencing analysis was performed to examine the gene expression profile of MLC2A + and MLC2V + sorted CMs. We identified genes that were significantly up-regulated in MLC2V + samples to be potential surface marker candidates for ventricular specification. To validate these surface markers, we performed immunostaining and western blot analysis to measure MLC2A and MLC2V protein expressions in SIRPA + CMs that were either positive or negative for the putative surface markers, JAK2 (Janus kinase 2) or CD200. We then characterized the electrophysiological properties of surface marker-sorted CMs, using fluo-4 AM, a green-fluorescent calcium indicator, to measure the cellular calcium transient at the single cell level. For functional validation, we investigated the response of the surface marker-sorted CMs to vernakalant, an atrial-selective anti-arrhythmic agent. RESULTS In this study, while JAK2 and CD200 were identified as potential surface markers for the purification of ventricular-like CMs, the SIRPA+/JAK2+ population showed a higher percentage of MLC2V-expressing cells (~ 90%) compared to SIRPA+/CD200+ population (~ 75%). SIRPA+/JAK2+ sorted CMs exhibited ventricular-like electrophysiological properties, including slower beating rate, slower calcium depolarization and longer calcium repolarization duration. Importantly, vernakalant had limited to no significant effect on the calcium repolarization duration of SIRPA+/JAK2+ population, indicating their enrichment for ventricular-like CMs. CONCLUSION Our study lays the groundwork for the identification of cardiac subtype surface markers that allow purification of cardiomyocyte sub-populations. Our findings suggest that JAK2 can be employed as a cell surface marker for enrichment of hPSC-derived ventricular-like CMs.
Collapse
Affiliation(s)
- Lee Chuen Liew
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Boon Min Poh
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Omer An
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Republic of Singapore
| | - Beatrice Xuan Ho
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Christina Ying Yan Lim
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Jeremy Kah Sheng Pang
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Leslie Y Beh
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Henry He Yang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Republic of Singapore
| | - Boon-Seng Soh
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore.
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Republic of Singapore.
| |
Collapse
|
40
|
Liu S, Fang C, Zhong C, Li J, Xiao Q. Recent advances in pluripotent stem cell-derived cardiac organoids and heart-on-chip applications for studying anti-cancer drug-induced cardiotoxicity. Cell Biol Toxicol 2023; 39:2527-2549. [PMID: 37889357 DOI: 10.1007/s10565-023-09835-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023]
Abstract
Cardiovascular disease (CVD) caused by anti-cancer drug-induced cardiotoxicity is now the second leading cause of mortality among cancer survivors. It is necessary to establish efficient in vitro models for early predicting the potential cardiotoxicity of anti-cancer drugs, as well as for screening drugs that would alleviate cardiotoxicity during and post treatment. Human induced pluripotent stem cells (hiPSCs) have opened up new avenues in cardio-oncology. With the breakthrough of tissue engineering technology, a variety of hiPSC-derived cardiac microtissues or organoids have been recently reported, which have shown enormous potential in studying cardiotoxicity. Moreover, using hiPSC-derived heart-on-chip for studying cardiotoxicity has provided novel insights into the underlying mechanisms. Herein, we summarize different types of anti-cancer drug-induced cardiotoxicities and present an extensive overview on the applications of hiPSC-derived cardiac microtissues, cardiac organoids, and heart-on-chips in cardiotoxicity. Finally, we highlight clinical and translational challenges around hiPSC-derived cardiac microtissues/organoids/heart-on chips and their applications in anti-cancer drug-induced cardiotoxicity. • Anti-cancer drug-induced cardiotoxicities represent pressing challenges for cancer treatments, and cardiovascular disease is the second leading cause of mortality among cancer survivors. • Newly reported in vitro models such as hiPSC-derived cardiac microtissues/organoids/chips show enormous potential for studying cardio-oncology. • Emerging evidence supports that hiPSC-derived cardiac organoids and heart-on-chip are promising in vitro platforms for predicting and minimizing anti-cancer drug-induced cardiotoxicity.
Collapse
Affiliation(s)
- Silin Liu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Centre for Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Heart Centre, Charterhouse Square, London, EC1M 6BQ, UK
- Guangdong Provincial Clinical Research Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Chongkai Fang
- Centre for Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Heart Centre, Charterhouse Square, London, EC1M 6BQ, UK
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Chong Zhong
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Guangdong Provincial Clinical Research Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Jing Li
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
- Guangdong Provincial Clinical Research Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
- Faculty of Biological Sciences, University of Leeds, Leeds, UK.
| | - Qingzhong Xiao
- Centre for Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Heart Centre, Charterhouse Square, London, EC1M 6BQ, UK.
- Key Laboratory of Cardiovascular Diseases, School of Basic Medical Sciences, Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
41
|
Chapotte-Baldacci CA, Pierre M, Djemai M, Pouliot V, Chahine M. Biophysical properties of Na V1.5 channels from atrial-like and ventricular-like cardiomyocytes derived from human induced pluripotent stem cells. Sci Rep 2023; 13:20685. [PMID: 38001331 PMCID: PMC10673932 DOI: 10.1038/s41598-023-47310-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023] Open
Abstract
Generating atrial-like cardiomyocytes derived from human induced pluripotent stem cells (hiPSCs) is crucial for modeling and treating atrial-related diseases, such as atrial arrythmias including atrial fibrillations. However, it is essential to obtain a comprehensive understanding of the electrophysiological properties of these cells. The objective of the present study was to investigate the molecular, electrical, and biophysical properties of several ion channels, especially NaV1.5 channels, in atrial hiPSC cardiomyocytes. Atrial cardiomyocytes were obtained by the differentiation of hiPSCs treated with retinoic acid (RA). The quality of the atrial specification was assessed by qPCR, immunocytofluorescence, and western blotting. The electrophysiological properties of action potentials (APs), Ca2+ dynamics, K+ and Na+ currents were investigated using patch-clamp and optical mapping approaches. We evaluated mRNA transcript and protein expressions to show that atrial cardiomyocytes expressed higher atrial- and sinoatrial-specific markers (MYL7, CACNA1D) and lower ventricular-specific markers (MYL2, CACNA1C, GJA1) than ventricular cardiomyocytes. The amplitude, duration, and steady-state phase of APs in atrial cardiomyocytes decreased, and had a shape similar to that of mature atrial cardiomyocytes. Interestingly, NaV1.5 channels in atrial cardiomyocytes exhibited lower mRNA transcripts and protein expression, which could explain the lower current densities recorded by patch-clamp. Moreover, Na+ currents exhibited differences in activation and inactivation parameters. These differences could be explained by an increase in SCN2B regulatory subunit expression and a decrease in SCN1B and SCN4B regulatory subunit expressions. Our results show that a RA treatment made it possible to obtain atrial cardiomyocytes and investigate differences in NaV1.5 channel properties between ventricular- and atrial-like cells.
Collapse
Affiliation(s)
- Charles-Albert Chapotte-Baldacci
- Department of Medicine, Laval University, Quebec City, QC, Canada
- CERVO Brain Research Centre, 2601, chemin de la Canardière, Quebec City, QC, G1J 2G3, Canada
| | - Marion Pierre
- Department of Medicine, Laval University, Quebec City, QC, Canada
- CERVO Brain Research Centre, 2601, chemin de la Canardière, Quebec City, QC, G1J 2G3, Canada
| | - Mohammed Djemai
- Department of Medicine, Laval University, Quebec City, QC, Canada
- CERVO Brain Research Centre, 2601, chemin de la Canardière, Quebec City, QC, G1J 2G3, Canada
| | - Valérie Pouliot
- CERVO Brain Research Centre, 2601, chemin de la Canardière, Quebec City, QC, G1J 2G3, Canada
| | - Mohamed Chahine
- CERVO Brain Research Centre, 2601, chemin de la Canardière, Quebec City, QC, G1J 2G3, Canada.
| |
Collapse
|
42
|
Schulz C, Sönmez M, Krause J, Schwedhelm E, Bangfen P, Alihodzic D, Hansen A, Eschenhagen T, Christ T. A critical role of retinoic acid concentration for the induction of a fully human-like atrial action potential phenotype in hiPSC-CM. Stem Cell Reports 2023; 18:2096-2107. [PMID: 37922915 PMCID: PMC10679650 DOI: 10.1016/j.stemcr.2023.10.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023] Open
Abstract
Retinoic acid (RA) induces an atrial phenotype in human induced pluripotent stem cells (hiPSCs), but expression of atrium-selective currents such as the ultrarapid (IKur) and acetylcholine-stimulated K+ current is variable and less than in the adult human atrium. We suspected methodological issues and systematically investigated the concentration dependency of RA. RA treatment increased IKur concentration dependently from 1.1 ± 0.54 pA/pF (0 RA) to 3.8 ± 1.1, 5.8 ± 2.5, and 12.2 ± 4.3 at 0.01, 0.1, and 1 μM, respectively. Only 1 μM RA induced enough IKur to fully reproduce human atrial action potential (AP) shape and a robust shortening of APs upon carbachol. We found that sterile filtration caused substantial loss of RA. We conclude that 1 μM RA seems to be necessary and sufficient to induce a full atrial AP shape in hiPSC-CM in EHT format. RA concentrations are prone to methodological issues and may profoundly impact the success of atrial differentiation.
Collapse
Affiliation(s)
- Carl Schulz
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Muhammed Sönmez
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Julia Krause
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany; Department of Cardiology, University Heart and Vascular Center, Hamburg, Germany
| | - Edzard Schwedhelm
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany; Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Pan Bangfen
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Dzenefa Alihodzic
- Hospital Pharmacy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Arne Hansen
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Thomas Eschenhagen
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany.
| | - Torsten Christ
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany.
| |
Collapse
|
43
|
Meshrkey F, Scheulin KM, Littlejohn CM, Stabach J, Saikia B, Thorat V, Huang Y, LaFramboise T, Lesnefsky EJ, Rao RR, West FD, Iyer S. Induced pluripotent stem cells derived from patients carrying mitochondrial mutations exhibit altered bioenergetics and aberrant differentiation potential. Stem Cell Res Ther 2023; 14:320. [PMID: 37936209 PMCID: PMC10631039 DOI: 10.1186/s13287-023-03546-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 10/25/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND Human mitochondrial DNA mutations are associated with common to rare mitochondrial disorders, which are multisystemic with complex clinical pathologies. The pathologies of these diseases are poorly understood and have no FDA-approved treatments leading to symptom management. Leigh syndrome (LS) is a pediatric mitochondrial disorder that affects the central nervous system during early development and causes death in infancy. Since there are no adequate models for understanding the rapid fatality associated with LS, human-induced pluripotent stem cell (hiPSC) technology has been recognized as a useful approach to generate patient-specific stem cells for disease modeling and understanding the origins of the phenotype. METHODS hiPSCs were generated from control BJ and four disease fibroblast lines using a cocktail of non-modified reprogramming and immune evasion mRNAs and microRNAs. Expression of hiPSC-associated intracellular and cell surface markers was identified by immunofluorescence and flow cytometry. Karyotyping of hiPSCs was performed with cytogenetic analysis. Sanger and next-generation sequencing were used to detect and quantify the mutation in all hiPSCs. The mitochondrial respiration ability and glycolytic function were measured by the Seahorse Bioscience XFe96 extracellular flux analyzer. RESULTS Reprogrammed hiPSCs expressed pluripotent stem cell markers including transcription factors POU5F1, NANOG and SOX2 and cell surface markers SSEA4, TRA-1-60 and TRA-1-81 at the protein level. Sanger sequencing analysis confirmed the presence of mutations in all reprogrammed hiPSCs. Next-generation sequencing demonstrated the variable presence of mutant mtDNA in reprogrammed hiPSCs. Cytogenetic analyses confirmed the presence of normal karyotype in all reprogrammed hiPSCs. Patient-derived hiPSCs demonstrated decreased maximal mitochondrial respiration, while mitochondrial ATP production was not significantly different between the control and disease hiPSCs. In line with low maximal respiration, the spare respiratory capacity was lower in all the disease hiPSCs. The hiPSCs also demonstrated neural and cardiac differentiation potential. CONCLUSION Overall, the hiPSCs exhibited variable mitochondrial dysfunction that may alter their differentiation potential and provide key insights into clinically relevant developmental perturbations.
Collapse
Affiliation(s)
- Fibi Meshrkey
- Department of Biological Sciences, J. William Fulbright College of Arts and Sciences, University of Arkansas, Science and Engineering 601, Fayetteville, AR, 72701, USA
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, USA
- Department of Histology and Cell Biology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Kelly M Scheulin
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA
- Neuroscience Program, Biomedical and Health Sciences Institute, University of Georgia, Athens, GA, USA
| | - Christopher M Littlejohn
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA
| | - Joshua Stabach
- Department of Biological Sciences, J. William Fulbright College of Arts and Sciences, University of Arkansas, Science and Engineering 601, Fayetteville, AR, 72701, USA
| | - Bibhuti Saikia
- Department of Biological Sciences, J. William Fulbright College of Arts and Sciences, University of Arkansas, Science and Engineering 601, Fayetteville, AR, 72701, USA
| | - Vedant Thorat
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Yimin Huang
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Thomas LaFramboise
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Edward J Lesnefsky
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, USA
- Cardiology Section Medical Service, McGuire Veterans Affairs Medical Center, Richmond, VA, USA
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
- Division of Cardiology, Department of Internal Medicine, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Raj R Rao
- Department of Biomedical Engineering, College of Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Franklin D West
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA
- Neuroscience Program, Biomedical and Health Sciences Institute, University of Georgia, Athens, GA, USA
| | - Shilpa Iyer
- Department of Biological Sciences, J. William Fulbright College of Arts and Sciences, University of Arkansas, Science and Engineering 601, Fayetteville, AR, 72701, USA.
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, USA.
| |
Collapse
|
44
|
Kayser A, Dittmann S, Šarić T, Mearini G, Verkerk AO, Schulze-Bahr E. The W101C KCNJ5 Mutation Induces Slower Pacing by Constitutively Active GIRK Channels in hiPSC-Derived Cardiomyocytes. Int J Mol Sci 2023; 24:15290. [PMID: 37894977 PMCID: PMC10607318 DOI: 10.3390/ijms242015290] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023] Open
Abstract
Mutations in the KCNJ5 gene, encoding one of the major subunits of cardiac G-protein-gated inwardly rectifying K+ (GIRK) channels, have been recently linked to inherited forms of sinus node dysfunction. Here, the pathogenic mechanism of the W101C KCNJ5 mutation underlying sinus bradycardia in a patient-derived cellular disease model of sinus node dysfunction (SND) was investigated. A human-induced pluripotent stem cell (hiPSCs) line of a mutation carrier was generated, and CRISPR/Cas9-based gene targeting was used to correct the familial mutation as a control line. Both cell lines were further differentiated into cardiomyocytes (hiPSC-CMs) that robustly expressed GIRK channels which underly the acetylcholine-regulated K+ current (IK,ACh). hiPSC-CMs with the W101C KCNJ5 mutation (hiPSCW101C-CM) had a constitutively active IK,ACh under baseline conditions; the application of carbachol was able to increase IK,ACh, further indicating that not all available cardiac GIRK channels were open at baseline. Additionally, hiPSCW101C-CM had a more negative maximal diastolic potential (MDP) and a slower pacing frequency confirming the bradycardic phenotype. Of note, the blockade of the constitutively active GIRK channel with XAF-1407 rescued the phenotype. These results provide further mechanistic insights and may pave the way for the treatment of SND patients with GIRK channel dysfunction.
Collapse
Affiliation(s)
- Anne Kayser
- Institute for Genetics of Heart Diseases (IfGH), University Hospital Münster, 48149 Münster, Germany (S.D.); (E.S.-B.)
| | - Sven Dittmann
- Institute for Genetics of Heart Diseases (IfGH), University Hospital Münster, 48149 Münster, Germany (S.D.); (E.S.-B.)
| | - Tomo Šarić
- Center for Physiology and Pathophysiology, Institute for Neurophysiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany;
| | - Giulia Mearini
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Arie O. Verkerk
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Department of Experimental Cardiology, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Eric Schulze-Bahr
- Institute for Genetics of Heart Diseases (IfGH), University Hospital Münster, 48149 Münster, Germany (S.D.); (E.S.-B.)
| |
Collapse
|
45
|
Kang J, Mun D, Chun Y, Park D, Kim H, Yun N, Joung B. Engineered small extracellular vesicle-mediated NOX4 siRNA delivery for targeted therapy of cardiac hypertrophy. J Extracell Vesicles 2023; 12:e12371. [PMID: 37795828 PMCID: PMC10552075 DOI: 10.1002/jev2.12371] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 09/18/2023] [Accepted: 09/27/2023] [Indexed: 10/06/2023] Open
Abstract
Small-interfering RNA (siRNA) therapy is considered a powerful therapeutic strategy for treating cardiac hypertrophy, an important risk factor for subsequent cardiac morbidity and mortality. However, the lack of safe and efficient in vivo delivery of siRNAs is a major challenge for broadening its clinical applications. Small extracellular vesicles (sEVs) are a promising delivery system for siRNAs but have limited cell/tissue-specific targeting ability. In this study, a new generation of heart-targeting sEVs (CEVs) has been developed by conjugating cardiac-targeting peptide (CTP) to human peripheral blood-derived sEVs (PB-EVs), using a simple, rapid and scalable method based on bio-orthogonal copper-free click chemistry. The experimental results show that CEVs have typical sEVs properties and excellent heart-targeting ability. Furthermore, to treat cardiac hypertrophy, CEVs are loaded with NADPH Oxidase 4 (NOX4) siRNA (siNOX4). Consequently, CEVs@siNOX4 treatment enhances the in vitro anti-hypertrophic effects by CEVs with siRNA protection and heart-targeting ability. In addition, the intravenous injection of CEVs@siNOX4 into angiotensin II (Ang II)-treated mice significantly improves cardiac function and reduces fibrosis and cardiomyocyte cross-sectional area, with limited side effects. In conclusion, the utilization of CEVs represents an efficient strategy for heart-targeted delivery of therapeutic siRNAs and holds great promise for the treatment of cardiac hypertrophy.
Collapse
Affiliation(s)
- Ji‐Young Kang
- Division of Cardiology, Department of Internal MedicineYonsei University College of MedicineSeodaemun‐guSeoulRepublic of Korea
| | - Dasom Mun
- Division of Cardiology, Department of Internal MedicineYonsei University College of MedicineSeodaemun‐guSeoulRepublic of Korea
| | - Yumin Chun
- Division of Cardiology, Department of Internal MedicineYonsei University College of MedicineSeodaemun‐guSeoulRepublic of Korea
| | - Da‐Seul Park
- Division of Cardiology, Department of Internal MedicineYonsei University College of MedicineSeodaemun‐guSeoulRepublic of Korea
| | - Hyoeun Kim
- Department of Biochemistry and Molecular BiologyYonsei University College of MedicineSeodaemun‐guSeoulRepublic of Korea
| | - Nuri Yun
- GNTPharma Science and Technology Center for Health, Giheung‐guYongin‐siIncheonRepublic of Korea
| | - Boyoung Joung
- Division of Cardiology, Department of Internal MedicineYonsei University College of MedicineSeodaemun‐guSeoulRepublic of Korea
- Graduate School of Medical Science, Brain Korea 21 ProjectYonsei University College of MedicineSeodaemun‐guSeoulRepublic of Korea
| |
Collapse
|
46
|
Bernava G, Iop L. Advances in the design, generation, and application of tissue-engineered myocardial equivalents. Front Bioeng Biotechnol 2023; 11:1247572. [PMID: 37811368 PMCID: PMC10559975 DOI: 10.3389/fbioe.2023.1247572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/29/2023] [Indexed: 10/10/2023] Open
Abstract
Due to the limited regenerative ability of cardiomyocytes, the disabling irreversible condition of myocardial failure can only be treated with conservative and temporary therapeutic approaches, not able to repair the damage directly, or with organ transplantation. Among the regenerative strategies, intramyocardial cell injection or intravascular cell infusion should attenuate damage to the myocardium and reduce the risk of heart failure. However, these cell delivery-based therapies suffer from significant drawbacks and have a low success rate. Indeed, cardiac tissue engineering efforts are directed to repair, replace, and regenerate native myocardial tissue function. In a regenerative strategy, biomaterials and biomimetic stimuli play a key role in promoting cell adhesion, proliferation, differentiation, and neo-tissue formation. Thus, appropriate biochemical and biophysical cues should be combined with scaffolds emulating extracellular matrix in order to support cell growth and prompt favorable cardiac microenvironment and tissue regeneration. In this review, we provide an overview of recent developments that occurred in the biomimetic design and fabrication of cardiac scaffolds and patches. Furthermore, we sift in vitro and in situ strategies in several preclinical and clinical applications. Finally, we evaluate the possible use of bioengineered cardiac tissue equivalents as in vitro models for disease studies and drug tests.
Collapse
Affiliation(s)
| | - Laura Iop
- Department of Cardiac Thoracic Vascular Sciences and Public Health, Padua Medical School, University of Padua, Padua, Italy
| |
Collapse
|
47
|
Engel JL, Zhang X, Lu DR, Vila OF, Arias V, Lee J, Hale C, Hsu YH, Li CM, Wu RS, Vedantham V, Ang YS. Single Cell Multi-Omics of an iPSC Model of Human Sinoatrial Node Development Reveals Genetic Determinants of Heart Rate and Arrhythmia Susceptibility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.01.547335. [PMID: 37425707 PMCID: PMC10327193 DOI: 10.1101/2023.07.01.547335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Cellular heterogeneity within the sinoatrial node (SAN) is functionally important but has been difficult to model in vitro , presenting a major obstacle to studies of heart rate regulation and arrhythmias. Here we describe a scalable method to derive sinoatrial node pacemaker cardiomyocytes (PCs) from human induced pluripotent stem cells that recapitulates differentiation into distinct PC subtypes, including SAN Head, SAN Tail, transitional zone cells, and sinus venosus myocardium. Single cell (sc) RNA-sequencing, sc-ATAC-sequencing, and trajectory analyses were used to define epigenetic and transcriptomic signatures of each cell type, and to identify novel transcriptional pathways important for PC subtype differentiation. Integration of our multi-omics datasets with genome wide association studies uncovered cell type-specific regulatory elements that associated with heart rate regulation and susceptibility to atrial fibrillation. Taken together, these datasets validate a novel, robust, and realistic in vitro platform that will enable deeper mechanistic exploration of human cardiac automaticity and arrhythmia.
Collapse
|
48
|
Rebs S, Streckfuss-Bömeke K. How can we use stem cell-derived cardiomyocytes to understand the involvement of energetic metabolism in alterations of cardiac function? FRONTIERS IN MOLECULAR MEDICINE 2023; 3:1222986. [PMID: 39086669 PMCID: PMC11285589 DOI: 10.3389/fmmed.2023.1222986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/15/2023] [Indexed: 08/02/2024]
Abstract
Mutations in the mitochondrial-DNA or mitochondria related nuclear-encoded-DNA lead to various multisystemic disorders collectively termed mitochondrial diseases. One in three cases of mitochondrial disease affects the heart muscle, which is called mitochondrial cardiomyopathy (MCM) and is associated with hypertrophic, dilated, and noncompact cardiomyopathy. The heart is an organ with high energy demand, and mitochondria occupy 30%-40% of its cardiomyocyte-cell volume. Mitochondrial dysfunction leads to energy depletion and has detrimental effects on cardiac performance. However, disease development and progression in the context of mitochondrial and nuclear DNA mutations, remains incompletely understood. The system of induced pluripotent stem cell (iPSC)-derived cardiomyocytes (CM) is an excellent platform to study MCM since the unique genetic identity to their donors enables a robust recapitulation of the predicted phenotypes in a dish on a patient-specific level. Here, we focus on recent insights into MCM studied by patient-specific iPSC-CM and further discuss research gaps and advances in metabolic maturation of iPSC-CM, which is crucial for the study of mitochondrial dysfunction and to develop novel therapeutic strategies.
Collapse
Affiliation(s)
- Sabine Rebs
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
- Clinic for Cardiology and Pneumology, University Medicine Göttingen and DZHK (German Centre for Cardiovascular Research), Göttingen, Germany
| | - Katrin Streckfuss-Bömeke
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
- Clinic for Cardiology and Pneumology, University Medicine Göttingen and DZHK (German Centre for Cardiovascular Research), Göttingen, Germany
- Department of Translational Research, Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Würzburg, Germany
| |
Collapse
|
49
|
Reyat JS, di Maio A, Grygielska B, Pike J, Kemble S, Rodriguez-Romero A, Simoglou Karali C, Croft AP, Psaila B, Simões F, Rayes J, Khan AO. Modelling the pathology and treatment of cardiac fibrosis in vascularised atrial and ventricular cardiac microtissues. Front Cardiovasc Med 2023; 10:1156759. [PMID: 37727305 PMCID: PMC10506403 DOI: 10.3389/fcvm.2023.1156759] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 08/09/2023] [Indexed: 09/21/2023] Open
Abstract
Introduction Recent advances in human cardiac 3D approaches have yielded progressively more complex and physiologically relevant culture systems. However, their application in the study of complex pathological processes, such as inflammation and fibrosis, and their utility as models for drug development have been thus far limited. Methods In this work, we report the development of chamber-specific, vascularised human induced pluripotent stem cell-derived cardiac microtissues, which allow for the multi-parametric assessment of cardiac fibrosis. Results We demonstrate the generation of a robust vascular system in the microtissues composed of endothelial cells, fibroblasts and atrial or ventricular cardiomyocytes that exhibit gene expression signatures, architectural, and electrophysiological resemblance to in vivo-derived anatomical cardiac tissues. Following pro-fibrotic stimulation using TGFβ, cardiac microtissues recapitulated hallmarks of cardiac fibrosis, including myofibroblast activation and collagen deposition. A study of Ca2+ dynamics in fibrotic microtissues using optical mapping revealed prolonged Ca2+ decay, reflecting cardiomyocyte dysfunction, which is linked to the severity of fibrosis. This phenotype could be reversed by TGFβ receptor inhibition or by using the BET bromodomain inhibitor, JQ1. Discussion In conclusion, we present a novel methodology for the generation of chamber-specific cardiac microtissues that is highly scalable and allows for the multi-parametric assessment of cardiac remodelling and pharmacological screening.
Collapse
Affiliation(s)
- Jasmeet S. Reyat
- College of Medical and Dental Sciences, Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
- Department of Physiology, Anatomy and Genetics, Institute of Developmental and Regenerative Medicine, University of Oxford, Oxford, United Kingdom
| | - Alessandro di Maio
- The Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Birmingham, United Kingdom
| | - Beata Grygielska
- College of Medical and Dental Sciences, Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Jeremy Pike
- College of Medical and Dental Sciences, Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
- The Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Birmingham, United Kingdom
| | - Samuel Kemble
- Rheumatology Research Group, College of Medical and Dental Sciences, Institute of Inflammation and Ageing, University of Birmingham, Queen Elizabeth Hospital, Birmingham, United Kingdom
| | - Antonio Rodriguez-Romero
- Radcliffe Department of Medicine and National Institute of Health Research (NIHR) Oxford Biomedical Research Centre, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Christina Simoglou Karali
- Radcliffe Department of Medicine and National Institute of Health Research (NIHR) Oxford Biomedical Research Centre, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Adam P. Croft
- Rheumatology Research Group, College of Medical and Dental Sciences, Institute of Inflammation and Ageing, University of Birmingham, Queen Elizabeth Hospital, Birmingham, United Kingdom
| | - Bethan Psaila
- Radcliffe Department of Medicine and National Institute of Health Research (NIHR) Oxford Biomedical Research Centre, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- Cancer and Haematology Centre, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Filipa Simões
- Department of Physiology, Anatomy and Genetics, Institute of Developmental and Regenerative Medicine, University of Oxford, Oxford, United Kingdom
| | - Julie Rayes
- College of Medical and Dental Sciences, Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
- The Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Birmingham, United Kingdom
| | - Abdullah O. Khan
- College of Medical and Dental Sciences, Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
- Radcliffe Department of Medicine and National Institute of Health Research (NIHR) Oxford Biomedical Research Centre, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
50
|
Djemai M, Cupelli M, Boutjdir M, Chahine M. Optical Mapping of Cardiomyocytes in Monolayer Derived from Induced Pluripotent Stem Cells. Cells 2023; 12:2168. [PMID: 37681899 PMCID: PMC10487143 DOI: 10.3390/cells12172168] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023] Open
Abstract
Optical mapping is a powerful imaging technique widely adopted to measure membrane potential changes and intracellular Ca2+ variations in excitable tissues using voltage-sensitive dyes and Ca2+ indicators, respectively. This powerful tool has rapidly become indispensable in the field of cardiac electrophysiology for studying depolarization wave propagation, estimating the conduction velocity of electrical impulses, and measuring Ca2+ dynamics in cardiac cells and tissues. In addition, mapping these electrophysiological parameters is important for understanding cardiac arrhythmia mechanisms. In this review, we delve into the fundamentals of cardiac optical mapping technology and its applications when applied to hiPSC-derived cardiomyocytes and discuss related advantages and challenges. We also provide a detailed description of the processing and analysis of optical mapping data, which is a crucial step in the study of cardiac diseases and arrhythmia mechanisms for extracting and comparing relevant electrophysiological parameters.
Collapse
Affiliation(s)
- Mohammed Djemai
- CERVO Brain Research Center, Institut Universitaire en Santé Mentale de Québec, Quebec City, QC G1J 2G3, Canada
| | - Michael Cupelli
- Cardiovascular Research Program, VA New York Harbor Healthcare System, New York, NY 11209, USA
- Department of Medicine, Cell Biology and Pharmacology, State University of New York Downstate Health Sciences University, New York, NY 11203, USA
| | - Mohamed Boutjdir
- Cardiovascular Research Program, VA New York Harbor Healthcare System, New York, NY 11209, USA
- Department of Medicine, Cell Biology and Pharmacology, State University of New York Downstate Health Sciences University, New York, NY 11203, USA
- Department of Medicine, NYU School of Medicine, New York, NY 10016, USA
| | - Mohamed Chahine
- CERVO Brain Research Center, Institut Universitaire en Santé Mentale de Québec, Quebec City, QC G1J 2G3, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
| |
Collapse
|