1
|
Escudero-Ferruz P, Ontiveros N, Cano-Estrada C, Sutcliffe DJ, Jinnah HA, Torres RJ, López JM. A new physiological medium uncovers biochemical and cellular alterations in Lesch-Nyhan disease fibroblasts. Mol Med 2024; 30:3. [PMID: 38172668 PMCID: PMC10765874 DOI: 10.1186/s10020-023-00774-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Lesch-Nyhan disease (LND) is a severe neurological disorder caused by the genetic deficiency of hypoxanthine-guanine phosphoribosyltransferase (HGprt), an enzyme involved in the salvage synthesis of purines. To compensate this deficiency, there is an acceleration of the de novo purine biosynthetic pathway. Most studies have failed to find any consistent abnormalities of purine nucleotides in cultured cells obtained from the patients. Recently, it has been shown that 5-aminoimidazole-4-carboxamide riboside 5'-monophosphate (ZMP), an intermediate of the de novo pathway, accumulates in LND fibroblasts maintained with RPMI containing physiological levels (25 nM) of folic acid (FA), which strongly differs from FA levels of regular cell culture media (2200 nM). However, RPMI and other standard media contain non-physiological levels of many nutrients, having a great impact in cell metabolism that does not precisely recapitulate the in vivo behavior of cells. METHODS We prepared a new culture medium containing physiological levels of all nutrients, including vitamins (Plasmax-PV), to study the potential alterations of LND fibroblasts that may have been masked by the usage of non-physiological media. We quantified ZMP accumulation under different culture conditions and evaluated the activity of two known ZMP-target proteins (AMPK and ADSL), the mRNA expression of the folate carrier SLC19A1, possible mitochondrial alterations and functional consequences in LND fibroblasts. RESULTS LND fibroblasts maintained with Plasmax-PV show metabolic adaptations such a higher glycolytic capacity, increased expression of the folate carrier SCL19A1, and functional alterations such a decreased mitochondrial potential and reduced cell migration compared to controls. These alterations can be reverted with high levels of folic acid, suggesting that folic acid supplements might be a potential treatment for LND. CONCLUSIONS A complete physiological cell culture medium reveals new alterations in Lesch-Nyhan disease. This work emphasizes the importance of using physiological cell culture conditions when studying a metabolic disorder.
Collapse
Affiliation(s)
- Paula Escudero-Ferruz
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain
- Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain
| | - Neus Ontiveros
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain
- Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain
| | - Claudia Cano-Estrada
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain
- Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain
| | - Diane J Sutcliffe
- Department of Neurology, Emory University School of Medicine, 101 Woodruff Circle, 6305 Woodruff Memorial Building, Atlanta, GA, 30322, USA
| | - H A Jinnah
- Department of Neurology, Emory University School of Medicine, 101 Woodruff Circle, 6305 Woodruff Memorial Building, Atlanta, GA, 30322, USA
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Department of Pediatrics, Emory University School Medicine, Atlanta, GA, 30322, USA
| | - Rosa J Torres
- Center for Biomedical Network Research on Rare Diseases, Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
- Department of Biochemistry, La Paz University Hospital Health Research Institute, IdiPaz, 28046, Madrid, Spain
| | - José M López
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain.
- Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain.
| |
Collapse
|
2
|
Bell S, McCarty V, Peng H, Jefri M, Hettige N, Antonyan L, Crapper L, O'Leary LA, Zhang X, Zhang Y, Wu H, Sutcliffe D, Kolobova I, Rosenberger TA, Moquin L, Gratton A, Popic J, Gantois I, Stumpf PS, Schuppert AA, Mechawar N, Sonenberg N, Tremblay ML, Jinnah HA, Ernst C. Lesch-Nyhan disease causes impaired energy metabolism and reduced developmental potential in midbrain dopaminergic cells. Stem Cell Reports 2021; 16:1749-1762. [PMID: 34214487 PMCID: PMC8282463 DOI: 10.1016/j.stemcr.2021.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 10/30/2022] Open
Abstract
Mutations in HPRT1, a gene encoding a rate-limiting enzyme for purine salvage, cause Lesch-Nyhan disease which is characterized by self-injury and motor impairments. We leveraged stem cell and genetic engineering technologies to model the disease in isogenic and patient-derived forebrain and midbrain cell types. Dopaminergic progenitor cells deficient in HPRT showed decreased intensity of all developmental cell-fate markers measured. Metabolic analyses revealed significant loss of all purine derivatives, except hypoxanthine, and impaired glycolysis and oxidative phosphorylation. real-time glucose tracing demonstrated increased shunting to the pentose phosphate pathway for de novo purine synthesis at the expense of ATP production. Purine depletion in dopaminergic progenitor cells resulted in loss of RHEB, impairing mTORC1 activation. These data demonstrate dopaminergic-specific effects of purine salvage deficiency and unexpectedly reveal that dopaminergic progenitor cells are programmed to a high-energy state prior to higher energy demands of terminally differentiated cells.
Collapse
Affiliation(s)
- Scott Bell
- Psychiatric Genetics Group, McGill University, Montreal, QC, Canada; Department of Psychiatry, McGill University and Douglas Hospital Research Institute, 6875 LaSalle Boulevard, Frank Common Building, Room 2101.2, Montreal, QC H4H 1R3, Canada
| | - Vincent McCarty
- Psychiatric Genetics Group, McGill University, Montreal, QC, Canada; Department of Psychiatry, McGill University and Douglas Hospital Research Institute, 6875 LaSalle Boulevard, Frank Common Building, Room 2101.2, Montreal, QC H4H 1R3, Canada
| | - Huashan Peng
- Psychiatric Genetics Group, McGill University, Montreal, QC, Canada; Department of Psychiatry, McGill University and Douglas Hospital Research Institute, 6875 LaSalle Boulevard, Frank Common Building, Room 2101.2, Montreal, QC H4H 1R3, Canada
| | - Malvin Jefri
- Psychiatric Genetics Group, McGill University, Montreal, QC, Canada; Department of Psychiatry, McGill University and Douglas Hospital Research Institute, 6875 LaSalle Boulevard, Frank Common Building, Room 2101.2, Montreal, QC H4H 1R3, Canada
| | - Nuwan Hettige
- Psychiatric Genetics Group, McGill University, Montreal, QC, Canada; Department of Psychiatry, McGill University and Douglas Hospital Research Institute, 6875 LaSalle Boulevard, Frank Common Building, Room 2101.2, Montreal, QC H4H 1R3, Canada
| | - Lilit Antonyan
- Psychiatric Genetics Group, McGill University, Montreal, QC, Canada; Department of Psychiatry, McGill University and Douglas Hospital Research Institute, 6875 LaSalle Boulevard, Frank Common Building, Room 2101.2, Montreal, QC H4H 1R3, Canada
| | - Liam Crapper
- Psychiatric Genetics Group, McGill University, Montreal, QC, Canada; Department of Psychiatry, McGill University and Douglas Hospital Research Institute, 6875 LaSalle Boulevard, Frank Common Building, Room 2101.2, Montreal, QC H4H 1R3, Canada
| | - Liam A O'Leary
- Psychiatric Genetics Group, McGill University, Montreal, QC, Canada; Department of Psychiatry, McGill University and Douglas Hospital Research Institute, 6875 LaSalle Boulevard, Frank Common Building, Room 2101.2, Montreal, QC H4H 1R3, Canada
| | - Xin Zhang
- Psychiatric Genetics Group, McGill University, Montreal, QC, Canada; Department of Psychiatry, McGill University and Douglas Hospital Research Institute, 6875 LaSalle Boulevard, Frank Common Building, Room 2101.2, Montreal, QC H4H 1R3, Canada
| | - Ying Zhang
- Psychiatric Genetics Group, McGill University, Montreal, QC, Canada; Department of Psychiatry, McGill University and Douglas Hospital Research Institute, 6875 LaSalle Boulevard, Frank Common Building, Room 2101.2, Montreal, QC H4H 1R3, Canada
| | - Hanrong Wu
- Psychiatric Genetics Group, McGill University, Montreal, QC, Canada; Department of Psychiatry, McGill University and Douglas Hospital Research Institute, 6875 LaSalle Boulevard, Frank Common Building, Room 2101.2, Montreal, QC H4H 1R3, Canada
| | - Diane Sutcliffe
- Department of Neurology, Emory University, Atlanta, GA, USA; Department of Human Genetics, Emory University, Atlanta, GA, USA; Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Ilaria Kolobova
- Psychiatric Genetics Group, McGill University, Montreal, QC, Canada; Department of Psychiatry, McGill University and Douglas Hospital Research Institute, 6875 LaSalle Boulevard, Frank Common Building, Room 2101.2, Montreal, QC H4H 1R3, Canada
| | - Thad A Rosenberger
- Department of Pharmacology, Physiology, and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Luc Moquin
- Department of Psychiatry, McGill University and Douglas Hospital Research Institute, 6875 LaSalle Boulevard, Frank Common Building, Room 2101.2, Montreal, QC H4H 1R3, Canada
| | - Alain Gratton
- Department of Psychiatry, McGill University and Douglas Hospital Research Institute, 6875 LaSalle Boulevard, Frank Common Building, Room 2101.2, Montreal, QC H4H 1R3, Canada
| | - Jelena Popic
- Department of Biochemistry, McGill University, Montreal, QC, Canada; Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| | - Ilse Gantois
- Department of Biochemistry, McGill University, Montreal, QC, Canada; Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| | - Patrick S Stumpf
- Joint Research Center for Computational Biomedicine, RWTH Aachen University, Aachen, Germany
| | - Andreas A Schuppert
- Joint Research Center for Computational Biomedicine, RWTH Aachen University, Aachen, Germany
| | - Naguib Mechawar
- Department of Psychiatry, McGill University and Douglas Hospital Research Institute, 6875 LaSalle Boulevard, Frank Common Building, Room 2101.2, Montreal, QC H4H 1R3, Canada
| | - Nahum Sonenberg
- Department of Biochemistry, McGill University, Montreal, QC, Canada; Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| | - Michel L Tremblay
- Department of Biochemistry, McGill University, Montreal, QC, Canada; Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| | - Hyder A Jinnah
- Department of Neurology, Emory University, Atlanta, GA, USA; Department of Human Genetics, Emory University, Atlanta, GA, USA; Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Carl Ernst
- Psychiatric Genetics Group, McGill University, Montreal, QC, Canada; Department of Psychiatry, McGill University and Douglas Hospital Research Institute, 6875 LaSalle Boulevard, Frank Common Building, Room 2101.2, Montreal, QC H4H 1R3, Canada.
| |
Collapse
|
3
|
Sutcliffe DJ, Dinasarapu AR, Visser JE, Hoed JD, Seifar F, Joshi P, Ceballos-Picot I, Sardar T, Hess EJ, Sun YV, Wen Z, Zwick ME, Jinnah HA. Induced pluripotent stem cells from subjects with Lesch-Nyhan disease. Sci Rep 2021; 11:8523. [PMID: 33875724 PMCID: PMC8055678 DOI: 10.1038/s41598-021-87955-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 03/24/2021] [Indexed: 12/18/2022] Open
Abstract
Lesch-Nyhan disease (LND) is an inherited disorder caused by pathogenic variants in the HPRT1 gene, which encodes the purine recycling enzyme hypoxanthine-guanine phosphoribosyltransferase (HGprt). We generated 6 induced pluripotent stem cell (iPSC) lines from 3 individuals with LND, along with 6 control lines from 3 normal individuals. All 12 lines had the characteristics of pluripotent stem cells, as assessed by immunostaining for pluripotency markers, expression of pluripotency genes, and differentiation into the 3 primary germ cell layers. Gene expression profiling with RNAseq demonstrated significant heterogeneity among the lines. Despite this heterogeneity, several anticipated abnormalities were readily detectable across all LND lines, including reduced HPRT1 mRNA. Several unexpected abnormalities were also consistently detectable across the LND lines, including decreases in FAR2P1 and increases in RNF39. Shotgun proteomics also demonstrated several expected abnormalities in the LND lines, such as absence of HGprt protein. The proteomics study also revealed several unexpected abnormalities across the LND lines, including increases in GNAO1 decreases in NSE4A. There was a good but partial correlation between abnormalities revealed by the RNAseq and proteomics methods. Finally, functional studies demonstrated LND lines had no HGprt enzyme activity and resistance to the toxic pro-drug 6-thioguanine. Intracellular purines in the LND lines were normal, but they did not recycle hypoxanthine. These cells provide a novel resource to reveal insights into the relevance of heterogeneity among iPSC lines and applications for modeling LND.
Collapse
Affiliation(s)
- Diane J Sutcliffe
- Department of Neurology, Emory University School of Medicine, 101 Woodruff Circle, 6305 Woodruff Memorial Building, Atlanta, GA, 30322, USA
| | - Ashok R Dinasarapu
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Jasper E Visser
- Department of Neurology, Cognition and Behavior, Donders Institute for Brain, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Neurology, Amphia Hospital, Breda, The Netherlands
| | - Joery den Hoed
- Department of Neurology, Emory University School of Medicine, 101 Woodruff Circle, 6305 Woodruff Memorial Building, Atlanta, GA, 30322, USA
| | - Fatemeh Seifar
- Department of Neurology, Emory University School of Medicine, 101 Woodruff Circle, 6305 Woodruff Memorial Building, Atlanta, GA, 30322, USA
- Neurosciences Graduate Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, 30322, USA
| | - Piyush Joshi
- Department of Neurology, Emory University School of Medicine, 101 Woodruff Circle, 6305 Woodruff Memorial Building, Atlanta, GA, 30322, USA
| | - Irene Ceballos-Picot
- Laboratoire de Biochimie Métabolomique Et Protéomique, Hôpital Universitaire Necker, Paris, France
| | - Tejas Sardar
- Department of Neurology, Emory University School of Medicine, 101 Woodruff Circle, 6305 Woodruff Memorial Building, Atlanta, GA, 30322, USA
| | - Ellen J Hess
- Department of Neurology, Emory University School of Medicine, 101 Woodruff Circle, 6305 Woodruff Memorial Building, Atlanta, GA, 30322, USA
- Neurosciences Graduate Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, 30322, USA
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Yan V Sun
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA. 30322, USA
| | - Zhexing Wen
- Department of Neurology, Emory University School of Medicine, 101 Woodruff Circle, 6305 Woodruff Memorial Building, Atlanta, GA, 30322, USA
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Michael E Zwick
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - H A Jinnah
- Department of Neurology, Emory University School of Medicine, 101 Woodruff Circle, 6305 Woodruff Memorial Building, Atlanta, GA, 30322, USA.
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Neurosciences Graduate Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, 30322, USA.
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
4
|
Physiological levels of folic acid reveal purine alterations in Lesch-Nyhan disease. Proc Natl Acad Sci U S A 2020; 117:12071-12079. [PMID: 32430324 DOI: 10.1073/pnas.2003475117] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Lesch-Nyhan disease (LND), caused by a deficient salvage purine pathway, is characterized by severe neurological manifestations and uric acid overproduction. However, uric acid is not responsible for brain dysfunction, and it has been suggested that purine nucleotide depletion, or accumulation of other toxic purine intermediates, could be more relevant. Here we show that purine alterations in LND fibroblasts depend on the level of folic acid in the culture media. Thus, physiological levels of folic acid induce accumulation of 5-aminoimidazole-4-carboxamide riboside 5'-monophosphate (ZMP), an intermediary of de novo purine biosynthetic pathway, and depletion of ATP. Additionally, Z-nucleotide derivatives (AICAr, AICA) are detected at high levels in the urine of patients with LND and its variants (hypoxanthine-guanine phosphoribosyltransferase [HGprt]-related neurological dysfunction and HGprt-related hyperuricemia), and the ratio of AICAr/AICA is significantly increased in patients with neurological problems (LND and HGprt-related neurological dysfunction). Moreover, AICAr is present in the cerebrospinal fluid of patients with LND, but not in control individuals. We hypothesize that purine alterations detected in LND fibroblasts may also occur in the brain of patients with LND.
Collapse
|
5
|
Daignan-Fornier B, Pinson B. Yeast to Study Human Purine Metabolism Diseases. Cells 2019; 8:E67. [PMID: 30658520 PMCID: PMC6356901 DOI: 10.3390/cells8010067] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 01/15/2019] [Accepted: 01/15/2019] [Indexed: 02/04/2023] Open
Abstract
Purine nucleotides are involved in a multitude of cellular processes, and the dysfunction of purine metabolism has drastic physiological and pathological consequences. Accordingly, several genetic disorders associated with defective purine metabolism have been reported. The etiology of these diseases is poorly understood and simple model organisms, such as yeast, have proved valuable to provide a more comprehensive view of the metabolic consequences caused by the identified mutations. In this review, we present results obtained with the yeast Saccharomyces cerevisiae to exemplify how a eukaryotic unicellular organism can offer highly relevant information for identifying the molecular basis of complex human diseases. Overall, purine metabolism illustrates a remarkable conservation of genes, functions and phenotypes between humans and yeast.
Collapse
Affiliation(s)
- Bertrand Daignan-Fornier
- Université de Bordeaux IBGC UMR 5095 1, rue Camille Saint-Saëns, F-33077 Bordeaux, France.
- Centre National de la Recherche Scientifique IBGC UMR 5095 1, rue Camille Saint-Saëns, F-33077 Bordeaux, France.
| | - Benoît Pinson
- Université de Bordeaux IBGC UMR 5095 1, rue Camille Saint-Saëns, F-33077 Bordeaux, France.
- Centre National de la Recherche Scientifique IBGC UMR 5095 1, rue Camille Saint-Saëns, F-33077 Bordeaux, France.
| |
Collapse
|
6
|
Hernández-Morales R, Becerra A, Lazcano A. Alarmones as Vestiges of a Bygone RNA World. J Mol Evol 2019; 87:37-51. [PMID: 30604017 DOI: 10.1007/s00239-018-9883-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 12/15/2018] [Indexed: 12/11/2022]
Abstract
All known alarmones are ribonucleotides or ribonucleotide derivatives that are synthesized when cells are under stress conditions, triggering a stringent response that affects major processes such as replication, gene expression, and metabolism. The ample phylogenetic distribution of alarmones (e.g., cAMP, Ap(n)A, cGMP, AICAR, and ZTP) suggests that they are very ancient molecules that may have already been present in cellular systems prior to the evolutionary divergence of the Archaea, Bacteria, and Eukarya domains. Their chemical structure, wide biological distribution, and functional role in highly conserved cellular processes support the possibility that these modified nucleotides are molecular fossils of an epoch in the evolution of chemical signaling and metabolite sensing during which RNA molecules played a much more conspicuous role in biological catalysis and genetic information.
Collapse
Affiliation(s)
- Ricardo Hernández-Morales
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Cd. Universitaria, 04510, Mexico City, Mexico
| | - Arturo Becerra
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Cd. Universitaria, 04510, Mexico City, Mexico
| | - Antonio Lazcano
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Cd. Universitaria, 04510, Mexico City, Mexico. .,Miembro de El Colegio Nacional, Donceles 104, Centro Histórico, 06000, Mexico City, Mexico.
| |
Collapse
|
7
|
Mass spectrometric analysis of purine de novo biosynthesis intermediates. PLoS One 2018; 13:e0208947. [PMID: 30532129 PMCID: PMC6287904 DOI: 10.1371/journal.pone.0208947] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 11/26/2018] [Indexed: 12/12/2022] Open
Abstract
Purines are essential molecules for all forms of life. In addition to constituting a backbone of DNA and RNA, purines play roles in many metabolic pathways, such as energy utilization, regulation of enzyme activity, and cell signaling. The supply of purines is provided by two pathways: the salvage pathway and de novo synthesis. Although purine de novo synthesis (PDNS) activity varies during the cell cycle, this pathway represents an important source of purines, especially for rapidly dividing cells. A method for the detailed study of PDNS is lacking for analytical reasons (sensitivity) and because of the commercial unavailability of the compounds. The aim was to fully describe the mass spectrometric fragmentation behavior of newly synthesized PDNS-related metabolites and develop an analytical method. Except for four initial ribotide PDNS intermediates that preferentially lost water or phosphate or cleaved the forming base of the purine ring, all the other metabolites studied cleaved the glycosidic bond in the first fragmentation stage. Fragmentation was possible in the third to sixth stages. A liquid chromatography-high-resolution mass spectrometric method was developed and applied in the analysis of CRISPR-Cas9 genome-edited HeLa cells deficient in the individual enzymatic steps of PDNS and the salvage pathway. The identities of the newly synthesized intermediates of PDNS were confirmed by comparing the fragmentation patterns of the synthesized metabolites with those produced by cells (formed under pathological conditions of known and theoretically possible defects of PDNS). The use of stable isotope incorporation allowed the confirmation of fragmentation mechanisms and provided data for future fluxomic experiments. This method may find uses in the diagnosis of PDNS disorders, the investigation of purinosome formation, cancer research, enzyme inhibition studies, and other applications.
Collapse
|
8
|
Emerging Role of Purine Metabolizing Enzymes in Brain Function and Tumors. Int J Mol Sci 2018; 19:ijms19113598. [PMID: 30441833 PMCID: PMC6274932 DOI: 10.3390/ijms19113598] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/09/2018] [Accepted: 11/12/2018] [Indexed: 12/13/2022] Open
Abstract
The growing evidence of the involvement of purine compounds in signaling, of nucleotide imbalance in tumorigenesis, the discovery of purinosome and its regulation, cast new light on purine metabolism, indicating that well known biochemical pathways may still surprise. Adenosine deaminase is important not only to preserve functionality of immune system but also to ensure a correct development and function of central nervous system, probably because its activity regulates the extracellular concentration of adenosine and therefore its function in brain. A lot of work has been done on extracellular 5′-nucleotidase and its involvement in the purinergic signaling, but also intracellular nucleotidases, which regulate the purine nucleotide homeostasis, play unexpected roles, not only in tumorigenesis but also in brain function. Hypoxanthine guanine phosphoribosyl transferase (HPRT) appears to have a role in the purinosome formation and, therefore, in the regulation of purine synthesis rate during cell cycle with implications in brain development and tumors. The final product of purine catabolism, uric acid, also plays a recently highlighted novel role. In this review, we discuss the molecular mechanisms underlying the pathological manifestations of purine dysmetabolisms, focusing on the newly described/hypothesized roles of cytosolic 5′-nucleotidase II, adenosine kinase, adenosine deaminase, HPRT, and xanthine oxidase.
Collapse
|
9
|
Abstract
Abstract
Lesch-Nyhan Disease (LND) is a rare X-linked recessive metabolic and neurological syndrome due to the deficiency of hypoxanthine-guanine phosphoribosyltransferase (HPRT). Besides its well known “housekeeping” function this purine salvage enzyme has revealed an unexpected role in neurodevelopment, unveiled by the peculiar neurological symptoms flanking hyperuricemia in LND: dystonia, choreoathetosis, compulsive self-injurious behaviour. Several lines of research have tried to find the molecular basis for the neurological phenotype after the disease was first described in 1964. Dopaminergic deficit was then found to underlie the neurologic symptoms but the aetiology for such alteration seemed inexplicable. A number of detailed studies in the last 50 years addressed the genetic, metabolic, cognitive, behavioral and anatomical features of this disease. Initial investigations seeked for accumulation of toxic metabolites or depletion of essential molecules to disclose potential connections between purine recycling and neuronal dysfunction. In the last two decades sophisticated biotechnological methods were used for a deeper insight in the genetic and molecular aspects, unveiling a network of combined gene dysregulations in neuronal development and differentiation producing neurotransmission defects. These studies, conducted with several different approaches, allowed consistent steps forward, demonstrating transcriptional aberrations affecting different metabolic pathways in HPRT deficiency, yet leaving many questions still unsolved.
Collapse
|
10
|
Camici M, Allegrini S, Tozzi MG. Interplay between adenylate metabolizing enzymes and AMP-activated protein kinase. FEBS J 2018; 285:3337-3352. [PMID: 29775996 DOI: 10.1111/febs.14508] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/04/2018] [Accepted: 05/14/2018] [Indexed: 12/26/2022]
Abstract
Purine nucleotides are involved in a variety of cellular functions, such as energy storage and transfer, and signalling, in addition to being the precursors of nucleic acids and cofactors of many biochemical reactions. They can be generated through two separate pathways, the de novo biosynthesis pathway and the salvage pathway. De novo purine biosynthesis leads to the formation of IMP, from which the adenylate and guanylate pools are generated by two additional steps. The salvage pathways utilize hypoxanthine, guanine and adenine to generate the corresponding mononucleotides. Despite several decades of research on the subject, new and surprising findings on purine metabolism are constantly being reported, and some aspects still need to be elucidated. Recently, purine biosynthesis has been linked to the metabolic pathways regulated by AMP-activated protein kinase (AMPK). AMPK is the master regulator of cellular energy homeostasis, and its activity depends on the AMP : ATP ratio. The cellular energy status and AMPK activation are connected by AMP, an allosteric activator of AMPK. Hence, an indirect strategy to affect AMPK activity would be to target the pathways that generate AMP in the cell. Herein, we report an up-to-date review of the interplay between AMPK and adenylate metabolizing enzymes. Some aspects of inborn errors of purine metabolism are also discussed.
Collapse
|
11
|
Torres RJ, Puig JG. Aicar effect in early neuronal development. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2018; 37:261-272. [PMID: 29634397 DOI: 10.1080/15257770.2018.1453073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The neurological manifestations of Lesch-Nyhan disease (LND) have been attributed to the effect of hypoxanthine-guanine phosphoribosyltransferase (HPRT) deficiency on nervous system development. An increase has been reported in the levels of 5-aminoimidazole-4-carboxamide-1-β-D-ribotide (AICAR) and its triphosphate form ZTP in the red blood cells of patients with LND. AICAR accumulation in the brain has been hypothesized as the cause of some of the neurological symptoms of patients with LND. In this study, we examined the effect of AICAR on the differentiation of neurons in the well-established human NTERA-2 cl.D1 (NT2/D1) embryonic carcinoma neurogenesis model. NT2/D1 cells were differentiated along neuroectodermal lineages after exposure to 10-µM retinoic acid (RA), with or without the addition of 25-µM AICAR to the culture medium. The effect of AICAR on RA differentiation were examined through changes in the expression of genes essential to neuronal differentiation, as well as genes from the Wnt/β-catenin, transforming growth factor beta (TGFβ) and sonic hedgehog (SHH) pathways. Results: RA-induced differentiation in the NT2/D1 cells significantly increased the expression of MAP2, NRG1, NRP1, NRP2, NEUROG1 and EN1 genes (genes linked to neural differentiation) compared with undifferentiated NT2/D1 cells. We found that AICAR increased the expression of the SHH gene and the WNT2 and WNT7B genes but did not influence the expression of genes whose overexpression characterize early neurodevelopmental processes. Conclusion: The relevance of the AICAR related changes in the SHH and Wnt/β-catenin pathway genes expression in the physiopathology of LND warrants further exploration.
Collapse
Affiliation(s)
- Rosa J Torres
- a Department of Biochemistry , La Paz University Hospital , IdiPaz , Madrid , Spain and Center for Biomedical Network Research on Rare Diseases (CIBERER) , ISCIII , Spain
| | - Juan G Puig
- b Department of Internal Medicine, Metabolic-Vascular Unit , La Paz University Hospital , IdiPaz , Madrid , Spain
| |
Collapse
|
12
|
Liu X, Paila UD, Teraoka SN, Wright JA, Huang X, Quinlan AR, Gatti RA, Concannon P. Identification of ATIC as a Novel Target for Chemoradiosensitization. Int J Radiat Oncol Biol Phys 2017; 100:162-173. [PMID: 29029884 DOI: 10.1016/j.ijrobp.2017.08.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 08/09/2017] [Accepted: 08/24/2017] [Indexed: 12/13/2022]
Abstract
PURPOSE Mutations in the gene encoding 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/IMP cyclohydrolase (ATIC), a bifunctional enzyme that catalyzes the final 2 steps of the purine de novo biosynthetic pathway, were identified in a subject referred for radiation sensitivity testing. Functional studies were performed to determine whether ATIC inhibition was radiosensitizing and, if so, to elucidate the mechanism of this effect and determine whether small molecule inhibitors of ATIC could act as effective radiosensitizing agents. METHODS AND MATERIALS Both small interfering RNA knockdown and small molecule inhibitors were used to inactivate ATIC in cell culture. Clonogenic survival assays, the neutral comet assay, and γH2AX staining were used to assess the effects of ATIC inhibition or depletion on cellular DNA damage responses. RESULTS Depletion of ATIC or inhibition of its transformylase activity significantly reduced the surviving fraction of cells in clonogenic survival assays in multiple cancer cell lines. In the absence of ionizing radiation exposure, ATIC knockdown or chemical inhibition activated cell cycle checkpoints, shifting cells to the more radiosensitive G2/M phase of the cell cycle, and depleted cellular adenosine triphosphate but did not result in detectable DNA damage. Cells in which ATIC was knocked down or inhibited and then treated with ionizing radiation displayed increased numbers of DNA double-strand breaks and a delay in the repair of those breaks relative to irradiated, but otherwise untreated, controls. Supplementation of culture media with exogenous adenosine triphosphate ameliorated the DNA repair phenotypes. CONCLUSIONS These findings implicate ATIC as an effective, and previously unrecognized, target for chemoradiosensitization and, more broadly, suggest that purine levels in cells might have an underappreciated role in modulating the efficiency of DNA damage responses that could be exploited in radiosensitizing strategies.
Collapse
Affiliation(s)
- Xiangfei Liu
- Genetics Institute and Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida
| | - Uma Devi Paila
- Department of Public Health Sciences, Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia
| | - Sharon N Teraoka
- Genetics Institute and Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida
| | - Jocyndra A Wright
- Genetics Institute and Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida
| | - Xin Huang
- Genetics Institute and Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida
| | - Aaron R Quinlan
- Department of Human Genetics, University of Utah, Salt Lake City, Utah; Department of Biomedical Informatics, University of Utah, Salt Lake City, Utah
| | - Richard A Gatti
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, California; Department of Human Genetics, University of California, Los Angeles, Los Angeles, California
| | - Patrick Concannon
- Genetics Institute and Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida.
| |
Collapse
|
13
|
Ceschin J, Hürlimann HC, Saint-Marc C, Albrecht D, Violo T, Moenner M, Daignan-Fornier B, Pinson B. Disruption of Nucleotide Homeostasis by the Antiproliferative Drug 5-Aminoimidazole-4-carboxamide-1-β-d-ribofuranoside Monophosphate (AICAR). J Biol Chem 2015; 290:23947-59. [PMID: 26283791 DOI: 10.1074/jbc.m115.656017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Indexed: 11/06/2022] Open
Abstract
5-Aminoimidazole-4-carboxamide-1-β-D-ribofuranoside monophosphate (AICAR) is a natural metabolite with potent anti-proliferative and low energy mimetic properties. At high concentration, AICAR is toxic for yeast and mammalian cells, but the molecular basis of this toxicity is poorly understood. Here, we report the identification of yeast purine salvage pathway mutants that are synthetically lethal with AICAR accumulation. Genetic suppression revealed that this synthetic lethality is in part due to low expression of adenine phosphoribosyl transferase under high AICAR conditions. In addition, metabolite profiling points to the AICAR/NTP balance as crucial for optimal utilization of glucose as a carbon source. Indeed, we found that AICAR toxicity in yeast and human cells is alleviated when glucose is replaced by an alternative carbon source. Together, our metabolic analyses unveil the AICAR/NTP balance as a major factor of AICAR antiproliferative effects.
Collapse
Affiliation(s)
- Johanna Ceschin
- From the Université de Bordeaux and the Centre National de la Recherche Scientifique, Institut de Biochimie et Génétique Cellulaires UMR 5095, Saint-Saëns, F-33077 Bordeaux, France
| | - Hans Caspar Hürlimann
- From the Université de Bordeaux and the Centre National de la Recherche Scientifique, Institut de Biochimie et Génétique Cellulaires UMR 5095, Saint-Saëns, F-33077 Bordeaux, France
| | - Christelle Saint-Marc
- From the Université de Bordeaux and the Centre National de la Recherche Scientifique, Institut de Biochimie et Génétique Cellulaires UMR 5095, Saint-Saëns, F-33077 Bordeaux, France
| | - Delphine Albrecht
- From the Université de Bordeaux and the Centre National de la Recherche Scientifique, Institut de Biochimie et Génétique Cellulaires UMR 5095, Saint-Saëns, F-33077 Bordeaux, France
| | - Typhaine Violo
- From the Université de Bordeaux and the Centre National de la Recherche Scientifique, Institut de Biochimie et Génétique Cellulaires UMR 5095, Saint-Saëns, F-33077 Bordeaux, France
| | - Michel Moenner
- From the Université de Bordeaux and the Centre National de la Recherche Scientifique, Institut de Biochimie et Génétique Cellulaires UMR 5095, Saint-Saëns, F-33077 Bordeaux, France
| | - Bertrand Daignan-Fornier
- From the Université de Bordeaux and the Centre National de la Recherche Scientifique, Institut de Biochimie et Génétique Cellulaires UMR 5095, Saint-Saëns, F-33077 Bordeaux, France
| | - Benoît Pinson
- From the Université de Bordeaux and the Centre National de la Recherche Scientifique, Institut de Biochimie et Génétique Cellulaires UMR 5095, Saint-Saëns, F-33077 Bordeaux, France
| |
Collapse
|
14
|
Ceballos-Picot I, Le Dantec A, Brassier A, Jaïs JP, Ledroit M, Cahu J, Ea HK, Daignan-Fornier B, Pinson B. New biomarkers for early diagnosis of Lesch-Nyhan disease revealed by metabolic analysis on a large cohort of patients. Orphanet J Rare Dis 2015; 10:7. [PMID: 25612837 PMCID: PMC4320826 DOI: 10.1186/s13023-014-0219-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 12/29/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lesch-Nyhan disease is a rare X-linked neurodevelopemental metabolic disorder caused by a wide variety of mutations in the HPRT1 gene leading to a deficiency of the purine recycling enzyme hypoxanthine-guanine phosphoribosyltransferase (HGprt). The residual HGprt activity correlates with the various phenotypes of Lesch-Nyhan (LN) patients and in particular with the different degree of neurobehavioral disturbances. The prevalence of this disease is considered to be underestimated due to large heterogeneity of its clinical symptoms and the difficulty of diagnosing of the less severe forms of the disease. We therefore searched for metabolic changes that would facilitate an early diagnosis and give potential clues on the disease pathogenesis and potential therapeutic approaches. METHODS Lesch-Nyhan patients were diagnosed using HGprt enzymatic assay in red blood cells and identification of the causal HPRT1 gene mutations. These patients were subsequently classified into the three main phenotypic subgroups ranging from patients with only hyperuricemia to individuals presenting motor dysfunction, cognitive disability and self-injurious behavior. Metabolites from the three classes of patients were analyzed and quantified by High Performance Ionic Chromatography and biomarkers of HGprt deficiency were then validated by statistical analyses. RESULTS A cohort of 139 patients, from 112 families, diagnosed using HGprt enzymatic assay in red blood cells, was studied. 98 displayed LN full phenotype (86 families) and 41 (26 families) had attenuated clinical phenotypes. Genotype/phenotype correlations show that LN full phenotype was correlated to genetic alterations resulting in null enzyme function, while variant phenotypes are often associated with missense mutations allowing some residual HGprt activity. Analysis of metabolites extracted from red blood cells from 56 LN patients revealed strong variations specific to HGprt deficiency for six metabolites (AICAR mono- and tri-phosphate, nicotinamide, nicotinic acid, ATP and Succinyl-AMP) as compared to controls including hyperuricemic patients without HGprt deficiency. CONCLUSIONS A highly significant correlation between six metabolites and the HGprt deficiency was established, each of them providing an easily measurable marker of the disease. Their combination strongly increases the probability of an early and reliable diagnosis for HGprt deficiency.
Collapse
Affiliation(s)
- Irène Ceballos-Picot
- Laboratoire de Biochimie métabolomique et protéomique, Hôpital Necker-Enfants Malades, AP-HP, 149 rue de Sèvres, Paris, 75015, France. .,Université Paris Descartes Sorbonne Paris Cité, 15 rue de l'Ecole de Médecine, Paris, 75006, France. .,Centre de référence "Maladies Métaboliques Héréditaires de l'enfant à l'adulte" Hôpital Necker-Enfants Malades, AP-HP, 149 rue de Sèvres, Paris, 75015, France.
| | - Aurélia Le Dantec
- Université de Bordeaux, IBGC UMR 5095, 1 rue Camille Saint-Saëns, Bordeaux, F-33077, France. .,Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095 1 rue C. Saint-Saëns CS 61390 F-33077, Bordeaux, France.
| | - Anaïs Brassier
- Centre de référence "Maladies Métaboliques Héréditaires de l'enfant à l'adulte" Hôpital Necker-Enfants Malades, AP-HP, 149 rue de Sèvres, Paris, 75015, France.
| | - Jean-Philippe Jaïs
- Service de Biostatistique, Hôpital Necker-Enfants Malades, AP-HP, 149 rue de Sèvres, Paris, 75015, France.
| | - Morgan Ledroit
- Laboratoire de Biochimie métabolomique et protéomique, Hôpital Necker-Enfants Malades, AP-HP, 149 rue de Sèvres, Paris, 75015, France.
| | - Julie Cahu
- Laboratoire de Biochimie métabolomique et protéomique, Hôpital Necker-Enfants Malades, AP-HP, 149 rue de Sèvres, Paris, 75015, France.
| | - Hang-Korng Ea
- Université Paris 7 Denis Diderot, Hôpital Lariboisière, Centre Viggo Petersen, Inserm UMR 1132 (Ex-606), 2 rue Ambroise Paré, Paris, 75010, France.
| | - Bertrand Daignan-Fornier
- Université de Bordeaux, IBGC UMR 5095, 1 rue Camille Saint-Saëns, Bordeaux, F-33077, France. .,Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095 1 rue C. Saint-Saëns CS 61390 F-33077, Bordeaux, France.
| | - Benoît Pinson
- Université de Bordeaux, IBGC UMR 5095, 1 rue Camille Saint-Saëns, Bordeaux, F-33077, France. .,Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095 1 rue C. Saint-Saëns CS 61390 F-33077, Bordeaux, France.
| |
Collapse
|
15
|
Zhao H, Chiaro CR, Zhang L, Smith PB, Chan CY, Pedley AM, Pugh RJ, French JB, Patterson AD, Benkovic SJ. Quantitative analysis of purine nucleotides indicates that purinosomes increase de novo purine biosynthesis. J Biol Chem 2015; 290:6705-13. [PMID: 25605736 DOI: 10.1074/jbc.m114.628701] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Enzymes in the de novo purine biosynthesis pathway are recruited to form a dynamic metabolic complex referred to as the purinosome. Previous studies have demonstrated that purinosome assembly responds to purine levels in culture medium. Purine-depleted medium or 2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole (DMAT) treatment stimulates the purinosome assembly in HeLa cells. Here, several metabolomic technologies were applied to quantify the static cellular levels of purine nucleotides and measure the de novo biosynthesis rate of IMP, AMP, and GMP. Direct comparison of purinosome-rich cells (cultured in purine-depleted medium) and normal cells showed a 3-fold increase in IMP concentration in purinosome-rich cells and similar levels of AMP, GMP, and ratios of AMP/GMP and ATP/ADP for both. In addition, a higher level of IMP was also observed in HeLa cells treated with DMAT. Furthermore, increases in the de novo IMP/AMP/GMP biosynthetic flux rate under purine-depleted condition were observed. The synthetic enzymes, adenylosuccinate synthase (ADSS) and inosine monophosphate dehydrogenase (IMPDH), downstream of IMP were also shown to be part of the purinosome. Collectively, these results provide further evidence that purinosome assembly is directly related to activated de novo purine biosynthesis, consistent with the functionality of the purinosome.
Collapse
Affiliation(s)
| | | | - Limin Zhang
- Metabolomics Facility, Center for Molecular Toxicology and Carcinogenesis, and the CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences (CAS), Wuhan 430071, China, and
| | - Philip B Smith
- Metabolomics Facility, Center for Molecular Toxicology and Carcinogenesis, and
| | - Chung Yu Chan
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802
| | | | | | - Jarrod B French
- the Departments of Biochemistry and Cell Biology and Chemistry, Stony Brook University, Stony Brook, New York 11794
| | - Andrew D Patterson
- Metabolomics Facility, Center for Molecular Toxicology and Carcinogenesis, and
| | | |
Collapse
|
16
|
|
17
|
Scotti M, Stella L, Shearer EJ, Stover PJ. Modeling cellular compartmentation in one-carbon metabolism. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2013; 5:343-65. [PMID: 23408533 DOI: 10.1002/wsbm.1209] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Folate-mediated one-carbon metabolism (FOCM) is associated with risk for numerous pathological states including birth defects, cancers, and chronic diseases. Although the enzymes that constitute the biological pathways have been well described and their interdependency through the shared use of folate cofactors appreciated, the biological mechanisms underlying disease etiologies remain elusive. The FOCM network is highly sensitive to nutritional status of several B-vitamins and numerous penetrant gene variants that alter network outputs, but current computational approaches do not fully capture the dynamics and stochastic noise of the system. Combining the stochastic approach with a rule-based representation will help model the intrinsic noise displayed by FOCM, address the limited flexibility of standard simulation methods for coarse-graining the FOCM-associated biochemical processes, and manage the combinatorial complexity emerging from reactions within FOCM that would otherwise be intractable.
Collapse
Affiliation(s)
- Marco Scotti
- The Microsoft Research-University of Trento Centre for Computational and Systems Biology (COSBI), Rovereto, Italy
| | | | | | | |
Collapse
|
18
|
5-Aminoimidazole-4-carboxamide-1-beta-D-ribofuranosyl 5'-Monophosphate (AICAR), a Highly Conserved Purine Intermediate with Multiple Effects. Metabolites 2012; 2:292-302. [PMID: 24957512 PMCID: PMC3901205 DOI: 10.3390/metabo2020292] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 03/15/2012] [Accepted: 03/16/2012] [Indexed: 12/25/2022] Open
Abstract
AICAR (5-Aminoimidazole-4-carboxamide-1-beta-D-ribofuranosyl 5'-monophosphate) is a natural metabolic intermediate of purine biosynthesis that is present in all organisms. In yeast, AICAR plays important regulatory roles under physiological conditions, notably through its direct interactions with transcription factors. In humans, AICAR accumulates in several metabolic diseases, but its contribution to the symptoms has not yet been elucidated. Further, AICAR has highly promising properties which have been recently revealed. Indeed, it enhances endurance of sedentary mice. In addition, it has antiproliferative effects notably by specifically inducing apoptosis of aneuploid cells. Some of the effects of AICAR are due to its ability to stimulate the AMP-activated protein kinase but some others are not. It is consequently clear that AICAR affects multiple targets although only few of them have been identified so far. This review proposes an overview of the field and suggests future directions.
Collapse
|
19
|
Baggott JE, Gorman GS, Morgan SL. Phenotypes and circadian rhythm in utilization of formate in purine nucleotide biosynthesis de novo in adult humans. Life Sci 2011; 88:688-92. [PMID: 21324323 DOI: 10.1016/j.lfs.2011.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Revised: 01/14/2011] [Accepted: 01/28/2011] [Indexed: 11/16/2022]
Abstract
AIMS Folate coenzymes and dependent enzymes introduce one carbon units at positions 2 (C(2)) and 8 (C(8)) of the purine ring during de novo biosynthesis. Formate is one source of one-carbon units. Although much is known about lower organisms, little data exists describing formate utilization for purine biosynthesis in humans. MAIN METHODS Mass-spectrometric analysis of urinary uric acid, the final purine catabolite, following 1.0 g oral doses of sodium [(13)C] formate was performed and detected (13)C enrichment at C(2) and C(8) separately. KEY FINDINGS Three phenotypes were suggested. One incorporates (13)C 0.72 to 2.0% into C(2) versus only 0 to 0.07% into C(8). Another incorporates only 0 to 0.05% (13)C into C(2) or C(8). A third phenotype incorporates (13)C into C(8) (0.15%) but C(2) incorporation (0.44%) is still greater. In subjects who incorporated (13)C formate into C(2), peak enrichment occurred in voids from 8-12 h (24 h clock) suggesting a circadian rhythm. SIGNIFICANCE Evidence that mammalian liver introduces C(8) and that C(2) is introduced in a non-hepatic site would explain our results. Our data are not similar to those in non-mammalian organisms or cells in culture and are not consistent with the hypothesis that formate from folate-dependent metabolism in mitochondria is a major one carbon source for purine biosynthesis. Timing of peak (13)C enrichment at C(2) corresponds to maximal DNA synthesis in human bone marrow. Phenotypes may explain the efficacy (or lack of) of certain anticancer and immunosuppressive drugs.
Collapse
Affiliation(s)
- Joseph E Baggott
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | |
Collapse
|
20
|
Camici M, Micheli V, Ipata PL, Tozzi MG. Pediatric neurological syndromes and inborn errors of purine metabolism. Neurochem Int 2009; 56:367-78. [PMID: 20005278 DOI: 10.1016/j.neuint.2009.12.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 11/25/2009] [Accepted: 12/03/2009] [Indexed: 11/17/2022]
Abstract
This review is devised to gather the presently known inborn errors of purine metabolism that manifest neurological pediatric syndromes. The aim is to draw a comprehensive picture of these rare diseases, characterized by unexpected and often devastating neurological symptoms. Although investigated for many years, most purine metabolism disorders associated to psychomotor dysfunctions still hide the molecular link between the metabolic derangement and the neurological manifestations. This basically indicates that many of the actual functions of nucleosides and nucleotides in the development and function of several organs, in particular central nervous system, are still unknown. Both superactivity and deficiency of phosphoribosylpyrophosphate synthetase cause hereditary disorders characterized, in most cases, by neurological impairments. The deficiency of adenylosuccinate lyase and 5-amino-4-imidazolecarboxamide ribotide transformylase/IMP cyclohydrolase, both belonging to the de novo purine synthesis pathway, is also associated to severe neurological manifestations. Among catabolic enzymes, hyperactivity of ectosolic 5'-nucleotidase, as well as deficiency of purine nucleoside phosphorylase and adenosine deaminase also lead to syndromes affecting the central nervous system. The most severe pathologies are associated to the deficiency of the salvage pathway enzymes hypoxanthine-guanine phosphoribosyltransferase and deoxyguanosine kinase: the former due to an unexplained adverse effect exerted on the development and/or differentiation of dopaminergic neurons, the latter due to a clear impairment of mitochondrial functions. The assessment of hypo- or hyperuricemic conditions is suggestive of purine enzyme dysfunctions, but most disorders of purine metabolism may escape the clinical investigation because they are not associated to these metabolic derangements. This review may represent a starting point stimulating both scientists and physicians involved in the study of neurological dysfunctions caused by inborn errors of purine metabolism with the aim to find novel therapeutical approaches.
Collapse
Affiliation(s)
- Marcella Camici
- Dipartimento di Biologia, Unità di Biochimica, Via S Zeno 51, 56127 Pisa, Italy.
| | | | | | | |
Collapse
|
21
|
Wang W, Fridman A, Blackledge W, Connelly S, Wilson IA, Pilz RB, Boss GR. The phosphatidylinositol 3-kinase/akt cassette regulates purine nucleotide synthesis. J Biol Chem 2008; 284:3521-8. [PMID: 19068483 DOI: 10.1074/jbc.m806707200] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway is highly conserved throughout evolution and regulates cell size and survival and cell cycle progression. It regulates the latter by stimulating procession through G(1) and the G(1)/S phase transition. Entry into S phase requires an abundant supply of purine nucleotides, but the effect of the PI3K/Akt pathway on purine synthesis has not been studied. We now show that the PI3K/Akt cassette regulates both de novo and salvage purine nucleotide synthesis in insulin-responsive mouse mesenchymal cells. We found that serum and insulin stimulated de novo purine synthesis in serum-starved cells largely through PI3K/Akt signaling, and pharmacologic and genetic inhibition of PI3K/Akt reduced de novo synthesis by 75% in logarithmically growing cells. PI3K/Akt regulated early steps of de novo synthesis by modulating phosphoribosylpyrophosphate production by the non-oxidative pentose phosphate pathway and late steps by modulating activity of the bifunctional enzyme aminoimidazole-carboxamide ribonucleotide transformylase IMP cyclohydrolase, an enzyme not previously known to be regulated. The effects of PI3K/Akt on purine nucleotide salvage were likely through regulating phosphoribosylpyrophosphate availability. These studies define a new mechanism whereby the PI3K/Akt cassette functions as a master regulator of cellular metabolism and a key player in oncogenesis.
Collapse
Affiliation(s)
- Wei Wang
- Department of Medicine, University of California San Diego, La Jolla, California 92093, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
López JM. Is ZMP the toxic metabolite in Lesch-Nyhan disease? Med Hypotheses 2008; 71:657-63. [PMID: 18710792 DOI: 10.1016/j.mehy.2008.06.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 06/23/2008] [Accepted: 06/26/2008] [Indexed: 11/17/2022]
Abstract
The genetic deficiency of hypoxanthine-guanine phosphoribosyltransferase (HPRT), located on the X chromosome, causes a severe neurological disorder in man, known as Lesch-Nyhan disease (LND). The enzyme HPRT is part of the savage pathway of purine biosynthesis and catalyzes the conversion of hypoxanthine and guanine to their respective nucleotides, IMP and GMP. HPRT deficiency is associated with a relatively selective dysfunction of brain dopamine systems. Several metabolites that accumulate in the patients (phosphoribosylpyrophosphate (PRPP), hypoxanthine, guanine, xanthine, and Z-nucleotides) have been proposed as toxic agents in LND. Some authors have pointed that Z-riboside, derived from the accumulation of ZMP, could be the toxic metabolite in LND. However, the available experimental data support a better hypothesis. I suggest that ZMP (and not Z-riboside) is the key toxic metabolite in LND. ZMP is an inhibitor of the bifunctional enzyme adenylosuccinate lyase, and a deficiency of this enzyme causes psychomotor and mental retardation in humans. Moreover, it has been reported that ZMP inhibits mitochondrial oxidative phosphorylation and induces apoptosis in certain cell types. ZMP is also an activator of the AMP-activated protein kinase (AMPK), a homeostatic regulator of energy levels in the cell. The AMPK has been implicated in the regulation of cell viability, catecholamine biosynthesis and cell structure. I propose that accumulation of ZMP will induce a pleiotropic effect in the brain by (1) a direct inhibition of mitochondrial respiration and the bifunctional enzyme adenylosuccinate lyase, and (2) a sustained activation of the AMPK which in turns would reduce cell viability, decrease dopamine synthesis, and alters cell morphology. In addition, a mechanism to explain the accumulation of ZMP in LND is presented. The knowledge of the toxic metabolite, and the way it acts, would help to design a better therapy.
Collapse
Affiliation(s)
- José M López
- Institut de Neurociencies, Departament de Bioquímica i Biología Molecular, Unitat de Bioquímica, Facultad de Medicina, Universitat Autónoma de Barcelona, 08193 Cerdanyola del Vallès. Barcelona, Spain.
| |
Collapse
|
23
|
Kim TB, Kim SY, Moon KA, Park CS, Jang MK, Yun ES, Cho YS, Moon HB, Lee KY. Five-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside attenuates poly (I:C)-induced airway inflammation in a murine model of asthma. Clin Exp Allergy 2007; 37:1709-19. [PMID: 17877757 DOI: 10.1111/j.1365-2222.2007.02812.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND Asthma can frequently be induced or exacerbated by respiratory viral infections. Oxidative stress might also play an essential role in the pathogenesis of allergic airway diseases, indicating that antioxidant therapy may have a potential effect in controlling allergic airway diseases. Recent studies showed that 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside (AICAR) has the potential ability to modulate NADPH oxidase activity, indicating the antioxidant activity of AICAR. This study investigated the inhibitory effects of AICAR as an anti-inflammatory modulator on allergic airway inflammation in murine animal models. METHODS The anti-inflammatory effects of AICAR were evaluated in two experimental asthma models: (1) an ovalbumin (OVA)-induced experimental asthma model and (2) an OVA plus polyinosinic-polycytidylic acid [poly (I:C)]-induced experimental asthma model to mimic respiratory viral infections. The inhibitory effects of AICAR in poly (I:C)-mediated signalling for NF-kappaB activation and production of TNF-alpha were analysed in vitro. RESULTS AICAR was shown to have a marginal inhibitory effect in an OVA-induced asthma model. Interestingly, AICAR significantly attenuated poly (I:C)-induced airway hyperresponsiveness and airway inflammation, as shown by the attenuation of the influx of total inflammatory cells and soluble products into bronchoalveolar lavage fluid, such as macrophages, eosinophils, IL-5, IL-13, TNF-alpha and IFN-gamma. AICAR also significantly reduced the serum levels of OVA-specific IgE and IgG2a antibodies. Histologic and flow cytometric studies showed that AICAR inhibited poly (I:C)-induced lung inflammation and the infiltration of CD11b+CD11c+ dendritic cells into the lung. Moreover, AICAR effectively inhibited poly (I:C)-mediated activation of NF-kappaB and the production of TNF-alpha. CONCLUSION These findings suggest that AICAR may be a novel immunomodulator with promising beneficial effects for the treatment of respiratory viral infection in airway allergic diseases.
Collapse
Affiliation(s)
- T-B Kim
- Division of Allergy, University of Ulsan College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Shirley TL, Lewers JC, Egami K, Majumdar A, Kelly M, Ceballos-Picot I, Seidman MM, Jinnah HA. A human neuronal tissue culture model for Lesch-Nyhan disease. J Neurochem 2007; 101:841-53. [PMID: 17448149 DOI: 10.1111/j.1471-4159.2007.04472.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mutations in the gene encoding the purine salvage enzyme, hypoxanthine-guanine phosphoribosyltransferase (HPRT) cause Lesch-Nyhan disease, a neurodevelopmental disorder characterized by cognitive, neurological, and behavioral abnormalities. Despite detailed knowledge of the enzyme's function, the key pathophysiological changes that accompany loss of purine recycling are unclear. To facilitate delineating the consequences of HPRT deficiency, four independent HPRT-deficient sublines of the human dopaminergic neuroblastoma, SK-N-BE(2) M17, were isolated by targeted mutagenesis with triple helix-forming oligonucleotides. As a group, these HPRT-deficient cells showed several significant abnormalities: (i) impaired purine recycling with accumulation of hypoxanthine, guanine, and xanthine, (ii) reduced guanylate energy charge and GTP:GDP ratio, but normal adenylate energy charge and no changes in any adenine nucleotide ratios, (iii) increased levels of UTP and NADP+, (iv) reduced DOPA decarboxylase, but normal monoamines, and (v) reduction in cell soma size. These cells combine the analytical power of multiple lines and a human, neuronal origin to provide an important tool to investigate the pathophysiology of HPRT deficiency.
Collapse
Affiliation(s)
- Thomas L Shirley
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA, and Department of Biology, Necker-Enfants Malades Hospital, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Friedecký D, Tomková J, Maier V, Janost'áková A, Procházka M, Adam T. Capillary electrophoretic method for nucleotide analysis in cells: application on inherited metabolic disorders. Electrophoresis 2007; 28:373-80. [PMID: 17203505 DOI: 10.1002/elps.200600262] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Purine and pyrimidine nucleotides influence many metabolic pathways and their analogs have been widely used in medicine. A capillary electrophoretic method was developed for measuring intracellular nucleotides. The final BGE consisted of 40 mM citric acid with addition of 0.8 mM CTAB titrated by gamma-aminobutyric acid to pH 4.4. The electrophoretic separations were carried out in an uncoated silica capillary (id/od - 75/375 microm; effective/total length - 90/97 cm). The method allows a complete separation of 21 nucleotides and deoxynucleotides within 15 min with separation efficiencies up to 400,000 theoretical plates per meter. Due to the use of an acidic separation medium, the method offers a high selectivity toward the studied analytes versus possible interferences from matrices. Sample preparation was optimized in order to shorten work-time and prevent analyte degradation. The method was applied for analyzing nucleotides in human erythrocytes and Chinese hamster ovary cells. Diagnostic potential for inherited metabolic disorders of nucleotide metabolism is presented.
Collapse
Affiliation(s)
- David Friedecký
- Department of Clinical Biochemistry, Laboratory for Inherited Metabolic Disorders, University Hospital and Palacký University Olomouc, Olomouc, Czech Republic
| | | | | | | | | | | |
Collapse
|
26
|
Baggott JE, Gorman GS, Tamura T. 13C enrichment of carbons 2 and 8 of purine by folate-dependent reactions after [13C]formate and [2-13C]glycine dosing in adult humans. Metabolism 2007; 56:708-15. [PMID: 17445548 PMCID: PMC1931417 DOI: 10.1016/j.metabol.2006.12.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Accepted: 12/01/2006] [Indexed: 11/20/2022]
Abstract
The 10-formyl moiety of 10-formyltetrahydrofolate is the source of carbons at the positions 8 (C(8)) and 2 (C(2)) of the purine ring, originating from formate and a few amino acids. Uric acid is the final catabolic product of purines. In adult humans, we independently measured the (13)C enrichment of the C(2) and C(8) positions of urinary uric acid after an oral dose of [(13)C]sodium formate and that of the C(2) and C(8) plus C(5) positions after [2-(13)C]glycine. A liquid chromatography-mass spectrometric method was used to measure the (13)C enrichment of uric acid in urine, which was collected for 3 to 4 days. Purine catabolism to uric acid does not alter the positions of carbons in the ring. After the formate dose, the (13)C enrichment at C(2) was greater than at C(8), and a circadian rhythm was observed in the enrichment at C(2). After the glycine dose, the C(8) plus C(5) positions were enriched, whereas no significant enrichment at C(2) was found. These (13)C enrichment patterns are not consistent with previous accepted metabolism. To our knowledge, this is the first study to investigate (13)C enrichment from formate and glycine independently into the C(2) and C(8) positions of purine in the same subjects. Possible mechanisms explaining our findings are discussed. Oral [(13)C]formate or [2-(13)C]glycine dosing and urine collection can be used to study purine biosynthesis in humans.
Collapse
Affiliation(s)
- Joseph E Baggott
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | |
Collapse
|
27
|
Friedecký D, Bednár P, Procházka M, Adam T. Analysis of intracellular nucleotides by capillary electrophoresis-mass spectrometry. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2007; 25:1233-6. [PMID: 17065097 DOI: 10.1080/15257770600894667] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
A pilot study using capillary electrophoresis with mass spectrometry for the analysis of nucleotides in human erythrocytes is presented. Erythrocytes were incubated with 5-amino-4-imidazolecarboxamide riboside in order to mimic situation in defect of purine metabolism--AICA-ribosiduria. Characteristic AICA-ribotides together with normal nucleotides were separated by capillary electrophoresis in acetate buffer (20 mmol/L, pH 4.4) and identified on line by mass spectrometry.
Collapse
Affiliation(s)
- D Friedecký
- Laboratory for Inherited Metabolic Disorders, Department of Clinical Biochemistry, University Hospital Olomouc, Olomouc, Czech Republic
| | | | | | | |
Collapse
|
28
|
Garcia-Gil M, Bertini F, Pesi R, Voccoli V, Tozzi MG, Camici M. 5 '-Amino-4-imidazolecarboxamide riboside induces apoptosis in human neuroblastoma cells via the mitochondrial pathway. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2007; 25:1265-70. [PMID: 17065104 DOI: 10.1080/15257770600890905] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
5'-Amino-4-imidazolecarboxamide (AICA) riboside induces apoptosis in neuronal cell models. In order to exert its effect, AICA riboside must enter the cell and be phosphorylated to the ribotide. In the present work, we have further studied the mechanism of apoptosis induced by AICA riboside. The results demonstrate that AICA riboside activates AMP-dependent protein kinase (AMPK), induces release of cytochrome c from mitochondria and activation of caspase 9. The role of AMPK in determining cell fate is controversial. In fact, AICA riboside has been reported to be neuroprotective or to induce apoptosis depending on its concentration, cell type or apoptotic stimuli used. In order to clarify whether the activation of AMPK is related to apoptosis in our model, we have used another AMPK stimulator, metformin, and we have analysed its effects on cell viability, nuclear morphology and AMPK activity. Five mM metformin increased AMPK activity, inhibited viability, and increased the number of apoptotic nuclei. AICA riboside, which can be generated from the ribotide (an intermediate of the purine de novo synthesis) by the action of the ubiquitous cytosolic 5'-nucleotidase (cN-II), may accumulate in those individuals in which an inborn error of purine metabolism causes both a building up of intermediates and/or an increase of the rate of de novo synthesis, and/or an overexpression of cN-II. Therefore, our results suggest that the toxic effect of AICA riboside on some types of neurons may participate in the neurological manifestations of syndromes related to purine dismetabolisms.
Collapse
Affiliation(s)
- M Garcia-Gil
- Department of Biology, University of Pisa, Pisa, Italy
| | | | | | | | | | | |
Collapse
|
29
|
Jhun BS, Oh YT, Lee JY, Kong Y, Yoon KS, Kim SS, Baik HH, Ha J, Kang I. AICAR suppresses IL-2 expression through inhibition of GSK-3 phosphorylation and NF-AT activation in Jurkat T cells. Biochem Biophys Res Commun 2005; 332:339-46. [PMID: 15910743 DOI: 10.1016/j.bbrc.2005.04.126] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Accepted: 04/26/2005] [Indexed: 12/17/2022]
Abstract
We examined the effect of 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR), the dephosphorylated form of AICA ribotide (also termed "ZMP"), an intermediate of purine biosynthesis, on interleukin (IL)-2 production in T cells. AICAR inhibited IL-2 production in Jurkat T cells and peripheral blood lymphocytes activated with PMA plus ionomycin (PMA/Io) or with monoclonal anti-CD3 plus anti-CD28. Pretreatment with 5'-iodotubercidin, an adenosine kinase inhibitor, enhanced AICAR suppression of IL-2 production, suggesting that AICAR, not ZMP, is responsible for IL-2 suppression. We then showed that AICAR inhibited PMA/Io-induced IL-2 mRNA expression and IL-2 promoter activation. AICAR inhibited DNA binding and transcriptional activation of NF-AT and to a lesser extent AP-1, but not NF-kappaB, in PMA/Io-activated Jurkat cells. Finally, we found that AICAR inhibited PMA/Io-induced phosphorylation of GSK-3 but not phosphorylation of ERK1/2, p38, and JNK. These results suggest that AICAR exerts its immunosuppressive effect in activated Jurkat cells by inhibiting GSK-3 phosphorylation and NF-AT activation.
Collapse
Affiliation(s)
- Bong Sook Jhun
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Jhun BS, Jin Q, Oh YT, Kim SS, Kong Y, Cho YH, Ha J, Baik HH, Kang I. 5-Aminoimidazole-4-carboxamide riboside suppresses lipopolysaccharide-induced TNF-alpha production through inhibition of phosphatidylinositol 3-kinase/Akt activation in RAW 264.7 murine macrophages. Biochem Biophys Res Commun 2004; 318:372-80. [PMID: 15120611 DOI: 10.1016/j.bbrc.2004.04.035] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2004] [Indexed: 12/17/2022]
Abstract
5-Aminoimidazole-4-carboxamide riboside (AICAR) is an adenosine analog and a widely used activator of AMP-activated protein kinase (AMPK). We examined the effect of AICAR on LPS-induced TNF-alpha production in RAW 264.7 and peritoneal macrophages and its molecular mechanism in RAW 264.7 macrophages. Treatment with AICAR inhibited LPS-induced increases in TNF-alpha mRNA and protein levels in these cells. AICAR or LPS did not alter the AMPK activity as well as the phosphorylations of AMPK alpha (Thr172) and ACC (Ser79). Moreover, an adenosine kinase inhibitor 5'-iodotubercidin enhanced the suppressive effect of AICAR on TNF-alpha levels. These results suggest that the effect of AICAR on TNF-alpha suppression in RAW 264.7 cells is independent of AMPK activation. In addition, an adenosine receptor antagonist 8-SPT had no effect on AICAR-induced suppression of TNF-alpha levels. Finally, we observed that AICAR inhibited LPS-induced activation of PI 3-kinase and Akt, whereas it had no effect on the activation of p38 and ERK1/2. Taken together, these results suggest that the anti-inflammatory action of AICAR in RAW 264.7 macrophages is independent of AMPK activation and is associated with inhibition of LPS-induced activation of PI 3-kinase/Akt pathway.
Collapse
Affiliation(s)
- Bong Sook Jhun
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Marie S, Heron B, Bitoun P, Timmerman T, Van den Berghe G, Vincent MF. AICA-ribosiduria: a novel, neurologically devastating inborn error of purine biosynthesis caused by mutation of ATIC. Am J Hum Genet 2004; 74:1276-81. [PMID: 15114530 PMCID: PMC1182092 DOI: 10.1086/421475] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2004] [Accepted: 03/25/2004] [Indexed: 11/03/2022] Open
Abstract
In a female infant with dysmorphic features, severe neurological defects, and congenital blindness, a positive urinary Bratton-Marshall test led to identification of a massive excretion of 5-amino-4-imidazolecarboxamide (AICA)-riboside, the dephosphorylated counterpart of AICAR (also termed "ZMP"), an intermediate of de novo purine biosynthesis. ZMP and its di- and triphosphate accumulated in the patient's erythrocytes. Incubation of her fibroblasts with AICA-riboside led to accumulation of AICAR, not observed in control cells, suggesting impairment of the final steps of purine biosynthesis, catalyzed by the bifunctional enzyme AICAR transformylase/IMP cyclohydrolase (ATIC). AICAR transformylase was profoundly deficient, whereas the IMP cyclohydrolase level was 40% of normal. Sequencing of ATIC showed a K426R change in the transformylase region in one allele and a frameshift in the other. Recombinant protein carrying mutation K426R completely lacks AICAR transformylase activity.
Collapse
Affiliation(s)
- Sandrine Marie
- Laboratory of Physiological Chemistry, Christian de Duve Institute of Cellular Pathology and Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels; Department of Pediatric Neurology, Hôpital Saint Vincent de Paul, Paris; and Departments of Pediatrics and Medical Genetics, Hôpital Jean Verdier, Bondy, France
| | - Bénédicte Heron
- Laboratory of Physiological Chemistry, Christian de Duve Institute of Cellular Pathology and Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels; Department of Pediatric Neurology, Hôpital Saint Vincent de Paul, Paris; and Departments of Pediatrics and Medical Genetics, Hôpital Jean Verdier, Bondy, France
| | - Pierre Bitoun
- Laboratory of Physiological Chemistry, Christian de Duve Institute of Cellular Pathology and Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels; Department of Pediatric Neurology, Hôpital Saint Vincent de Paul, Paris; and Departments of Pediatrics and Medical Genetics, Hôpital Jean Verdier, Bondy, France
| | - Thérèse Timmerman
- Laboratory of Physiological Chemistry, Christian de Duve Institute of Cellular Pathology and Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels; Department of Pediatric Neurology, Hôpital Saint Vincent de Paul, Paris; and Departments of Pediatrics and Medical Genetics, Hôpital Jean Verdier, Bondy, France
| | - Georges Van den Berghe
- Laboratory of Physiological Chemistry, Christian de Duve Institute of Cellular Pathology and Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels; Department of Pediatric Neurology, Hôpital Saint Vincent de Paul, Paris; and Departments of Pediatrics and Medical Genetics, Hôpital Jean Verdier, Bondy, France
| | - Marie-Françoise Vincent
- Laboratory of Physiological Chemistry, Christian de Duve Institute of Cellular Pathology and Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels; Department of Pediatric Neurology, Hôpital Saint Vincent de Paul, Paris; and Departments of Pediatrics and Medical Genetics, Hôpital Jean Verdier, Bondy, France
| |
Collapse
|
32
|
Neychev VK, Mitev VI. The biochemical basis of the neurobehavioral abnormalities in the Lesch–Nyhan syndrome: a hypothesis. Med Hypotheses 2004; 63:131-4. [PMID: 15193365 DOI: 10.1016/j.mehy.2004.01.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2003] [Accepted: 01/27/2004] [Indexed: 10/26/2022]
Abstract
Lesch-Nyhan syndrome (LNS) is a rare X-recessive disorder that leads to virtually complete deficiency of the purine salvage enzyme hypoxanthine-guanine phosphoribosyltransferase (HPRT). Partial HPRT deficiency results in uric acid overproduction with subsequent hyperuricemia, nephrolithiasis, renal failure and gouty arthritis. In contrast, at complete HPRT deficiency, besides overproduction of uric acid neurological problems appear including spasticity, choreoathetosis, mental retardation, and compulsive self-mutilation. The cause for the uric acid overproduction has been clarified, but the connection between the enzyme deficiency and the neurological manifestations in LNS remains unclear. A hypothesis, which explains this relation, is proposed in the paper. The hypothesis has several important points most substantial of which is the accelerated biosynthesis of semiessential amino acid histidine that against the background of accelerated purine de novo biosynthesis results in 5-aminoimidazole-4-carboxamideribotide (AICAR) and histamine accumulation. The histamine and AICAR were determined to be the compounds that cause the neurobehavioral symptoms of LNS for several reasons. First, in the basal ganglia a balance between the direct (activating) and the indirect (inhibiting) pathways arising on the basis of the antagonistic and reciprocal dopamine-adenosine interactions normally exists. This balance can tonically regulate smooth voluntary movements and the activity of the thalamus, which, in turn, processes the afferent sensorimotor signals from the whole body to the all areas of the cerebral cortex and is concerned to modulate mental development and bring sensory information into awareness. Second, histamine is known to induce a selective damage in dopaminergic neurons inhibiting the direct dopaminergic pathway, which could lead to muscular rigidity, and slowness in initiating movements as well as tremor that are characteristic of Parkinsonism in LNS. Third, AICAribosid (AICAR breakdown product) is a potent adenosine A2a receptor antagonist inhibiting the indirect dopamine-adenosinergic pathway and, therefore, could be responsible for the choreoathetosis, dystonia and ballismus found in LNS. The excitatory-inhibitory disbalance in the basal ganglia could result in inadequate modification of the thalamus activity with subsequent mental retardation and symptoms that include the patients not being aware for their own bodies that could give rise to self-mutilation. Finally, a possibility for the creation of a new animal model that could exactly match the human LNS is proposed in the paper.
Collapse
|
33
|
Garcia-Gil M, Pesi R, Perna S, Allegrini S, Giannecchini M, Camici M, Tozzi MG. 5'-aminoimidazole-4-carboxamide riboside induces apoptosis in human neuroblastoma cells. Neuroscience 2003; 117:811-20. [PMID: 12654334 DOI: 10.1016/s0306-4522(02)00836-9] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
5'-Aminoimidazole-4-carboxamide riboside (AICA riboside) has been previously shown to be toxic to two neuronal cell models [Neuroreport 11 (2000) 1827]. In this paper we demonstrate that AICA riboside promotes apoptosis in undifferentiated human neuroblastoma cells (SH-SY5Y), inducing a raise in caspase-3 activity. In order to exert its effect on viability, AICA riboside must enter the cells and be phosphorylated to the ribotide, since both a nucleoside transport inhibitor, and an inhibitor of adenosine kinase produce an enhancement of the viability of AICA riboside-treated cells. Short-term incubations (2 h) with AICA riboside result in five-fold increase in the activity of AMP-dependent protein kinase (AMPK). However, the activity of AMPK is not significantly affected at prolonged incubations (48 h), when the apoptotic effect of AICA riboside is evident. The results demonstrate that when the cell line is induced to differentiate both toward a cholinergic phenotype (with retinoic acid) or a noradrenergic phenotype (with phorbol esters), the toxic effect is significantly reduced, and in the case of the noradrenergic phenotype differentiation, the riboside is completely ineffective in promoting apoptosis. This reduction of effect correlates with an overexpression of Bcl-2 during differentiation. AICA riboside, derived from the hydrolysis of the ribotide, an intermediate of purine de novo synthesis, is absent in normal healthy cells; however it may accumulate in those individuals in which an inborn error of purine metabolism causes an increase in the rate of de novo synthesis and/or an overexpression of cytosolic 5'-nucleotidase, that appears to be the enzyme responsible for AICA ribotide hydrolysis. In fact, 5'-nucleotidase activity has been shown to increase in patients affected by Lesch-Nyhan syndrome in which both acceleration of de novo synthesis and accumulation of AICA ribotide has been described, and also in other neurological disorders of unknown etiology. Our results raise the intriguing clue that the neurotoxic effect of AICA riboside on the developing brain might contribute to the neurological manifestations of syndromes related to purine dismetabolisms.
Collapse
Affiliation(s)
- M Garcia-Gil
- Dipartimento di Fisiologia e Biochimica, Università di Pisa, Via S. Maria, 55 56100, Pisa, Italy.
| | | | | | | | | | | | | |
Collapse
|
34
|
López JM, Santidrián AF, Campàs C, Gil J. 5-Aminoimidazole-4-carboxamide riboside induces apoptosis in Jurkat cells, but the AMP-activated protein kinase is not involved. Biochem J 2003; 370:1027-32. [PMID: 12452797 PMCID: PMC1223217 DOI: 10.1042/bj20021053] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2002] [Revised: 11/26/2002] [Accepted: 11/27/2002] [Indexed: 11/17/2022]
Abstract
5-Aminoimidazole-4-carboxamide (AICA) riboside, a precursor of purine nucleotide biosynthesis, induces apoptosis in Jurkat cells. Incorporation of AICAriboside into the cells is necessary for this effect since addition of nitrobenzylthioinosine, a nucleoside-transport inhibitor, completely protects Jurkat cells from apoptosis. Adenosine, but not other nucleosides, also protects Jurkat cells from AICAriboside-induced apoptosis. The apoptotic effect is caspase-dependent since caspases 9 and 3 are activated and the caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (Z-VAD.fmk) blocks apoptosis. Furthermore, AICAriboside induces mitochondrial cytochrome c release. AICAriboside, when phosphorylated to AICAribotide (ZMP), is a specific activator of the AMP-activated protein kinase (AMPK) in certain cell types. However, AICAriboside does not activate AMPK in Jurkat cells. Moreover, 5-iodotubercidin, an inhibitor of AICAriboside phosphorylation, does not inhibit apoptosis in Jurkat cells. These results indicate that AICAriboside induces apoptosis independently of ZMP synthesis and AMPK activation in Jurkat cells.
Collapse
Affiliation(s)
- José M López
- Unitat de Bioquímica, Departament de Ciències Fisiològiques II, Universitat de Barcelona, Campus de Bellvitge, E-08907 L'Hospitalet, Spain.
| | | | | | | |
Collapse
|
35
|
Gille A, Liu HY, Sprang SR, Seifert R. Distinct interactions of GTP, UTP, and CTP with G(s) proteins. J Biol Chem 2002; 277:34434-42. [PMID: 12080068 DOI: 10.1074/jbc.m204259200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Early studies showed that in addition to GTP, the pyrimidine nucleotides UTP and CTP support activation of the adenylyl cyclase (AC)-stimulating G(s) protein. The aim of this study was to elucidate the mechanism by which UTP and CTP support G(s) activation. As models, we used S49 wild-type lymphoma cells, representing a physiologically relevant system in which the beta(2)-adrenoreceptor (beta(2)AR) couples to G(s), and Sf9 insect cell membranes expressing beta(2)AR-Galpha(s) fusion proteins. Fusion proteins provide a higher sensitivity for the analysis of beta(2)AR-G(s) coupling than native systems. Nucleoside 5'-triphosphates (NTPs) supported agonist-stimulated AC activity in the two systems and basal AC activity in membranes from cholera toxin-treated S49 cells in the order of efficacy GTP > or = UTP > CTP > ATP (ineffective). NTPs disrupted high affinity agonist binding in beta(2)AR-Galpha(s) in the order of efficacy GTP > UTP > CTP > ATP (ineffective). In contrast, the order of efficacy of NTPs as substrates for nucleoside diphosphokinase, catalyzing the formation of GTP from GDP and NTP was ATP > or = UTP > or = CTP > or = GTP. NTPs inhibited beta(2)AR-Galpha(s)-catalyzed [gamma-(32)P]GTP hydrolysis in the order of potency GTP > UTP > CTP. Molecular dynamics simulations revealed that UTP is accommodated more easily within the binding pocket of Galpha(s) than CTP. Collectively, our data indicate that GTP, UTP, and CTP interact differentially with G(s) proteins and that transphosphorylation of GDP to GTP is not involved in this G protein activation. In certain cell systems, intracellular UTP and CTP concentrations reach approximately 10 nmol/mg of protein and are higher than intracellular GTP concentrations, indicating that G protein activation by UTP and CTP can occur physiologically. G protein activation by UTP and CTP could be of particular importance in pathological conditions such as cholera and Lesch-Nyhan syndrome.
Collapse
Affiliation(s)
- Andreas Gille
- Department of Pharmacology and Toxicology, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, KS 66045-7582, USA
| | | | | | | |
Collapse
|
36
|
Liu HY, Seifert R. Distinct interactions of G(salpha-long), G(salpha-short), and G(alphaolf) with GTP, ITP, and XTP. Biochem Pharmacol 2002; 64:583-93. [PMID: 12167477 DOI: 10.1016/s0006-2952(02)01251-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The G(s)-proteins G(salpha-short) (G(salphaS)) and G(salpha-long) (G(salphaL)), and the olfactory G(s) protein (G(alphaolf)) mediate activation of adenylyl cyclase by the beta(2)-adrenoceptor (beta(2)AR). Early studies showed that the purine nucleotides GTP, ITP, and XTP differentially support receptor-mediated adenylyl cyclase activation in various native membrane systems, but those findings have remained unexplained thus far. We systematically analyzed the effects of GTP, ITP, and XTP on the coupling of the beta(2)AR to G(salphaS), G(salphaL), and G(alphaolf), respectively, using fusion proteins expressed in Sf9 insect cells. Fusion proteins ensure defined receptor/G-protein stoichiometry and efficient coupling. At all three fusion proteins, GTP, ITP, and XTP exhibited unique profiles with respect to their potency and efficacy at disrupting high-affinity agonist binding and supporting adenylyl cyclase activation by partial and full agonists. Our data can be interpreted in two ways: (i) GTP, ITP, and XTP may stabilize different active conformations in various G(s)-proteins, or (ii) GTP, ITP, and XTP may differ from one another in the kinetics of interaction with various G(s)-proteins. Regardless of which of the two explanations is correct, our present data demonstrate that GTP, ITP, and XTP are highly efficient regulators of signal transduction mediated through a specific G-protein. Also discussed is the possibility that G-protein activation by ITP and XTP may be of relevance in Lesch-Nyhan syndrome, a defect of the purine salvage pathway associated with abnormalities in various neurotransmitter systems.
Collapse
Affiliation(s)
- Hui-Yu Liu
- Department of Pharmacology and Toxicology, The University of Kansas, Malott Hall, Room 5064, 1251 Wescoe Hall Drive, Lawrence 66045, USA
| | | |
Collapse
|
37
|
Holmes WB, Appling DR. Cloning and characterization of methenyltetrahydrofolate synthetase from Saccharomyces cerevisiae. J Biol Chem 2002; 277:20205-13. [PMID: 11923304 DOI: 10.1074/jbc.m201242200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The folate derivative 5-formyltetrahydrofolate (folinic acid; 5-CHO-THF) was discovered over 40 years ago, but its role in metabolism remains poorly understood. Only one enzyme is known that utilizes 5-CHO-THF as a substrate: 5,10-methenyltetrahydrofolate synthetase (MTHFS). A BLAST search of the yeast genome using the human MTHFS sequence revealed a 211-amino acid open reading frame (YER183c) with significant homology. The yeast enzyme was expressed in Escherichia coli, and the purified recombinant enzyme exhibited kinetics similar to previously purified MTHFS. No new phenotype was observed in strains disrupted at MTHFS or in strains additionally disrupted at the genes encoding one or both serine hydroxymethyltransferases (SHMT) or at the genes encoding one or both methylenetetrahydrofolate reductases. However, when the MTHFS gene was disrupted in a strain lacking the de novo folate biosynthesis pathway, folinic acid (5-CHO-THF) could no longer support the folate requirement. We have thus named the yeast gene encoding methenyltetrahydrofolate synthetase FAU1 (folinic acid utilization). Disruption of the FAU1 gene in a strain lacking both 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) transformylase isozymes (ADE16 and ADE17) resulted in a growth deficiency that was alleviated by methionine. Genetic analysis suggested that intracellular accumulation of the purine intermediate AICAR interferes with a step in methionine biosynthesis. Intracellular levels of 5-CHO-THF were determined in yeast disrupted at FAU1 and other genes encoding folate-dependent enzymes. In fau1 disruptants, 5-CHO-THF was elevated 4-fold over wild-type yeast. In yeast lacking MTHFS along with both AICAR transformylases, 5-CHO-THF was elevated 12-fold over wild type. 5-CHO-THF was undetectable in strains lacking SHMT activity, confirming SHMT as the in vivo source of 5-CHO-THF. Taken together, these results indicate that S. cerevisiae harbors a single, nonessential, MTHFS activity. Growth phenotypes of multiply disrupted strains are consistent with a regulatory role for 5-CHO-THF in one-carbon metabolism and additionally suggest a metabolic interaction between the purine and methionine pathways.
Collapse
Affiliation(s)
- William B Holmes
- Department of Chemistry and Biochemistry, the Institute for Cellular and Molecular Biology, and the Biochemical Institute, University of Texas, Austin 78712, USA
| | | |
Collapse
|
38
|
Micheli V, Gathof BS, Rocchigiani M, Jacomelli G, Sestini S, Peruzzi L, Notarantonio L, Cerboni B, Hayek G, Pompucci G. Biochemical and molecular study of mentally retarded patient with partial deficiency of hypoxanthine-guanine phosphoribosyltransferase. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1587:45-52. [PMID: 12009423 DOI: 10.1016/s0925-4439(02)00053-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Nucleotide metabolism was studied in erythrocytes of a mentally retarded child and family members. Partial hypoxanthine-guanine phosphoribosyltransferase (HPRT) deficiency was found in the propositus and an asymptomatic maternal uncle. Studies in crude lysates demonstrated decreased apparent V(max) and slightly decreased apparent K(m) for hypoxanthine in both HPRT-deficient subjects. Genomic DNA analysis revealed a single nucleotide change with leucine-147 to phenylalanine substitution in both subjects; mother and grandmother were heterozygous carriers of the same defect. This new variant has been termed HPRT(Potenza). Increased erythrocyte concentration of NAD and rate of synthesis by intact erythrocytes were found in the patient; increased activities of nicotinic acid phosphoribosyltransferase (NAPRT) and NAD synthetase (NADs) were demonstrated in erythrocyte lysates, with normal apparent K(m) for their substrates and increased V(max). These alterations were not found in any member of the family, including the HPRT-deficient uncle. These findings show multiple derangement of nucleotide metabolism associated with partial HPRT deficiency. The enzyme alteration was presumably not the cause of neurological impairment since no neurological symptoms were found in the HPRT-deficient uncle, whereas they were present in the propositus' elder brother who had normal HPRT activity.
Collapse
Affiliation(s)
- Vanna Micheli
- Dipartimento di Biologia Molecolare, Sez. Chimica Biologica, Università di Siena, Via Fiorentina 1, 53100, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Ciccarelli R, Ballerini P, Sabatino G, Rathbone MP, D'Onofrio M, Caciagli F, Di Iorio P. Involvement of astrocytes in purine‐mediated reparative processes in the brain. Int J Dev Neurosci 2001; 19:395-414. [PMID: 11378300 DOI: 10.1016/s0736-5748(00)00084-8] [Citation(s) in RCA: 178] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Astrocytes are involved in multiple brain functions in physiological conditions, participating in neuronal development, synaptic activity and homeostatic control of the extracellular environment. They also actively participate in the processes triggered by brain injuries, aimed at limiting and repairing brain damages. Purines may play a significant role in the pathophysiology of numerous acute and chronic disorders of the central nervous system (CNS). Astrocytes are the main source of cerebral purines. They release either adenine-based purines, e.g. adenosine and adenosine triphosphate, or guanine-based purines, e.g. guanosine and guanosine triphosphate, in physiological conditions and release even more of these purines in pathological conditions. Astrocytes express several receptor subtypes of P1 and P2 types for adenine-based purines. Receptors for guanine-based purines are being characterised. Specific ecto-enzymes such as nucleotidases, adenosine deaminase and, likely, purine nucleoside phosphorylase, metabolise both adenine- and guanine-based purines after release from astrocytes. This regulates the effects of nucleotides and nucleosides by reducing their interaction with specific membrane binding sites. Adenine-based nucleotides stimulate astrocyte proliferation by a P2-mediated increase in intracellular [Ca2+] and isoprenylated proteins. Adenosine also, via A2 receptors, may stimulate astrocyte proliferation, but mostly, via A1 and/or A3 receptors, inhibits astrocyte proliferation, thus controlling the excessive reactive astrogliosis triggered by P2 receptors. The activation of A1 receptors also stimulates astrocytes to produce trophic factors, such as nerve growth factor, S100beta protein and transforming growth factor beta, which contribute to protect neurons against injuries. Guanosine stimulates the output of adenine-based purines from astrocytes and in addition it directly triggers these cells to proliferate and to produce large amount of neuroprotective factors. These data indicate that adenine- and guanine-based purines released in large amounts from injured or dying cells of CNS may act as signals to initiate brain repair mechanisms widely involving astrocytes.
Collapse
Affiliation(s)
- R Ciccarelli
- Department of Biomedical Sciences, Section of Pharmacology, Via del Vestini Pal. B, 66013, Chieti, Italy.
| | | | | | | | | | | | | |
Collapse
|
40
|
Pesi R, Micheli V, Jacomelli G, Peruzzi L, Camici M, Garcia-Gil M, Allegrini S, Tozzi MG. Cytosolic 5'-nucleotidase hyperactivity in erythrocytes of Lesch-Nyhan syndrome patients. Neuroreport 2000; 11:1827-31. [PMID: 10884027 DOI: 10.1097/00001756-200006260-00006] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Lesch-Nyhan syndrome is a metabolic-neurological syndrome caused by the X-linked deficiency of the purine salvage enzyme hypoxanthine-guanine phosphoribosyltransferase (HGPRT). Metabolic consequences of HGPRT deficiency have been clarified, but the connection with the neurological manifestations is still unknown. Much effort has been directed to finding other alterations in purine nucleotides in different cells of Lesch-Nyhan patients. A peculiar finding was the measure of appreciable amount of Z-nucleotides in red cells. We found significantly higher IMP-GMP-specific 5'-nucleotidase activity in the erythrocytes of seven patients with Lesch-Nyhan syndrome than in healthy controls. The same alteration was found in one individual with partial HGPRT deficiency displaying a severe neurological syndrome, and in two slightly hyperuricemic patients with a psychomotor delay. Since ZMP was a good substrate of 5'-nucleotidase producing Z-riboside, we incubated murine and human cultured neuronal cells with this nucleoside and found that it is toxic for our models, promoting apoptosis. This finding suggests an involvement of the toxicity of the Z-riboside in the pathogenesis of neurological disorders in Lesch-Nyhan syndrome and possibly in other pediatric neurological syndromes of uncertain origin.
Collapse
Affiliation(s)
- R Pesi
- Dipartimento di Fisiologia e Biochimica, Università di Pisa, Italy
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Visser JE, Bär PR, Jinnah HA. Lesch-Nyhan disease and the basal ganglia. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2000; 32:449-75. [PMID: 10760551 DOI: 10.1016/s0165-0173(99)00094-6] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The purpose of this review is to summarize emerging evidence that the neurobehavioral features of Lesch-Nyhan disease (LND), a developmental disorder caused by congenital deficiency of the purine salvage enzyme hypoxanthine-guanine phosphoribosyltransferase (HPRT), may be attributable to dysfunction of the basal ganglia. Affected individuals have severe motor disability described by prominent extrapyramidal features that are characteristic of dysfunction of the motor circuits of the basal ganglia. They also display disturbances of ocular motility, cognition, and behavioral control that may reflect disruption of other circuits of the basal ganglia. Though neuropathologic studies of autopsy specimens have revealed no obvious neuroanatomical abnormalities in LND, neurochemical studies have demonstrated 60-90% reductions in the dopamine content of the basal ganglia. In addition, recent PET studies have documented significant reductions in dopamine transporters and [18F]fluorodopa uptake in the basal ganglia. These findings support the proposal that many of the neurobehavioral features of LND might be related to dysfunction of the basal ganglia.
Collapse
Affiliation(s)
- J E Visser
- Laboratory of Experimental Neurology, Rudolf Magnus Institute for Neurosciences, Utrecht University, Utrecht, Netherlands
| | | | | |
Collapse
|
42
|
Brosh S, Boer P, Sperling O, Zoref-Shani E. Elevated UTP and CTP content in cultured neurons from HPRT-deficient transgenic mice. J Mol Neurosci 2000; 14:87-91. [PMID: 10854040 DOI: 10.1385/jmn:14:1-2:087] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/1999] [Accepted: 01/05/2000] [Indexed: 11/11/2022]
Abstract
Hypoxanthine-guanine phosphoribosyltransferase (EC 2.4.2.8.; HPRT) catalyzes the salvage synthesis of inosine-5'-monophosphate (IMP) and guanosine-5'-monophosphate (GMP) from the purine bases hypoxanthine and guanine, respectively. Complete deficiency of HPRT activity is associated with the Lesch-Nyhan syndrome (LNS), characterized by excessive purine production and severe neurological manifestations. The etiology of the metabolic consequences of HPRT deficiency is clarified, but that of the neurological manifestations is not yet understood. HPRT-deficient mice represent an experimental animal model of LNS. In search for a possible metabolic abnormality in LNS brains, connecting the neurological deficit to HPRT deficiency, the purine and pyrimidine nucleotide content of cultured neurons, prepared from HPRT-deficient transgenic mice, was now determined. The HPRT-deficient neuronal cultures exhibited a significantly elevated content of the pyrimidine nucleotides UTP (1.33-fold the normal level, p = 0.0002) and CTP (1.28-fold the normal level, p = 0.02), but normal content of the purine nucleotides ATP and GTP. This abnormality in neuronal pyrimidine nucleotide content may be associated with the pathophysiology of the neurological deficit in LNS.
Collapse
Affiliation(s)
- S Brosh
- Felsenstein Medical Research Center, Rabin Medical Center, Petah-Tikva, Israel
| | | | | | | |
Collapse
|
43
|
Micheli V, Sestini S, Rocchigiani M, Jacomelli G, Manzoni F, Peruzzi L, Gathof BS, Zammarchi E, Pompucci G. Hypoxanthine-guanine phosphoribosyltransferase deficiency and erythrocyte synthesis of pyridine coenzymes. Life Sci 1999; 64:2479-87. [PMID: 10403507 DOI: 10.1016/s0024-3205(99)00205-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Purine and pyridine metabolism were studied in ten Lesch-Nyhan patients, with virtually no hypoxanthine-guanine phosphoribosyltransferase (HPRT) activity in erythrocytes. Increased NAD erythrocyte concentrations were found in all patients. Raised activities of two enzymes catalysing NAD synthesis from nicotinic acid (nicotinic acid phosphoribosyltransferase: NAPRT, and NAD synthetase: NADs) was found in erythrocyte lysates from all patients. The two enzymes had normal apparent Km for their substrates and increased Vmax. The rate of synthesis of pyridine nucleotides from nicotinic acid by intact erythrocytes in vitro was also increased in most patients. These findings suggest that raised NAD concentrations in HPRT- erythrocytes are due to enhanced synthesis as a result of increased enzyme activities.
Collapse
Affiliation(s)
- V Micheli
- Dipartimento di Biologia Molecolare-Università di Siena, Italia.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Pelled D, Sperling O, Zoref-Shani E. Abnormal purine and pyrimidine nucleotide content in primary astroglia cultures from hypoxanthine-guanine phosphoribosyltransferase-deficient transgenic mice. J Neurochem 1999; 72:1139-45. [PMID: 10037486 DOI: 10.1046/j.1471-4159.1999.0721139.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Lesch-Nyhan syndrome is a pediatric metabolic-neurological syndrome caused by the X-linked deficiency of the purine salvage enzyme hypoxanthine-guanine phosphoribosyltransferase (HGPRT). The cause of the metabolic consequences of HGPRT deficiency has been clarified, but the connection between the enzyme deficiency and the neurological manifestations is still unknown. In search for this connection, in the present study, we characterized purine nucleotide metabolism in primary astroglia cultures from HGPRT-deficient transgenic mice. The HGPRT-deficient astroglia exhibited the basic abnormalities in purine metabolism reported before in neurons and various other HGPRT-deficient cells. The following abnormalities were found: absence of detectable uptake of guanine and of hypoxanthine into intact cell nucleotides; 27.8% increase in the availability of 5-phosphoribosyl-1-pyrophosphate; 9.4-fold acceleration of the rate of de novo nucleotide synthesis; manyfold increase in the excretion into the culture media of hypoxanthine (but normal excretion of xanthine); enhanced loss of label from prelabeled adenine nucleotides (loss of 71% in 24 h, in comparison with 52.7% in the normal cells), due to 4.2-fold greater excretion into the media of labeled hypoxanthine. In addition, the HGPRT-deficient astroglia were shown to contain lower cellular levels of ADP, ATP, and GTP, indicating that the accelerated de novo purine synthesis does not compensate adequately for the deficiency of salvage nucleotide synthesis, and higher level of UTP, probably due to enhanced de novo synthesis of pyrimidine nucleotides. Altered nucleotide content in the brain may have a role in the pathogenesis of the neurological deficit in Lesch-Nyhan syndrome.
Collapse
Affiliation(s)
- D Pelled
- Department of Clinical Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Israel
| | | | | |
Collapse
|
45
|
Wojcik BE, Jinnah HA, Muller-Sieburg CE, Friedmann T. Bone marrow transplantation does not ameliorate the neurologic symptoms in mice deficient in hypoxanthine guanine phosphoribosyl transferase (HPRT). Metab Brain Dis 1999; 14:57-65. [PMID: 10348314 DOI: 10.1023/a:1020661514514] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The use of bone marrow transplantation (BMT) for the treatment of genetic diseases with neurologic involvement has yielded mixed results. We have employed a mouse model of Lesch-Nyhan disease (LND) to assess the efficacy of BMT in ameliorating the neurologic manifestations of the disease. Adult HPRT-deficient mice exhibit a measurable decrease in striatal dopamine levels and a hypersensitivity to amphetamine. Marrow-ablated adult HPRT-deficient mice were transplanted with marrow from congenic HPRT-expressing mice. BMT altered neither the neurochemical nor the behavioral phenotypes in either HPRT-positive or HPRT-deficient mice. Barring any important species differences, these results suggest that BMT in its present form may not be an effective therapy for Lesch-Nyhan syndrome.
Collapse
Affiliation(s)
- B E Wojcik
- Dept. of Pediatrics, UCSD School of Medicine, La Jolla, CA 92093, USA
| | | | | | | |
Collapse
|
46
|
Reshef A, Sperling O, Zoref-Shani E. Opening of ATP-sensitive potassium channels by cromakalim confers tolerance against chemical ischemia in rat neuronal cultures. Neurosci Lett 1998; 250:111-4. [PMID: 9697931 DOI: 10.1016/s0304-3940(98)00458-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The effect of opening and of blocking of ATP-sensitive potassium (K(ATP)) channels on the short-term capacity of neurons to resist ischemia-reperfusion-induced cell injury, was studied in a model of primary rat neuronal cultures, subjected to metabolic poisoning by iodoacetic acid (150 microM, 150 min), followed by reperfusion (1 h). The metabolic poisoning resulted in a marked decrease in cellular ATP content (from 65.3 +/- 13.4 to 21.6 +/- 11.7 nmole/mg protein), simulating an ischemia, or hypoxia-induced condition of energy crisis. The degree of neuronal damage was assessed by the trypan blue exclusion test. Exposure of the neurons to the channel-opener cromakalim (10 microM; 15 min), prior to the insult, induced resistance, which could be abolished by the specific channel blocker glibenclamide (2 microM). Glibenclamide also abolished the protection acquired by preconditioning of the neurons with iodoacetate (IA; 100 microM), the adenosine A1 agonist N6-(R)-phenylisopropyladenosine (R-PIA; 100 microM), or with the protein kinase C (PKC) activator 1,2 dioctanoyl-rac-glycerol (DOG; 1 microM). The results indicate that in the neurons, opening of the K(ATP) channels confers protection against an ATP-depleting crisis, and suggest that the protective effects induced by adenosine and by activation of PKC, are mediated by the opening of these channels.
Collapse
Affiliation(s)
- A Reshef
- Department of Clinical Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Israel
| | | | | |
Collapse
|
47
|
Abstract
Biochemical studies of human fibroblasts from patients with neurological disorders have revealed a wealth of information on how such disorders occur. In this review, Gerald Connolly describes how recently developed fluorescence video imaging techniques have been used to study the physiology of skin fibroblasts isolated from patients with certain neurological disorders, including those produced by Alzheimer's disease, Lesch-Nyhan syndrome, mitochondrial disorders, amyotrophic lateral sclerosis and lysosomal disorders. The results of these studies indicate disruptions in cell homeostasis, particularly specific changes in Ca2+ homeostasis and autofluorescence, which mirror changes thought to occur in the CNS of neurologically impaired patients. More extensive studies of these 'systemic changes' using new fluorescent indicators, combined with advances in imaging techniques, are predicted to increase the potential usefulness of human skin fibroblasts as experimental models and to help diagnose and treat neurological disorders.
Collapse
Affiliation(s)
- G P Connolly
- Purine Neuroscience Laboratory, Division of Chemical Pathology, Guy's Hospital, United Medical School, London, UK
| |
Collapse
|
48
|
Abstract
Depletion of guanine nucleotide pools after inhibition of inosine monophosphate dehydrogenase (IMPDH) potently inhibits DNA synthesis by arresting cells in G1 and has been shown to induce the differentiation of cultured myeloid and erythroid cell lines, as well as chronic granulocytic leukemic cells after blast transformation. Inhibitors of IMPDH are also highly effective as immunosuppressive agents. The mechanism underlying these pleiotropic effects of depletion of guanine nucleotides is unknown. We have examined the effects of mycophenolic acid (MPA), a potent IMPDH inhibitor, on the cell cycle progression of activated normal human T lymphocytes. MPA treatment resulted in the inhibition of pRb phosphorylation and cell entry into S phase. The expression of cyclin D3, a major component of the cyclin-dependent kinase (CDK) activity required for pRb phosphorylation, was completely abrogated by MPA treatment of T cells activated by interleukin-2 (IL-2) and leucoagglutinin (PHA-L), whereas the expression of cyclin D2, CDK6, and CDK4 was more mildly attenuated. The direct kinase activity of a complex immunoprecipitated with anti-CDK6 antibody was also inhibited. In addition, MPA prevented the IL-2–induced elimination of p27Kip1, a CDK inhibitor, and resulted in the retention of high levels of p27Kip1 in IL-2/PHA-L–treated T cells bound to CDK2. These results indicate that inhibition of the de novo synthesis of guanine nucleotides blocks the transition of normal peripheral blood T lymphocytes from G0 to S phase in early- to mid-G1 and that this cell cycle arrest results from inhibition of the induction of cyclin D/CDK6 kinase and the elimination of p27Kip1 inhibitory activity.
Collapse
|
49
|
Van den Berghe G, Vincent MF, Jaeken J. Inborn errors of the purine nucleotide cycle: adenylosuccinase deficiency. J Inherit Metab Dis 1997; 20:193-202. [PMID: 9211192 DOI: 10.1023/a:1005304722259] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Adenylosuccinase catalyses two reactions in purine metabolism: the conversion of succinylaminoimidazole carboxamide ribotide (SAICAR) into aminoimidazole carboxamide ribotide (AICAR) along the de novo synthesis of purine nucleotides, and the conversion of adenylosuccinate (S-AMP) into AMP in the conversion of IMP into AMP. The hallmarks of adenylosuccinase deficiency are the presence of succinylaminoimidazole carboxamide riboside (SAICAriboside) and succinyladenosine (S-Ado) in body fluids. These normally undetectable succinylpurines are the products of the dephosphorylation, by cytosolic 5'-nucleotidase, of the two substrates of adenylosuccinase. The clinical picture of the enzyme deficiency is markedly heterogeneous with, as a rule, a profound, but nevertheless variable degree of psychomotor delay, often convulsions and/or autistic features, sometimes growth retardation and muscular dystrophy. The diagnostic tests that can be used for diagnosis, the enzyme and gene defects that have been identified, and the hypotheses that have been put forward to explain the pathophysiology of the disorder are reviewed.
Collapse
Affiliation(s)
- G Van den Berghe
- Laboratory of Physiological Chemistry, International Institute of Cellular and Molecular Pathology, Brussels, Belgium
| | | | | |
Collapse
|
50
|
Connolly GP, Harrison PJ. Structure-activity relationship of a pyrimidine receptor in the rat isolated superior cervical ganglion. Br J Pharmacol 1995; 116:2764-70. [PMID: 8591002 PMCID: PMC1909137 DOI: 10.1111/j.1476-5381.1995.tb17239.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
1. The effects of pyrimidines and purines on the d.c. potential of the rat isolated superior cervical ganglion (SCG) have been examined by a grease-gap technique to determine the structure-activity requirements of the receptor activated by pyrimidines, i.e. a pyrimidinoceptor. 2. 5-Aminoimidazole-4-carboxamide-1-beta-D-ribofuranosyl (ZTP), the pyrimidines, cytidine 5'-triphosphate (CTP), uridine 5'-triphosphate (UTP) and thymidine 5'-triphosphate (TTP) and the purines, adenosine 5'-triphosphate (ATP; in the presence of an A1-purinoceptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) (1 microM)), adenosine 5'-O-(3-thiotriphosphate) (ATP gamma S), guanosine 5'-triphosphate (GTP), inosine 5'-triphosphate (1TP) depolarized ganglia in a concentration-dependent manner. The relative order of ZTP and purine 5'-triphosphates in depolarizing ganglia was ZTP > or = ATP gamma S > > ATP > or = ITP = GTP, and for the pyrimidine 5'-triphosphates UTP > TTP > or = CTP. Depolarizations evoked by ATP gamma S were followed by concentration-dependent hyperpolarizations at 100 and 1000 microM. 3. At concentrations of between 0.1 microM and 1 mM, uridine 5'-diphosphate (UDP), uridine 5'-diphosphoglucose (UDPG) and uridine 5'-diphosphoglucuronic acid (UDPGA) evoked significant and concentration-dependent depolarizations, whereas uridine 5'-monophosphate (UMP), uridine and uracil were inactive or produced small (< 45 microV) depolarizations. The relative order of potency of uridine analogues in depolarizing ganglia was UDP > or = UTP > UDPG > UDPGA > > uracil > or = UMP = pseudouridine > or = uridine. At 3 and 10 mM, uridine produced concentration-dependent hyperpolarizations. Nikkomycin Z, a nucleoside resembling UTP (viz. the triphosphate chain at the 5'-position on the ribose moiety being replaced by a peptide), was inactive between 1 microM and 1 mM. Generally, a concentration of 10 mM was required before thymidine, 6-azathymine, 6-azauracil or 6-azauridine depolarized ganglia. 4. Suramin (300 microM), a P2-purinoceptor antagonist, significantly depressed depolarizations evoked by alpha, beta-methylene-ATP (alpha, beta-MeATP; 100 microM), ATP gamma S (100 microM), CTP (1 mM), GTP (1 mM), ZTP (30 microM) and ATP (300 microM) in the presence of DPCPX (1 microM). Suramin reversed a small depolarization evoked by UMP (1 mM) into a small hyperpolarization. In contrast depolarizations evoked by UDP, UTP, UDPG (all at 100 microM) and TTP (300 microM) were unaltered or enhanced by suramin. 5. It is concluded that the rat SCG contains distinct nucleotide receptors including a P2-purinoceptor (activated by alpha, beta-MeATP, ATP, GTP, ITP and ZTP) and a pyrimidinoceptor (activated by UTP, UDP, UDPG, UDPGA and TTP). The pyrimidinoceptor on rat SCG neurones had specific structure activity requirements with the di- and triphosphates of uridine being the most effective depolarizing agonists examined.
Collapse
Affiliation(s)
- G P Connolly
- Department of Physiology, University College London
| | | |
Collapse
|