1
|
Miller LJ, Harikumar KG, Wootten D, Sexton PM. Roles of Cholecystokinin in the Nutritional Continuum. Physiology and Potential Therapeutics. Front Endocrinol (Lausanne) 2021; 12:684656. [PMID: 34149622 PMCID: PMC8206557 DOI: 10.3389/fendo.2021.684656] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/17/2021] [Indexed: 11/13/2022] Open
Abstract
Cholecystokinin is a gastrointestinal peptide hormone with important roles in metabolic physiology and the maintenance of normal nutritional status, as well as potential roles in the prevention and management of obesity, currently one of the dominant causes of direct or indirect morbidity and mortality. In this review, we discuss the roles of this hormone and its receptors in maintaining nutritional homeostasis, with a particular focus on appetite control. Targeting this action led to the development of full agonists of the type 1 cholecystokinin receptor that have so far failed in clinical trials for obesity. The possible reasons for clinical failure are discussed, along with alternative pharmacologic strategies to target this receptor for prevention and management of obesity, including development of biased agonists and allosteric modulators. Cellular cholesterol is a natural modulator of the type 1 cholecystokinin receptor, with elevated levels disrupting normal stimulus-activity coupling. The molecular basis for this is discussed, along with strategies to overcome this challenge with a corrective positive allosteric modulator. There remains substantial scope for development of drugs to target the type 1 cholecystokinin receptor with these new pharmacologic strategies and such drugs may provide new approaches for treatment of obesity.
Collapse
Affiliation(s)
- Laurence J. Miller
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, AZ, United States
- *Correspondence: Laurence J. Miller,
| | - Kaleeckal G. Harikumar
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, AZ, United States
| | - Denise Wootten
- Drug Discovery Biology theme, Monash Institute for Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Patrick M. Sexton
- Drug Discovery Biology theme, Monash Institute for Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| |
Collapse
|
2
|
Qadir MMF, Álvarez-Cubela S, Weitz J, Panzer JK, Klein D, Moreno-Hernández Y, Cechin S, Tamayo A, Almaça J, Hiller H, Beery M, Kusmartseva I, Atkinson M, Speier S, Ricordi C, Pugliese A, Caicedo A, Fraker CA, Pastori RL, Domínguez-Bendala J. Long-term culture of human pancreatic slices as a model to study real-time islet regeneration. Nat Commun 2020; 11:3265. [PMID: 32601271 PMCID: PMC7324563 DOI: 10.1038/s41467-020-17040-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 06/04/2020] [Indexed: 01/02/2023] Open
Abstract
The culture of live pancreatic tissue slices is a powerful tool for the interrogation of physiology and pathology in an in vitro setting that retains near-intact cytoarchitecture. However, current culture conditions for human pancreatic slices (HPSs) have only been tested for short-term applications, which are not permissive for the long-term, longitudinal study of pancreatic endocrine regeneration. Using a culture system designed to mimic the physiological oxygenation of the pancreas, we demonstrate high viability and preserved endocrine and exocrine function in HPS for at least 10 days after sectioning. This extended lifespan allowed us to dynamically lineage trace and quantify the formation of insulin-producing cells in HPS from both non-diabetic and type 2 diabetic donors. This technology is expected to be of great impact for the conduct of real-time regeneration/developmental studies in the human pancreas.
Collapse
Affiliation(s)
- Mirza Muhammad Fahd Qadir
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
- Department of Cell Biology and Anatomy, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Silvia Álvarez-Cubela
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Jonathan Weitz
- Department of Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Julia K Panzer
- Department of Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Dagmar Klein
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Yaisa Moreno-Hernández
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
- Universidad Francisco de Vitoria, Madrid, Spain
| | - Sirlene Cechin
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Alejandro Tamayo
- Department of Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Joana Almaça
- Department of Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Helmut Hiller
- nPOD Laboratory, Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Maria Beery
- nPOD Laboratory, Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Irina Kusmartseva
- nPOD Laboratory, Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Mark Atkinson
- nPOD Laboratory, Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, 32611, USA
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Stephan Speier
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Zentrum München at the University Clinic Carl Gustav Carus of Technische Universität Dresden, Helmholtz Zentrum München, Neuherberg, Germany
- Faculty of Medicine, Institute of Physiology, Technische Universität Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD), München, Neuherberg, Germany
| | - Camillo Ricordi
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Alberto Pugliese
- Department of Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
- Department of Microbiology & Immunology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Alejandro Caicedo
- Department of Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Christopher A Fraker
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
- Department of Biomedical Engineering, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Ricardo Luis Pastori
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
- Department of Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| | - Juan Domínguez-Bendala
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
- Department of Cell Biology and Anatomy, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
3
|
Desai AJ, Mechin I, Nagarajan K, Valant C, Wootten D, Lam PCH, Orry A, Abagyan R, Nair A, Sexton PM, Christopoulos A, Miller LJ. Molecular Basis of Action of a Small-Molecule Positive Allosteric Modulator Agonist at the Type 1 Cholecystokinin Holoreceptor. Mol Pharmacol 2018; 95:245-259. [DOI: 10.1124/mol.118.114082] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 12/19/2018] [Indexed: 02/05/2023] Open
|
4
|
Miller LJ, Desai AJ. Metabolic Actions of the Type 1 Cholecystokinin Receptor: Its Potential as a Therapeutic Target. Trends Endocrinol Metab 2016; 27:609-619. [PMID: 27156041 PMCID: PMC4992613 DOI: 10.1016/j.tem.2016.04.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 03/31/2016] [Accepted: 04/05/2016] [Indexed: 12/13/2022]
Abstract
Cholecystokinin (CCK) regulates appetite and reduces food intake by activating the type 1 CCK receptor (CCK1R). Attempts to develop CCK1R agonists for obesity have yielded active agents that have not reached clinical practice. Here we discuss why, along with new strategies to target CCK1R more effectively. We examine signaling events and the possibility of developing agents that exhibit ligand-directed bias, to dissociate satiety activity from undesirable side effects. Potential allosteric sites of modulation are also discussed, along with desired properties of a positive allosteric modulator (PAM) without intrinsic agonist action as another strategy to treat obesity. These new types of CCK1R-active drugs could be useful as standalone agents or as part of a rational drug combination for management of obesity.
Collapse
Affiliation(s)
- Laurence J Miller
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, AZ, 85259, USA.
| | - Aditya J Desai
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, AZ, 85259, USA
| |
Collapse
|
5
|
Binker MG, Richards D, Gaisano HY, Cosen-Binker LI. ER stress-associated CTRC mutants decrease stimulated pancreatic zymogen secretion through SIRT2-mediated microtubule dysregulation. Biochem Biophys Res Commun 2015; 463:329-35. [DOI: 10.1016/j.bbrc.2015.05.064] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 05/15/2015] [Indexed: 01/24/2023]
|
6
|
Cawston EE, Lam PCH, Harikumar KG, Dong M, Ball AM, Augustine ML, Akgün E, Portoghese PS, Orry A, Abagyan R, Sexton PM, Miller LJ. Molecular basis for binding and subtype selectivity of 1,4-benzodiazepine antagonist ligands of the cholecystokinin receptor. J Biol Chem 2012; 287:18618-35. [PMID: 22467877 DOI: 10.1074/jbc.m111.335646] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Allosteric binding pockets in peptide-binding G protein-coupled receptors create opportunities for the development of small molecule drugs with substantial benefits over orthosteric ligands. To gain insights into molecular determinants for this pocket within type 1 and 2 cholecystokinin receptors (CCK1R and CCK2R), we prepared a series of receptor constructs in which six distinct residues in TM2, -3, -6, and -7 were reversed. Two novel iodinated CCK1R- and CCK2R-selective 1,4-benzodiazepine antagonists, differing only in stereochemistry at C3, were used. When all six residues within CCK1R were mutated to corresponding CCK2R residues, benzodiazepine selectivity was reversed, yet peptide binding selectivity was unaffected. Detailed analysis, including observations of gain of function, demonstrated that residues 6.51, 6.52, and 7.39 were most important for binding the CCK1R-selective ligand, whereas residues 2.61 and 7.39 were most important for binding CCK2R-selective ligand, although the effect of substitution of residue 2.61 was likely indirect. Ligand-guided homology modeling was applied to wild type receptors and those reversing benzodiazepine binding selectivity. The models had high predictive power in enriching known receptor-selective ligands from related decoys, indicating a high degree of precision in pocket definition. The benzodiazepines docked in similar poses in both receptors, with C3 urea substituents pointing upward, whereas different stereochemistry at C3 directed the C5 phenyl rings and N1 methyl groups into opposite orientations. The geometry of the binding pockets and specific interactions predicted for ligand docking in these models provide a molecular framework for understanding ligand selectivity at these receptor subtypes. Furthermore, the strong predictive power of these models suggests their usefulness in the discovery of lead compounds and in drug development programs.
Collapse
Affiliation(s)
- Erin E Cawston
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona 85259, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Cawston EE, Harikumar KG, Miller LJ. Ligand-induced internalization of the type 1 cholecystokinin receptor independent of recognized signaling activity. Am J Physiol Cell Physiol 2011; 302:C615-27. [PMID: 22049215 DOI: 10.1152/ajpcell.00193.2011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Receptor ligands, identified as antagonists, based on the absence of stimulation of signaling, can rarely stimulate receptor internalization. d-Tyr-Gly-[(Nle(28,31),d-Trp(30))CCK-26-32]-2-phenylethyl ester (d-Trp-OPE) is such a ligand that binds to the cholecystokinin (CCK) receptor and stimulates internalization. Here, the molecular basis of this trafficking event is explored, with the assumption that ligand binding initiates conformational change, exposing an epitope to direct endocytosis. Ligand-stimulated internalization was studied morphologically using fluorescent CCK and d-Trp-OPE. d-Trp-OPE occupation of Chinese hamster ovary cell receptors stimulated internalization into the same region as CCK. Arrestin-biased action was ruled out using morphological translocation of fluorescent arrestin 2 and arrestin 3, moving to the membrane in response to CCK, but not d-Trp-OPE. Possible roles of the carboxyl terminus were studied using truncated receptor constructs, eliminating the proline-rich distal tail, the serine/threonine-rich midregion, and the remainder to the vicinal cysteines. None of these constructs disrupted d-Trp-OPE-stimulated internalization. Possible contributions of transmembrane segments were studied using competitive inhibition with peptides that also had no effect. Intracellular regions were studied with a similar strategy using coexpressing cell lines. Peptides corresponding to ends of each loop region were studied, with only the peptide at the carboxyl end of the third loop inhibiting d-Trp-OPE-stimulated internalization but having no effect on CCK-stimulated internalization. The region contributing to this effect was refined to peptide 309-323, located below the recognized G protein-association motif. While a receptor in which this segment was deleted did internalize in response to d-Trp-OPE, it exhibited abnormal ligand binding and did not signal in response to CCK, suggesting an abnormal conformation and possible mechanism of internalization distinct from that being studied. This interpretation was further supported by the inability of peptide 309-323 to inhibit its d-Trp-OPE-stimulated internalization. Thus the 309-323 region of the type 1 CCK receptor affects antagonist-stimulated internalization of this receptor, although its mechanism and interacting partner are not yet clear.
Collapse
|
8
|
Harikumar KG, Cawston EE, Miller LJ. Fluorescence polarization screening for allosteric small molecule ligands of the cholecystokinin receptor. Assay Drug Dev Technol 2011; 9:394-402. [PMID: 21395402 DOI: 10.1089/adt.2010.0310] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The success in screening for drug candidates is highly dependent on the power of the strategy implemented. In this work, we report and characterize a novel fluorescent benzodiazepine antagonist of the type 1 cholecystokinin receptor (3-(3-(7-fluoro-1-(2-isopropyl(4-methoxyphenyl)amino)-2-oxoethyl)-2,4-dioxo-5-phenyl-2,3,4,5-tetrahydro-1H-benzo[b][1,4]-diazepin-3-yl)ureido)benzoic acid) that can be used as a receptor ligand in a fluorescence polarization assay, which is ideally suited for the identification of small molecule allosteric modulators of this physiologically important receptor. By binding directly to the small molecule-docking region within the helical bundle of this receptor, this indicator can be displaced by many small molecule candidate drugs, even those that might not affect the binding of an orthosteric cholecystokinin-like peptide ligand. The biological, pharmacological, and fluorescence properties of this reagent are described, and proof-of-concept is provided in a fluorescence polarization assay utilizing this fluorescent benzodiazepine ligand.
Collapse
Affiliation(s)
- Kaleeckal G Harikumar
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona, USA
| | | | | |
Collapse
|
9
|
Cawston EE, Miller LJ. Therapeutic potential for novel drugs targeting the type 1 cholecystokinin receptor. Br J Pharmacol 2009; 159:1009-21. [PMID: 19922535 DOI: 10.1111/j.1476-5381.2009.00489.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cholecystokinin (CCK) is a physiologically important gastrointestinal and neuronal peptide hormone, with roles in stimulating gallbladder contraction, pancreatic secretion, gastrointestinal motility and satiety. CCK exerts its effects via interactions with two structurally related class I guanine nucleotide-binding protein (G protein)-coupled receptors (GPCRs), the CCK(1) receptor and the CCK(2) receptor. Here, we focus on the CCK(1) receptor, with particular relevance to the broad spectrum of signalling initiated by activation with the natural full agonist peptide ligand, CCK. Distinct ligand-binding pockets have been defined for the natural peptide ligand and for some non-peptidyl small molecule ligands. While many CCK(1) receptor ligands have been developed and have had their pharmacology well described, their clinical potential has not yet been fully explored. The case is built for the potential importance of developing more selective partial agonists and allosteric modulators of this receptor that could have important roles in the treatment of common clinical syndromes.
Collapse
Affiliation(s)
- Erin E Cawston
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, AZ, USA
| | | |
Collapse
|
10
|
Binker MG, Binker-Cosen AA, Gaisano HY, Cosen-Binker LI. Inhibition of Rac1 decreases the severity of pancreatitis and pancreatitis-associated lung injury in mice. Exp Physiol 2008; 93:1091-103. [PMID: 18567599 DOI: 10.1113/expphysiol.2008.043141] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Pancreatitis is a disease with high morbidity and mortality. In vitro experiments on pancreatic acini showed that supramaximal but not submaximal cholecystokinin (CCK) stimulation induces effects in the acinar cell that can be correlated with acinar morphological changes observed in the in vivo experimental model of cerulein-induced pancreatitis. The GTPase Rac1 was previously reported to be involved in CCK-evoked amylase release from pancreatic acinar cells. Here, we demonstrate that pretreatment with the Rac1 inhibitor NSC23766 (100 microM, 2 h) effectively blocked Rac1 translocation and activation in CCK-stimulated pancreatic acini, without affecting activation of its closely related GTPase, RhoA. This specific Rac1 inhibition decreased supramaximal (10 nM) CCK-stimulated acinar amylase release (27.% reduction), which seems to be connected to the reduction observed in serum amylase (46.6% reduction) and lipase levels (46.1% reduction) from cerulein-treated mice receiving NSC23766 (100 nmol h(-1)). The lack of Rac1 activation also reduced formation of reactive oxygen species (ROS; 20.8% reduction) and lactate dehydrogenase release (LDH; 24.3% reduction), but did not alter calcium signaling or trypsinogen activation in 10 nM CCK-stimulated acini. In the in vivo model, the cerulein-treated mice receiving NSC23766 also presented a decrease in both pancreatic and lung histopathological scores (reduction in oedema, 32.4 and 66.4%; haemorrhage, 48.3 and 60.2%; and leukocyte infiltrate, 53.5 and 43.6%, respectively; reduction in pancreatic necrosis, 65.6%) and inflammatory parameters [reduction in myeloperoxidase, 52.2 and 38.9%; nuclear factor kappaB (p65), 61.3 and 48.6%; and nuclear factor kappaB (p50), 46.9 and 44.9%, respectively], together with lower serum levels for inflammatory (TNF-alpha, 40.4% reduction) and cellular damage metabolites (LDH, 52.7% reduction). Collectively, these results suggest that pharmacological Rac1 inhibition ameliorates the severity of pancreatitis and pancreatitis-associated lung injury through the reduction of pancreatic acinar damage induced by pathological digestive enzyme secretion and overproduction of ROS.
Collapse
Affiliation(s)
- Marcelo G Binker
- CBRHC Research Center, Arribenos 1697, P.1, Buenos Aires, 1426, Argentina
| | | | | | | |
Collapse
|
11
|
Lam PPL, Cosen Binker LI, Lugea A, Pandol SJ, Gaisano HY. Alcohol redirects CCK-mediated apical exocytosis to the acinar basolateral membrane in alcoholic pancreatitis. Traffic 2008; 8:605-17. [PMID: 17451559 DOI: 10.1111/j.1600-0854.2007.00557.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The molecular mechanism of clinical alcohol-induced pancreatitis remains vague. We had reported that experimental high-dose cholecystokinin (CCK)-induced pancreatitis is in part because of excessive aberrant basolateral exocytosis. High-dose CCK caused Munc18c on basolateral plasma membrane (BPM) to dissociate from syntaxin (Syn)-4, activating Syn-4 to complex with plasma membrane (PM)-SNAP-23 and granule-VAMP to mediate basolateral exocytosis. We now hypothesize that alcohol could render the acinar cell BPM conducive to exocytosis by a similar mechanism. Weakly stimulating postprandial doses of alcohol (20-50 mM) inhibited postprandial low-dose CCK-stimulated secretion by blocking physiologic apical exocytosis and redirecting exocytosis to less-efficient basal PM (visualized by FM1-43 fluorescence imaging) and lateral PM sites (electron microscopy). Alcohol or low-dose CCK had no effect on PM-Munc18c, but alcohol preincubation enabled low-dose CCK to displace Munc18c from BPM, leading to SNARE complex assembly in the BPM. Similarly, alcohol diet-fed rats did not exhibit morphologic defects in the pancreas nor affected PM-Munc18c behavior, but subsequent intraperitoneal injections of low-dose CCK analog cerulein caused Munc18c displacement from BPM and cytosolic degradation, which contributed to pancreatitis. We conclude that alcohol induces BPM-Munc18c to become receptive to postprandial CCK-induced displacement into the cytosol, a process which facilitates SNARE complex assembly that in turn activates restricted BPM sites to become available for aberrant exocytosis into the interstitial space, where zymogen activation would take place and cause pancreatitis.
Collapse
MESH Headings
- Amylases/metabolism
- Animals
- Cell Membrane/metabolism
- Central Nervous System Depressants/pharmacology
- Central Nervous System Depressants/toxicity
- Ceruletide/pharmacology
- Cholecystokinin/analogs & derivatives
- Cholecystokinin/pharmacology
- Cytosol/metabolism
- Ethanol/pharmacology
- Ethanol/toxicity
- Exocytosis/drug effects
- Gastrointestinal Agents/pharmacology
- Immunoblotting
- Male
- Microscopy, Confocal
- Microscopy, Electron
- Models, Biological
- Munc18 Proteins/metabolism
- Pancreas, Exocrine/drug effects
- Pancreas, Exocrine/metabolism
- Pancreas, Exocrine/ultrastructure
- Pancreatitis, Alcoholic/chemically induced
- Pancreatitis, Alcoholic/metabolism
- Pancreatitis, Alcoholic/pathology
- Peptide Fragments/pharmacology
- Rats
- Rats, Sprague-Dawley
- Rats, Wistar
- SNARE Proteins/metabolism
- Sincalide/analogs & derivatives
- Sincalide/pharmacology
Collapse
Affiliation(s)
- Patrick P L Lam
- Department of Medicine, University Health Network, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | | | | | | | | |
Collapse
|
12
|
Cosen-Binker LI, Lam PPL, Binker MG, Gaisano HY. Alcohol-induced protein kinase Calpha phosphorylation of Munc18c in carbachol-stimulated acini causes basolateral exocytosis. Gastroenterology 2007; 132:1527-45. [PMID: 17408632 DOI: 10.1053/j.gastro.2007.01.042] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Accepted: 01/04/2007] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Acute or chronic alcohol treatment does little to the exocrine pancreas but predisposes the pancreas to postprandial cholinergic stimulation that triggers cellular events leading to pancreatitis. This alcohol-induced susceptibility mechanism of pancreatitis is unknown. METHODS We employed alcohol-treated dispersed rat pancreatic acini and alcohol diet-fed rats to examine the effects of submaximal carbachol-induced changes in exocytosis (FM1-43 epifluorescence imaging and electron microscopy), Munc18c cellular translocation (confocal microscopy and subcellular fractionation), and protein kinase C (PKC) alpha-induced phosphorylation in relation to pancreatitis. RESULTS Acute low-dose alcohol (20 mmol/L) in vitro exposure or chronic alcohol diet reduces postprandial cholinergic-stimulated amylase secretion from rat pancreatic acinar cells by blocking apical exocytosis and redirecting exocytosis to less efficient basolateral plasma membrane sites. This ectopic exocytosis is mediated by PKCalpha-induced phosphorylation of Munc18c, causing Munc18c displacement from the basolateral plasma membrane into the cytosol in which it undergoes proteolytic degradation; these processes can be blocked by PKCalpha inhibition. CONCLUSIONS We conclude that sequential low-dose alcohol and postprandial cholinergic stimulation can induce PKCalpha-mediated Munc18c plasma membrane displacement. This relieves cognate SNARE proteins on zymogen granules and basolateral membrane to complex and consummate pathologic ectopic exocytosis at the basolateral surface. This change in vesicle trafficking may be related to the pathogenesis of pancreatitis.
Collapse
Affiliation(s)
- Laura I Cosen-Binker
- Department of Medicine, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
13
|
Cheng ZJ, Harikumar KG, Ding WQ, Holicky EL, Miller LJ. Analysis of the cellular and molecular mechanisms of trophic action of a misspliced form of the type B cholecystokinin receptor present in colon and pancreatic cancer. Cancer Lett 2005; 222:95-105. [PMID: 15837546 DOI: 10.1016/j.canlet.2004.09.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2004] [Revised: 08/05/2004] [Accepted: 09/02/2004] [Indexed: 11/20/2022]
Abstract
Gastrin and cholecystokinin (CCK) have trophic action on cells expressing wild type A or B CCK receptors. Potential relevance to pancreatic and colonic cancers was raised by the demonstration of a misspliced type B CCK receptor that, when expressed in Balb3T3 cells, had constitutive activity to stimulate intracellular calcium. We attempted to confirm and extend this observation in CHO cells by establishing lines expressing similar densities of variant or wild type B CCK receptor. While both were capable of normal binding and agonist-induced signaling, neither expressed constitutive signaling and both had similar basal growth. Agonist stimulation of cells expressing misspliced receptor had greater increases in calcium and greater growth rates than control cells despite similar MAP kinase phosphorylation responses. Thus, this variant receptor can potentiate peptide-stimulated signaling and trophic action and may contribute to the proliferation of neoplasms expressing it.
Collapse
Affiliation(s)
- Zhi-Jie Cheng
- Mayo Clinic Cancer Center, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic in Scottsdale, 13400 East Shea Boulevard, Scottsdale, AZ 85259, USA
| | | | | | | | | |
Collapse
|
14
|
Archer-Lahlou E, Escrieut C, Clerc P, Martinez J, Moroder L, Logsdon C, Kopin A, Seva C, Dufresne M, Pradayrol L, Maigret B, Fourmy D. Molecular mechanism underlying partial and full agonism mediated by the human cholecystokinin-1 receptor. J Biol Chem 2005; 280:10664-74. [PMID: 15632187 DOI: 10.1074/jbc.m409451200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cholecystokinin-1 receptor (CCK1R) is a G protein-coupled receptor (GPCR) that regulates important physiological functions. As for other GPCRs, the molecular basis of full and partial agonism is still far from clearly understood. In the present report, using both laboratory experiments and molecular modeling approaches, we have investigated the partial agonism mechanism of JMV 180, on the human CCK1R. We first showed that efficacy of the CCK1R to activate phospholipase C is dependent on the correct orientation of the C-terminal end of peptidic ligands toward residue Phe(330) of helix VI. We have previously reported that a single mutation of Met(121) (helix III) markedly reduced the receptor-mediated inositol phosphate production upon stimulation by CCK. Computational simulations predicted that residue 121 affected orientation of the C-terminal end of CCK, thus suggesting that the molecular complex with a reduced inositol phosphate production observed with the mutated CCK1R resembles that resulting from binding of JMV 180 to the WT-CCK1R. Pharmacological, biochemical, and functional characterizations of the two receptor.ligand complexes with decreased abilities to signal were carried out in different cell types. We found that they presented the same features, such as total dependence of inositol phosphate production to Galpha(q) expression, single affinity of binding sites, insensitivity of binding to non-hydrolyzable GTP, absence of GTPgamma[S(35)] binding following agonist stimulation, similarity of dose-response curves for amylase secretion, and incapacity to induce acute pancreatitis in pancreatic acini. We concluded that helices VI and III of the CCK1R are functionally linked through the CCK1R agonist binding site and that positioning of the C-terminal ends of peptidic agonists toward Phe(330) of helix VI is responsible for extent of phospholipase C activation through Galpha(q) coupling. Given the potential therapeutic interest of partial agonists such as JMV 180, our structural data will serve for target structure-based design of new CCK1R ligands.
Collapse
Affiliation(s)
- Elodie Archer-Lahlou
- INSERM U 531, Centre Hospitalier Universitaire Rangueil, Bat. L3, TSA 50032, 31059 Toulouse cedex 9, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Moon SJ, An JM, Kim J, Lee SI, Ahn W, Kim KH, Seo JT. Pharmacological characterization of rebamipide: its cholecystokinin CCK1 receptor binding profile and effects on Ca2+ mobilization and amylase release in rat pancreatic acinar cells. Eur J Pharmacol 2004; 505:61-6. [PMID: 15556137 DOI: 10.1016/j.ejphar.2004.10.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2004] [Accepted: 10/12/2004] [Indexed: 11/17/2022]
Abstract
We previously reported that rebamipide (2-(4-chlorobenzoylamino)-3-[2(1H)-quinolinon-4-yl]-propionic acid) generated oscillations of intracellular Ca2+ concentration ([Ca2+]i) probably through the activation of cholecystokinin type 1 (CCK1) receptors in rat pancreatic acinar cells. Therefore, in the present study, we aimed to establish the pharmacological characteristics of rebamipide in rat pancreatic acinar cells. CCK-8S and rebamipide inhibited [125I]BH-CCK-8S binding to rat pancreatic acinar cell membranes with IC50 values of 3.13 nM and 37.7 microM, respectively. CCK-8S usually evoked [Ca2+]i oscillations at concentrations lower than 50 pM, and it induced biphasic [Ca2+]i increases at higher concentrations. In contrast to CCK-8S, rebamipide only induced [Ca2+]i oscillations at all the concentrations we used in this study. In addition, rebamipide was shown to inhibit high concentrations of CCK-8S-induced biphasic increases in [Ca2+]i, suggesting that rebamipide might be a partial agonist at cholecystokinin CCK1 receptors. Although rebamipide induced [Ca2+]i oscillations by activating the cholecystokinin CCK1 receptors, rebamipide did not cause amylase release and only inhibited CCK-stimulated amylase release reversibly and dose-dependently. However, rebamipide did not inhibit carbachol-, vasoactive intestinal polypeptide (VIP)-, and forskolin-induced amylase releases. These data indicate that rebamipide functions as a partial agonist for Ca2+ -mobilizing action, and it is also an antagonist for the amylase-releasing action of CCK.
Collapse
Affiliation(s)
- Seok Jun Moon
- Department of Oral Biology, Brain Korea 21 Project for Medical Sciences, Yonsei University College of Dentistry, Seoul 120-752, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
16
|
Harikumar KG, Pinon DI, Wessels WS, Prendergast FG, Miller LJ. Environment and mobility of a series of fluorescent reporters at the amino terminus of structurally related peptide agonists and antagonists bound to the cholecystokinin receptor. J Biol Chem 2002; 277:18552-60. [PMID: 11893747 DOI: 10.1074/jbc.m201164200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fluorescence is a powerful biophysical tool for the analysis of the structure and dynamics of proteins. Here, we have developed two series of new fluorescent probes of the cholecystokinin (CCK) receptor, representing structurally related peptide agonists and antagonists. Each ligand had one of three distinct fluorophores (Alexa(488), nitrobenzoxadiazolyl, or acrylodan) incorporated in analogous positions at the amino terminus just outside the hormone's pharmacophore. All of the probes bound to the CCK receptor specifically and with high affinity, and intracellular calcium signaling studies showed the chemically modified peptides to be fully biologically active. Quenching by iodide and measurement of fluorescence spectra, anisotropy, and lifetimes were used to characterize the response of the fluorescence of the probe in the peptide-receptor complex for agonists and antagonists. All three fluorescence indicators provided the same insights into differences in the environment of the same indicator in the analogous position for agonist and antagonist peptides bound to the CCK receptor. Each agonist had its fluorescence quenched more easily and showed lower anisotropy (higher mobility of the probe) and shorter lifetime than the analogous antagonist. Treatment of agonist-occupied receptors with a non-hydrolyzable GTP analogue shifted the receptor into its inactive low affinity state and increased probe fluorescence lifetimes toward values observed with antagonist probes. These data are consistent with a molecular conformational change associated with receptor activation that causes the amino terminus of the ligand (situated above transmembrane segment six) to move away from its somewhat protected environment and toward the aqueous milieu.
Collapse
Affiliation(s)
- Kaleeckal G Harikumar
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic and Foundation, Rochester, Minnesota 55905, USA
| | | | | | | | | |
Collapse
|
17
|
Ding XQ, Pinon DI, Furse KE, Lybrand TP, Miller LJ. Refinement of the conformation of a critical region of charge-charge interaction between cholecystokinin and its receptor. Mol Pharmacol 2002; 61:1041-52. [PMID: 11961122 DOI: 10.1124/mol.61.5.1041] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Insight into the molecular basis of cholecystokinin (CCK) binding to its receptor has come from receptor mutagenesis and photoaffinity labeling studies, with both contributing to the current hypothesis that the acidic Tyr-sulfate-27 residue within the peptide is situated adjacent to basic Arg(197) in the second loop of the receptor. Here, we refine our understanding of this region of interaction by examining a structure-activity series of these positions within both ligand and receptor and by performing three-dimensional molecular modeling of key pairs of modified ligand and receptor constructs. The important roles of Arg(197) and Tyr-sulfate-27 were supported by the marked negative impact on binding and biological response with their natural partner molecule when the receptor residue was replaced by acidic Asp or Glu and when the peptide residue was replaced by basic Arg, Lys, p-amino-Phe, p-guanidino-Phe, or p-methylamino-Phe. Complementary ligand-receptor charge-exchange experiments were unable to regain the lost function. This was supported by the molecular modeling, which demonstrated that the charge-reversed double mutants could not form a good interaction without extensive rearrangement of receptor conformation. The models further predicted that R197D and R197E mutations would lead to conformational changes in the extracellular domain, and this was experimentally supported by data showing that these mutations decreased peptide agonist and antagonist binding and increased nonpeptidyl antagonist binding. These receptor constructs also had increased susceptibility to trypsin degradation relative to the wild-type receptor. In contrast, the relatively conservative R197K mutation had modest negative impact on peptide agonist binding, again consistent with the modeling demonstration of loss of a series of stabilizing inter- and intramolecular bonds. The strong correlation between predicted and experimental results support the reported refinement in the three-dimensional structure of the CCK-occupied receptor.
Collapse
Affiliation(s)
- Xi-Qin Ding
- Center for Basic Research in Digestive Diseases, Department of Internal Medicine, Mayo Clinic and Foundation, Rochester, Minnesota 55905, USA
| | | | | | | | | |
Collapse
|
18
|
Cheng ZJ, Miller LJ. Agonist-dependent dissociation of oligomeric complexes of G protein-coupled cholecystokinin receptors demonstrated in living cells using bioluminescence resonance energy transfer. J Biol Chem 2001; 276:48040-7. [PMID: 11673456 DOI: 10.1074/jbc.m105668200] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dimerization of some G protein-coupled receptors has recently been demonstrated, but how widespread this phenomenon might be and its functional implications are not yet clear. We have utilized biophysical and biochemical techniques to evaluate whether the type A cholecystokinin (CCK) receptor can form oligomeric complexes in the plasma membrane and the impact of ligand binding and signaling on such complexes. We investigated the possibility of bioluminescence resonance energy transfer (BRET) between receptor constructs that included carboxyl-terminal tags of Renilla luciferase or yellow fluorescent protein. Indeed, co-expression of these constructs in COS cells resulted in the constitutive presence of a significant BRET signal above that in a series of controls, with this signal reduced by co-expression of competing non-tagged CCK receptors. The presence of an oligomeric complex of CCK receptor molecules was confirmed in co-immunoprecipitation experiments. Occupation of CCK receptors with agonist ligands (CCK or gastrin-4) resulted in the rapid reduction in BRET signal in contrast to the enhancement of such a signal reported after agonist occupation of the beta(2)-adrenergic receptor. These effects on CCK receptor oligomerization were concentration-dependent, correlating with the potencies of the agonists. A smaller effect was observed for a partial agonist, and no effect was observed for antagonist occupation of this receptor. Agonist-induced reduction in BRET signal was also observed for pairs of CCK receptors with a donor-acceptor pair situated in other positions within the receptor. Manipulation of the phosphorylation state of CCK receptor using protein kinase C activation with phorbol ester or inhibition with staurosporine had no effect on the basal level or agonist effect on CCK receptor oligomerization. This provides the first evidence for CCK receptor oligomerization in living cells, with insights that the active conformation of this receptor dissociates these complexes in a phosphorylation-independent manner.
Collapse
Affiliation(s)
- Z J Cheng
- Center for Basic Research in Digestive Diseases, Department of Medicine, Mayo Clinic and Foundation, Rochester, Minnesota 55905, USA
| | | |
Collapse
|
19
|
Gaisano HY, Lutz MP, Leser J, Sheu L, Lynch G, Tang L, Tamori Y, Trimble WS, Salapatek AM. Supramaximal cholecystokinin displaces Munc18c from the pancreatic acinar basal surface, redirecting apical exocytosis to the basal membrane. J Clin Invest 2001; 108:1597-611. [PMID: 11733555 PMCID: PMC200979 DOI: 10.1172/jci9110] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/1999] [Accepted: 10/08/2001] [Indexed: 12/25/2022] Open
Abstract
Exocytosis at the apical surface of pancreatic acinar cells occurs in the presence of physiological concentrations of cholecystokinin (CCK) but is inhibited at high concentrations. Here we show that Munc18c is localized predominantly to the basal membranes of acinar cells. Supramaximal but not submaximal CCK stimulation caused Munc18c to dissociate from the plasma membrane, and this displacement was blocked by protein kinase C (PKC) inhibitors. Conversely, whereas the CCK analog CCK-OPE alone failed to displace Munc18c from the membrane, this agent caused Munc18c displacement following minimal PKC activation. To determine the physiological significance of this displacement, we used the fluorescent dye FM1-43 to visualize individual exocytosis events in real-time from rat acinar cells in culture. We showed that supramaximal CCK inhibition of secretion resulted from impaired apical secretion and a redirection of exocytic events to restricted basal membrane sites. In contrast, CCK-OPE evoked apical exocytosis and could only induce basolateral exocytosis following activation of PKC. Infusion of supraphysiological concentrations of CCK in rats, a treatment that induced tissue changes reminiscent of mild acute pancreatitis, likewise resulted in rapid displacement of Munc18c from the basal membrane in vivo.
Collapse
Affiliation(s)
- H Y Gaisano
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Huang X, Sheu L, Tamori Y, Trimble WS, Gaisano HY. Cholecystokinin-regulated exocytosis in rat pancreatic acinar cells is inhibited by a C-terminus truncated mutant of SNAP-23. Pancreas 2001; 23:125-33. [PMID: 11484914 DOI: 10.1097/00006676-200108000-00002] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
INTRODUCTION Exocytosis is thought to result from the fusion of vesicle and plasma membranes caused by the formation of a trans-complex between proteins of the vesicle-associated membrane protein (VAMP) family on the vesicle with members of the syntaxin and synaptosomal-associated protein of 25 kd (SNAP-25) families on the plasma membrane. In the pancreatic acinar cell, synaptosomal-associated protein of 23 kd (SNAP-23) is the major SNAP-25 isoform expressed in pancreatic acinar cells, but its role in acinar cell exocytosis has not been determined. AIMS To examine the role of SNAP-23 in regulated exocytosis in acinar cells, we subcloned into adenoviral vectors SNAP-23, SNAP-25, and dominant negative mutants in which the C-terminal domains corresponding to the botulinum neurotoxin A cleavage sites are deleted. METHODOLOGY AND RESULTS High-efficiency infection of rat pancreatic acini in culture with these adenoviruses by subcellular fractionation showed that the overexpressed SNAP-23, SNAP-25, and their truncated mutant proteins were uniformly targeted to the zymogen granules and plasma membrane. To maximally stimulate apical exocytosis from these infected acini, we used the cholecystokinin-phenylethyl ester analog (CCK-OPE), which does not show inhibition of secretion from maximal levels at high doses. CCK-OPE-stimulated amylase release from adenovirus-cytomegalovirus (AdCMV)-SNAP-23 or AdCMV-SNAP-25-infected acini to the same extent as from acini infected with the empty vector. In contrast, CCK-OPE-evoked enzyme secretion from AdCMV-SNAP-23deltaC8- and AdCMV-SNAP-25(1-197)-infected acini were inhibited by 60% and 40%, respectively. The identical targeting of the mutant SNAP-23 and SNAP-25 proteins to the same membrane compartments as SNAP-23 suggests that the inhibition of secretion was a result of their competition against endogenous SNAP-23. This is supported by the fact that this inhibition by the mutant proteins was partially reversed or rescued when the AdCMV-SNAP-25AC8- or AdCMV-SNAP-25(1-197)-infected acini were co-infected with wild-type SNAP-23 or SNAP-25. CONCLUSION From these results, we conclude that SNAP-23 plays a role in CCK-evoked regulated exocytosis in the acinar cells.
Collapse
Affiliation(s)
- X Huang
- Department of Medicine and Physiology, University of Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
21
|
Ji B, Kopin AS, Logsdon CD. Species differences between rat and mouse CCKA receptors determine the divergent acinar cell response to the cholecystokinin analog JMV-180. J Biol Chem 2000; 275:19115-20. [PMID: 10748042 DOI: 10.1074/jbc.m001685200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cholecystokinin (CCK) analog JMV-180 acts as a partial agonist in rats and a full agonist in mice. Whether this functional variability is due to species differences in CCK receptor structure or to alterations in the cellular environment is unknown. To address this question, an adenoviral construct encoding the rat CCK(A) receptor (AdCCK(A)R) was used to express the rat receptor in acini from CCK(A) receptor-deficient mice (CCK(A)R -/-). Infection of CCK(A)R -/- acini in vitro with pAdCCK(A)R led to a time-dependent increase in (125)I-CCK(8) binding. The affinity for JMV-180 of the adenovirally transferred rat and the endogenous mouse CCK(A) receptors was not different. In native mouse acini, JMV-180 acted as a full agonist (both stimulation and inhibition of amylase release). In contrast, in mouse acini expressing pAdCCK(A)R JMV-180 acted as a partial agonist (only stimulation of amylase release). In addition, the pattern of protein synthesis induced by JMV-180 in CCK(A)R -/- mouse acini infected with AdCCK(A)R resembled the pattern observed in wild-type rats (lack of inhibition) rather than the respective pattern in wild-type mice (inhibition). These data suggest that species differences in the CCK(A) receptor of rats and mice account for the observed divergence in the acinar cell response to JMV-180.
Collapse
Affiliation(s)
- B Ji
- Department of Physiology, University of Michigan, Ann Arbor, Michigan 48109-0622 and Tupper Research Institute, New England Medical Center, Boston, Massachusetts 02111, USA
| | | | | |
Collapse
|
22
|
Gaisano HY. A hypothesis: SNARE-ing the mechanisms of regulated exocytosis and pathologic membrane fusions in the pancreatic acinar cell. Pancreas 2000; 20:217-26. [PMID: 10766446 DOI: 10.1097/00006676-200004000-00001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The pancreatic acinar cell has been a classic model to study regulated exocytosis occurring at the apical plasma membrane. The acinar cell is also an excellent model with which to study pathologic membrane fusion events, including aberrant zymogen granule fusion with the lysosome and basolateral exocytosis, which are the earliest cellular events of acute pancreatitis. However, despite much effort, little is known about the precise mechanisms that mediate these physiologic and pathologic membrane fusion events until recently. Over the past 5 years, there has been a major advance in the fundamental understanding of vesicle fusion based on the SNARE hypothesis. A basic tenet of the SNARE hypothesis is that the minimal machinery for membrane fusion is a cognate set of v- and t-SNAREs on opposing membranes. A corollary to this hypothesis is that these SNARE proteins are prevented from spontaneous assembly by clamping proteins. Here, the recent developments in the identification of cognate v- and t-SNAREs and clamping proteins are reviewed, which are strategically located to mediate these physiologic exocytic and pathologic fusion events in the pancreatic acinar cell.
Collapse
Affiliation(s)
- H Y Gaisano
- Department of Medicine and Physiology, University of Toronto, and University Health Network, Ontario, Canada.
| |
Collapse
|
23
|
Roettger BF, Pinon DI, Burghardt TP, Miller LJ. Regulation of lateral mobility and cellular trafficking of the CCK receptor by a partial agonist. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:C539-47. [PMID: 10069980 DOI: 10.1152/ajpcell.1999.276.3.c539] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Partial agonists are effective tools for advancing development of highly selective drugs and providing insights into molecular regulation of cellular functions. Here, we explore the impact of a partial agonist on key aspects of cholecystokinin (CCK) receptor regulation, its lateral mobility and cellular trafficking, in native pancreatic acinar cells and Chinese hamster ovary cells expressing CCK receptor (CHO-CCKR). We developed and characterized a novel fluorescent partial agonist, rhodamine-Gly-[(Nle28, 31)CCK-26-32]-phenethyl ester, that binds specifically and with high affinity to CCK receptors. Such analogs are fully efficacious pancreatic acinar cell secretagogues without supramaximal inhibition that mobilize intracellular calcium with little or no increase in phospholipase C (PLC) activity. Despite minimal phosphorylation of CCK receptors in response to this partial agonist, receptor trafficking was the same as that observed with full agonist (CCK). This included normal internalization via clathrin-dependent endocytosis in CHO-CCKR cells and insulation on the surface of pancreatic acinar cells. Also, as with CCK-occupied receptor, fluorescence recovery after photobleaching of partial agonist-occupied receptor on the acinar cell surface demonstrated a marked temperature-dependent slowing of its rate of diffusion. This was similarly associated with resistance to acid-induced dissociation of ligand. Thus some key molecular regulatory mechanisms for CCK receptor internalization and insulation may be initiated by cellular signaling cascades that are not dependent on PLC activation or receptor phosphorylation.
Collapse
Affiliation(s)
- B F Roettger
- Center for Basic Research in Digestive Diseases and Department of Biochemistry and Molecular Biology, Mayo Clinic and Foundation, Rochester, Minnesota 55905, USA
| | | | | | | |
Collapse
|
24
|
del Valle J. CCK receptor trafficking: a novel paradigm of travel focus on "regulation of lateral mobility and cellular trafficking of the CCK receptor by a partial agonist". THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:C537-8. [PMID: 10069979 DOI: 10.1152/ajpcell.1999.276.3.c537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
25
|
Dong M, Ding XQ, Pinon DI, Hadac EM, Oda RP, Landers JP, Miller LJ. Structurally related peptide agonist, partial agonist, and antagonist occupy a similar binding pocket within the cholecystokinin receptor. Rapid analysis using fluorescent photoaffinity labeling probes and capillary electrophoresis. J Biol Chem 1999; 274:4778-85. [PMID: 9988716 DOI: 10.1074/jbc.274.8.4778] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The molecular basis of ligand binding to receptors provides important insights for drug development. Here, we explore domains of the cholecystokinin (CCK) receptor that are critical for ligand binding, using a novel series of fluorescent photolabile probes, receptor proteolysis, and rapid high resolution separation of peptide fragments by capillary electrophoresis. Each probe incorporated the same fluorophore and a photolabile p-benzoylphenylalanine at the amino terminus of the pharmacophoric domain (residue 24 of CCK-33) of CCK analogues representing full agonist, partial agonist, and antagonist of this receptor. Each was used to label the CCK receptor expressed on Chinese hamster ovary-CCKR cells, with the labeled domain then released by cyanogen bromide cleavage. Capillary electrophoresis with laser-induced fluorescence detection achieved an on-capillary mass sensitivity of 1.6 attomoles (10(-18) mol), with an excellent signal-to-noise ratio. Each of the biologically divergent, but structurally similar probes saturably and specifically labeled the same receptor domain, consistent with conservation of "docking" determinants. This had an apparent mass of 2.9 kDa, most consistent with the first extracellular loop domain. An additional probe having its site of covalent attachment in a different region of the probe (residue 29 of CCK-33) labeled a distinct receptor fragment with differential migration on capillary electrophoresis (third extracellular loop). Identification of the specific receptor residue(s) covalently linked to the amino-terminal probes must await further fragmentation and sequence analysis.
Collapse
Affiliation(s)
- M Dong
- Center for Basic Research in Digestive Diseases, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Darrow JW, Hadac EM, Miller LJ, Sugg EE. Structurally similar small molecule photoaffinity CCK-A agonists and antagonists as novel tools for directly probing 7TM receptors-ligand interactions. Bioorg Med Chem Lett 1998; 8:3127-32. [PMID: 9873689 DOI: 10.1016/s0960-894x(98)00548-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Incorporation of photolabile benzoyl (2a-d) or trifluoromethyl-3H-diazirine (3a-d) substituents into 1,5-benzodiazepine ligands did not significantly impair the rat CCK-A binding affinity of either agonists or antagonists. The modified agonist ligands also retained functional potency and efficacy in the rat amylase assay. Despite their strong structural similarity, the SAR of this limited set of compounds suggests that these small molecule antagonists and agonists might differ in their mode of binding to the CCK-A receptor. Preliminary affinity results show that representative agonists and antagonists from these series can be used to efficiently covalently label the CCK-A receptor.
Collapse
Affiliation(s)
- J W Darrow
- Neurogen Corporation, Branford, CT 06405, USA
| | | | | | | |
Collapse
|
27
|
Grady T, Mah'Moud M, Otani T, Rhee S, Lerch MM, Gorelick FS. Zymogen proteolysis within the pancreatic acinar cell is associated with cellular injury. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:G1010-7. [PMID: 9815031 DOI: 10.1152/ajpgi.1998.275.5.g1010] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The pathological activation of digestive zymogens within the pancreatic acinar cell probably plays a central role in initiating many forms of pancreatitis. To examine the relationship between zymogen activation and acinar cell injury, we investigated the effects of secretagogue treatment on isolated pancreatic acini. Immunofluorescence studies using antibodies to the trypsinogen-activation peptide demonstrated that both CCK (10(-7) M) hyperstimulation and bombesin (10(-5) M) stimulation of isolated acini resulted in trypsinogen processing to trypsin. These treatments also induced the proteolytic processing of procarboxypeptidase A1 to carboxypeptidase A1 (CA1). After CCK hyperstimulation, most CA1 remained in the acinar cell. In contrast, the CA1 generated by bombesin was released from the acinar cell. CCK hyperstimulation of acini was associated with cellular injury, whereas bombesin treatment did not induce injury. These studies suggest that 1) proteolytic zymogen processing occurs within the pancreatic acinar cell and 2) both zymogen activation and the retention of enzymes within the acinar cell may be required to induce injury.
Collapse
Affiliation(s)
- T Grady
- Department of Surgery, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut 06516, USA
| | | | | | | | | | | |
Collapse
|
28
|
Gaisano HY, Ghai M, Malkus PN, Sheu L, Bouquillon A, Bennett MK, Trimble WS. Distinct cellular locations of the syntaxin family of proteins in rat pancreatic acinar cells. Mol Biol Cell 1996; 7:2019-27. [PMID: 8970162 PMCID: PMC276047 DOI: 10.1091/mbc.7.12.2019] [Citation(s) in RCA: 164] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Syntaxins are cytoplasmically oriented integral membrane soluble NEM-sensitive factor receptors (SNAREs; soluble NEM-sensitive factor attachment protein receptors) thought to serve as targets for the assembly of protein complexes important in regulating membrane fusion. The SNARE hypothesis predicts that the fidelity of vesicle traffic is controlled in part by the correct recognition of vesicle SNAREs with their cognate target SNARE partner. Here, we show that in the exocrine acinar cell of the pancreas, multiple syntaxin isoforms are expressed and that they appear to reside in distinct membrane compartments. Syntaxin 2 is restricted to the apical plasma membrane whereas syntaxin 4 is found most abundantly on the basolateral membranes. Surprisingly, syntaxin 3 was found to be localized to a vesicular compartment, the zymogen granule membrane. In addition, we show that these proteins are capable of specific interaction with vesicle SNARE proteins. Their nonoverlapping locations support the general principle of the SNARE hypothesis and provide new insights into the mechanisms of polarized secretion in epithelial cells.
Collapse
Affiliation(s)
- H Y Gaisano
- Department of Medicine, University of Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
29
|
Ozcelebi F, Rao RV, Holicky E, Madden BJ, McCormick DJ, Miller LJ. Phosphorylation of cholecystokinin receptors expressed on Chinese hamster ovary cells. Similarities and differences relative to native pancreatic acinar cell receptors. J Biol Chem 1996; 271:3750-5. [PMID: 8631990 DOI: 10.1074/jbc.271.7.3750] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Phosphorylation of G protein-coupled receptors is an established mechanism for desensitization in response to agonist stimulation. We previously reported phosphorylation of the pancreatic acinar cell cholecystokinin (CCK) receptor and the establishment of two-dimensional phosphopeptide mapping of its sites of phosphorylation (Ozcelebi, F., and Miller, L. J. (1995) J. Biol. Chem. 270, 3435-3441). Here, we use similar techniques to map sites of phosphorylation of the same receptor expressed on a stable receptor-bearing Chinese hamster ovary (CHO)-CCKR cell line. Like the native cell, the CHO-CCKR cell receptor was phosphorylated in response to agonist stimulation in a concentration-dependent manner; however, the time course was quite different. CHO-CCKR cell receptor phosphorylation increased progressively to a plateau after 15 min, while in the acinar cell it peaks within 2 min and returns to baseline over this interval. There were distinct qualitative and quantitative differences in the sites of phosphorylation of the two receptor systems. One site previously attributed to action of a staurosporine-insensitive kinase in the acinar cell was absent in the CHO-CCKR cell. Site-directed mutagenesis was utilized to eliminate predicted sites of protein kinase C action, but only two of four such sites affected the phosphopeptide map of this receptor. Chemical and radiochemical sequencing were performed on these and other phosphopeptides which were present in both the CHO-CCKR cells and agonist-stimulated pancreatic acinar cells to provide direct evidence for the phosphorylation sites actually utilized. Thus, these data support the usefulness and limitations of a model cell system in studying receptor phosphorylation and desensitization.
Collapse
Affiliation(s)
- F Ozcelebi
- Center for Basic Research in Digestive Diseases and the Department of Biochemistry and Molecular Biology, Mayo Clinic and Foundation, Rochester, Minnesota 55905, USA
| | | | | | | | | | | |
Collapse
|
30
|
Roettger BF, Rentsch RU, Hadac EM, Hellen EH, Burghardt TP, Miller LJ. Insulation of a G protein-coupled receptor on the plasmalemmal surface of the pancreatic acinar cell. J Cell Biol 1995; 130:579-90. [PMID: 7622559 PMCID: PMC2120534 DOI: 10.1083/jcb.130.3.579] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Receptor desensitization is a key process for the protection of the cell from continuous or repeated exposure to high concentrations of an agonist. Well-established mechanisms for desensitization of guanine nucleotide-binding protein (G protein)-coupled receptors include phosphorylation, sequestration/internalization, and down-regulation. In this work, we have examined some mechanisms for desensitization of the cholecystokinin (CCK) receptor which is native to the pancreatic acinar cell, and have found the predominant mechanism to be distinct from these recognized processes. Upon fluorescent agonist occupancy of the native receptor, it becomes "insulated" from the effects of acid washing and becomes immobilized on the surface of the plasma membrane in a time- and temperature-dependent manner. This localization was assessed by ultrastructural studies using a colloidal gold conjugate of CCK, and lateral mobility of the receptor was assessed using fluorescence recovery after photobleaching. Of note, recent application of the same morphologic techniques to a CCK receptor-bearing Chinese hamster ovary cell line demonstrated prominent internalization via the clathrin-dependent endocytic pathway, as well as entry into caveolae (Roettger, B.F., R.U. Rentsch, D. Pinon, E. Holicky, E. Hadac, J.M. Larkin, and L.J. Miller, 1995, J. Cell Biol. 128: 1029-1041). These organelles are not observed to represent prominent compartments for the same receptor to traverse in the acinar cell, although fluorescent insulin is clearly internalized in these cells via receptor-mediated endocytosis. In this work, the rate of lateral mobility of the CCK receptor is observed to be similar in both cell types (1-3 x 10(-10) cm2/s), while the fate of the agonist-occupied receptor is quite distinct in each cell. This supports the unique nature of desensitization processes which occur in a cell-specific manner. A plasmalemmal site of insulation of this important receptor on the pancreatic acinar cell could be particularly effective to protect the cell from processes which might initiate pancreatitis, while providing for the rapid resensitization of this receptor to ensure appropriate pancreatic secretion to aid in nutrient assimilation for the organism.
Collapse
Affiliation(s)
- B F Roettger
- Center for Basic Research in Digestive Diseases, Mayo Clinic and Foundation, Rochester, Minnesota 55905, USA
| | | | | | | | | | | |
Collapse
|
31
|
Ozcelebi F, Miller LJ. Phosphopeptide mapping of cholecystokinin receptors on agonist-stimulated native pancreatic acinar cells. J Biol Chem 1995; 270:3435-41. [PMID: 7531708 DOI: 10.1074/jbc.270.7.3435] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The cholecystokinin (CCK) receptor on the rat pancreatic acinar cell is a G protein-coupled receptor that is phosphorylated in response to homologous and heterologous agonist stimulation. In this work we have studied the stoichiometry of receptor phosphorylation and have utilized one-dimensional phosphopeptide mapping after cyanogen bromide cleavage to demonstrate that the third intracellular loop is the predominant domain of phosphorylation of this receptor in response to these treatments. Of the average 5 mol of phosphate/mol of receptor, greater than 95% was on the third loop, with the remainder residing on the carboxyl-terminal tail. Serine residues were the site of greater than 95% of phosphorylation, with threonine representing the remainder, and no phosphotyrosine was detected. Further, we have utilized two-dimensional phosphopeptide mapping after subtilisin cleavage to identify differing sites of CCK receptor phosphorylation which are dependent on the agonist utilized to stimulate this cell. Both qualitative and quantitative differences in phosphorylation sites were observed after acinar cell stimulation with different protein kinase C agonists. Further, distinct phosphopeptides on the map were identified as representing substrate(s) of a staurosporine-insensitive kinase activity stimulated only by receptor occupation with native CCK and were felt to represent site(s) of action of a member of the G protein-coupled receptor kinase family. This represents a sensitive and powerful approach that is applicable to sparse receptors residing in their native cellular environment to assess possible differences in patterns of phosphorylation which may be important in agonist-specific receptor regulation.
Collapse
Affiliation(s)
- F Ozcelebi
- Center for Basic Research in Digestive Diseases, Mayo Clinic and Foundation, Rochester, Minnesota 55905
| | | |
Collapse
|
32
|
Pollo DA, Baldassare JJ, Honda T, Henderson PA, Talkad VD, Gardner JD. Effects of cholecystokinin (CCK) and other secretagogues on isoforms of protein kinase C (PKC) in pancreatic acini. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1224:127-38. [PMID: 7524684 DOI: 10.1016/0167-4889(94)90120-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We used rat pancreatic acini and measured the effects of various agents on digestive enzyme secretion, diacylglycerol (DAG) and the cellular distribution of protein kinase C (PKC) enzyme activity as well as isoforms of PKC determined by quantitative immunoblot analysis. TPA, but not CCK-8, caused translocation of PKC enzyme activity from the cytosol fraction to the membrane fraction. Immunoblot analysis detected PKC-alpha, PKC-delta, PKC-epsilon and PKC-zeta. PKC-beta, PKC-gamma and PKC-eta were not detected. TPA caused translocation of all isoforms from cytosol to membrane, whereas CCK-8 caused translocation of PKC-delta and PKC-epsilon, carbachol caused translocation of PKC-epsilon, and bombesin and secretin caused no detectable translocation of any isoform. Specific receptor antagonists could prevent, as well as reverse completely, the translocation of PKC isoforms caused by CCK-8 or carbachol. Agonists added in sequence with an interposed addition of a specific receptor antagonist caused cycling of PKC-epsilon between cytosol and membrane fractions. Each receptor-mediated agonist that caused translocation of PKC also increased DAG, and with CCK-8 and carbachol cycling of PKC-epsilon between cytosol and membrane was accompanied by corresponding cyclic changes in cellular DAG. CCK-JMV-180, bombesin and secretin increased DAG but did not cause translocation of any PKC isoform. Translocation of a PKC isoform could be accounted for by whether the increased DAG originated from PIP2 (accompanied by translocation) or from phosphatidylcholine (no accompanying translocation). Thus it appeared that DAG, in pancreatic acini, is functionally compartmentalized depending on the source of the lipid. Studies using CCK-8 and CCK-JMV-180 indicated that occupation of the low affinity state of the CCK receptor by either peptide increased DAG from phosphatidylcholine, whereas occupation of the very low affinity state by CCK-8 increased DAG from PIP2 and caused translocation of PKC-delta and PKC-epsilon. TPA stimulated amylase secretion, indicating that activation of PKC can stimulate enzyme secretion; however, with the various receptor-mediated secretagogues there was no consistent, unequivocal correlation between translocation of an isoform of PKC and accompanying changes in enzyme secretion.
Collapse
Affiliation(s)
- D A Pollo
- Department of Internal Medicine, Saint Louis University Health Sciences Center, MO 63104
| | | | | | | | | | | |
Collapse
|
33
|
Gaisano HY, Miller LJ, Foskett JK. Suppression of Ca2+ oscillations induced by cholecystokinin (CCK) and its analog OPE in rat pancreatic acinar cells by low-level protein kinase C activation without transition of the CCK receptor from a high- to low-affinity state. Pflugers Arch 1994; 427:455-62. [PMID: 7971144 DOI: 10.1007/bf00374261] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Cholecystokinin (CCK) analogs, JMV-180 and OPE, release Ca2+ from intracellular stores and induce oscillations in the concentration of cytosolic Ca2+ ([Ca2+]i), but do not generate a detectable rise in inositol 1,4,5-trisphosphate (InsP3) levels. In contrast, high concentrations of CCK elevate InsP3, as well [Ca2+]i, to a peak which decreases to near basal levels without oscillations. The mechanisms which underlie inhibition of [Ca2+]i oscillations observed with high CCK concentrations are unclear, but are believed to involve a low-affinity CCK receptor state. Alternately, CCK analogs may be weak partial agonists of the phospholipase C pathway, whereas native CCK, as a full agonist of this pathway, stimulates low levels of protein kinase C (PKC) activity. Preincubation of acini with 1 nM 12 O-tetradecanoyl-phorbol 13-acetate (TPA) for 15 min at 37 degrees C did not affect OPE binding to acini, but abolished OPE-induced (at 1 microM) [Ca2+]i oscillations without affecting the initial [Ca2+]i spike. These transformed OPE-induced [Ca2+]i responses mimicked those induced by supramaximal CCK octapeptide (CCK-8) concentrations. Inhibition of [Ca2+]i oscillations by 1 nM TPA was reversed by the PKC inhibitor staurosporine (0.2 microM). After [Ca2+]i oscillations were induced with OPE or low concentrations of CCK-8 (20 pM), 1 nM TPA caused a gradual slowing of oscillation frequency over 15-20 min without affecting [Ca2+]i spike amplitude. In contrast, 1 microM TPA inhibited OPE binding and caused a more generalized inhibition of OPE- and CCK-evoked Ca2+ signals.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- H Y Gaisano
- Department of Medicine, University of Toronto, Ontario, Canada
| | | | | |
Collapse
|
34
|
Gaisano HY, Wong D, Sheu L, Foskett JK. Calcium release by cholecystokinin analogue OPE is IP3 dependent in single rat pancreatic acinar cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1994; 267:C220-8. [PMID: 8048482 DOI: 10.1152/ajpcell.1994.267.1.c220] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Cholecystokinin (CCK) and carbachol raise intracellular Ca2+ concentration ([Ca2+]i) in pancreatic acinar cells by elevating inositol 1,4,5-trisphosphate (IP3). CCK analogues JMV-180 and OPE stimulate fully efficacious enzyme secretion and [Ca2+]i oscillations but release Ca2+ from intracellular stores by apparently IP3-independent mechanisms in permeabilized acinar cells. In the present study, we investigated whether OPE mobilizes Ca2+ from IP3-sensitive Ca2+ stores and whether IP3 mediates such responses in single intact cells. OPE and JMV-180 similarly elevated IP3 to low levels compared with those elicited by 10 nM CCK. Depletion of IP3-sensitive stores by elevation of intracellular IP3 using carbachol, microinjection of a nonmetabolizable IP3 analogue, or exposure to thapsigargin, in the absence of extracellular Ca2+, depleted the same Ca2+ stores that were sensitive to OPE. In converse experiments, OPE depleted carbachol- or thapsigargin-sensitive stores, indicating that carbachol-, thapsigargin-, IP3-, and OPE-sensitive Ca2+ stores overlap completely and that stores mobilized by OPE are IP3 sensitive. To determine whether IP3 mediates responses to OPE, cells were microinjected with low-molecular-weight heparin, a competitive inhibited the rise of [Ca2+]i in response to carbachol, OPE, or JMV-180, whereas de-N-sulfated heparin, an inactive heparin, was without effect. These results indicate that CCK analogues release Ca2+ from IP3-sensitive Ca2+ stores by mechanisms involving the IP3 receptor.
Collapse
Affiliation(s)
- H Y Gaisano
- Department of Medicine, University of Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
35
|
Tetanus toxin light chain cleaves a vesicle-associated membrane protein (VAMP) isoform 2 in rat pancreatic zymogen granules and inhibits enzyme secretion. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)32520-6] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
36
|
Talkad VD, Fortune KP, Pollo DA, Shah GN, Wank SA, Gardner JD. Direct demonstration of three different states of the pancreatic cholecystokinin receptor. Proc Natl Acad Sci U S A 1994; 91:1868-72. [PMID: 8127897 PMCID: PMC43265 DOI: 10.1073/pnas.91.5.1868] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We used rat pancreatic acini as well as COS-7 cells transfected with the cloned pancreatic cholecystokinin (CCK) receptor and measured the abilities of CCK octapeptide (CCK-8) and L-364,718 (a CCK receptor antagonist) to inhibit binding of 125I-labeled CCK-8 (125I-CCK-8) and [3H]L-364,718. With pancreatic acini 125I-CCK-8 bound to two different states of the CCK receptor. The high-affinity state (1% of the receptors) had a Kd for CCK-8 of 985 pM and the low-affinity state (19% of the receptors) had a Kd for CCK-8 of 30 nM. [3H]L-364,718 bound to low-affinity receptors and to a previously unrecognized very-low-affinity state (80% of the receptors) having a Kd for CCK-8 of 13 microM. L-364,718 had the same affinity (Kd 3 nM) for each of the three different states of the CCK receptor. Similar measurements using transfected COS cells also identified three different states of the CCK receptor, with the very-low-affinity state being the most abundant. Thus, the ability of the CCK receptor to exist in three different states is an intrinsic property of the CCK receptor molecule itself.
Collapse
Affiliation(s)
- V D Talkad
- Department of Internal Medicine, Saint Louis University Medical Center, MO 63104
| | | | | | | | | | | |
Collapse
|
37
|
Yule DI, Williams JA. CCK antagonists reveal that CCK-8 and JMV-180 interact with different sites on the rat pancreatic acinar cell CCKA receptor. Peptides 1994; 15:1045-51. [PMID: 7527529 DOI: 10.1016/0196-9781(94)90069-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The ability of CCKA antagonists to inhibit full and partial CCK agonists of the rat pancreatic acinar cell CCKA receptor has been studied. When isolated rat pancreatic acini were superfused with CCK-8 (10 pM-1 nM) or CCK-4 (1 microM), an increase in [Ca2+]i signal was initiated. Concurrent superfusion of either L-364,718 (0.1 microM) or lorglumide (10 microM), chemically distinct, specific, potent antagonists of the CCKA receptor, resulted in a rapid inhibition of the [Ca2+]i signal initiated by all concentrations of CCK-8. In contrast, Ca2+ oscillations, initiated by JMV-180 (25 nM-1 microM), a partial agonist analogue of CCK-8, were essentially unaffected by concurrent superfusion of either L-364,718 or lorglumide. When JMV-179, an analogue of JMV-180 that exhibits characteristics of a pure antagonist, was superfused concurrently with either CCK-8 or JMV-180, Ca2+ oscillations were inhibited, even in the presence of 0.1 microM L-364,718. In a similar fashion, amylase secretion stimulated by CCK-8 was markedly attenuated by L-364,718, lorglumide, and JMV-179, whereas secretion stimulated by JMV-180 was only inhibited by JMV-179. A model is proposed to reconcile this data, based on the assumption that JMV-180 and CCK-8 interact with discrete sites on the CCKA receptor, which are differentially affected by the binding of antagonists. This model may also explain how a single receptor may transduce multiple signals in response to different agonists.
Collapse
Affiliation(s)
- D I Yule
- Department of Physiology, University of Michigan, Ann Arbor 48109
| | | |
Collapse
|
38
|
Silvente-Poirot S, Dufresne M, Vaysse N, Fourmy D. The peripheral cholecystokinin receptors. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 215:513-29. [PMID: 8354258 DOI: 10.1111/j.1432-1033.1993.tb18061.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- S Silvente-Poirot
- Institut Louis Bugnard, Institut National de la Santé et de la Recherche Médicale, U 151, Centre Hospitalier Universitaire de Rangueil, Toulouse, France
| | | | | | | |
Collapse
|
39
|
Silvente Poirot S, Hadjiivanova C, Escrieut C, Dufresne M, Martinez J, Vaysse N, Fourmy D. Study of the states and populations of the rat pancreatic cholecystokinin receptor using the full peptide antagonist JMV 179. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 212:529-38. [PMID: 8444190 DOI: 10.1111/j.1432-1033.1993.tb17690.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The full peptide antagonist of the pancreatic cholecystokinin (CCK) receptor, JMV 179, [Boc-Tyr(SO3H)-Ahx-Gly-dTrp-Ahx-Asp phenylethyl ester, where Tyr(SO3H) = sulfated tyrosine, Ahx = 6-aminohexanoic acid] was modified at its N-terminus by incorporation of p-hydroxyphenyl propionate (Bolton-Hunter reagent, BH) and was subsequently radioiodinated. After HPLC purification, 125I-BH-JMV-179, a CCK antagonist radioligand of high specific activity (2000 Ci/mmol) was obtained. 125I-BH-JMV-179 bound to a single population of sites on rat pancreatic plasma membranes, (Kd = 3.9 nM, Bmax = 40 pmol/mg protein). Binding was dependent on time, temperature, and protein concentration, and was fully reversible. JMV 179 radioligand detected four times as many sites as an agonist radioligand [C. Hadjiivanova, M. Dufresne, S. Poirot, P. Sozzani, N. Vaysse, L. Moroder and D. Fourmy (1992) Eur. J. Biochem. 204, 273-279]. Agonists and antagonists of the A- and B-subtype CCK/gastrin receptors inhibited 125I-BH-JMV-179 binding with an order of potency compatible with the A-subtype CCK receptor pharmacology. Moreover, the sulfate group on the tyrosine residue of the CCK peptides appeared to be of much less importance for antagonist affinity than for agonist affinity. Inhibition of 125I-BH-JMV-179 binding by agonists (except JMV 180), demonstrated the presence of two affinity classes of binding sites. The population of sites having an apparent high affinity for CCK represented 30 pmol/mg protein and threefold the number of high-affinity sites previously identified by an agonist radioligand. In presence of non-hydrolyzable GTP, all the sites bound CCK agonists with a low affinity. Moreover, saturation analysis of JMV 179 radioligand binding in the presence of CCK indicated that CCK interacted competitively with all JMV 179 sites and demonstrated binding of JMV 179 radioligand to two distinct affinity classes of sites. In the presence of GTP[S] a single affinity class of sites for JMV 179 radioligand was found as in the control experiments without CCK. This study, with the first CCK peptide antagonist radioligand, demonstrates that CCK receptors exist in two interconvertible affinity states regulated by guanine-nucleotide-binding regulatory protein(s) in rat pancreatic plasma membranes. JMV 179 radioligand does not induce receptor coupling but distinguishes the two affinity states of the CCK receptors. JMV 179 reveals the existence of populations of high-affinity and low-affinity sites for CCK which had not previously been detected by agonist radioligand binding, thus suggesting heterogeneity of CCK receptor sites in membranes.
Collapse
Affiliation(s)
- S Silvente Poirot
- Institut National de la Santé et de la Recherche Médicale, Unité 151, Institut L. Bugnard, Centre Hospitalier Universitaire de Rangueil, Toulouse, France
| | | | | | | | | | | | | |
Collapse
|
40
|
Marino CR, Leach SD, Schaefer JF, Miller LJ, Gorelick FS. Characterization of cAMP-dependent protein kinase activation by CCK in rat pancreas. FEBS Lett 1993; 316:48-52. [PMID: 7678554 PMCID: PMC2830555 DOI: 10.1016/0014-5793(93)81734-h] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
This study reports on the use of a new sensitive assay of cAMP-dependent protein kinase activity to examine the effect of cholecystokinin (CCK) on the cAMP second messenger cascade in rat pancreatic acini. Treatment of acini with both low (pM) and high (nM) concentrations of CCK was associated with an increase in cAMP-dependent protein kinase activity. The increases in kinase activity were detected in the absence of phosphodiesterase inhibition, a condition required to detect a measurable increase in cellular cAMP in these cells. Furthermore, the cAMP cascade was dissociated from the secretory effects of CCK, since the CCK analogue, OPE, mediates enzyme secretion but does not increase cellular cAMP levels or kinase activity.
Collapse
Affiliation(s)
- C R Marino
- Department of Medicine, Yale University School of Medicine, New Haven, CT 06510
| | | | | | | | | |
Collapse
|
41
|
Gaisano HY, Miller LJ. Complex role of protein kinase C in mediating the supramaximal inhibition of pancreatic secretion observed with cholecystokinin. Biochem Biophys Res Commun 1992; 187:498-506. [PMID: 1520340 DOI: 10.1016/s0006-291x(05)81522-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Protein kinase C appears to play an important, yet complex role in the supramaximal inhibition of pancreatic acinar cell secretion observed in response to cholecystokinin (CCK). The addition of protein kinase C activation to the concentration-response curve of a partial agonist acting at the CCK receptor (a phenethyl ester analogue of CCK), transforms a curve without supramaximal inhibition to a full agonist curve typical of CCK. This effect can be elicited by low concentrations of phorbol ester (50pM to 1nM 12-0-tetradecanoyl-phorbol-13-acetate) or by hormonal agonists (0.1 microM carbamylcholine, 10pM bombesin, 1pM CCK-8) which activate protein kinase C, but not by agonists acting via alternate second messengers (VIP). Of interest, this effect is dependent on preincubation of the acinar cells with the protein kinase C activator at 37 degrees C, with the effect rapidly reversed by transient exposure of the cells to lower temperature. This is consistent with mediation by a phosphorylation event. However, the requirement for an extended (greater than 15 min) preincubation period when using minimal kinase activation suggests that this phenomenon is more complicated than a simple bimolecular phosphorylation event and likely includes a series of events such as translocation of substrates and/or enzymes involved.
Collapse
Affiliation(s)
- H Y Gaisano
- Center for Basic Research in Digestive Diseases, Mayo Clinic and Foundation, Rochester, MN 55905
| | | |
Collapse
|
42
|
U73122 inhibits Ca2+ oscillations in response to cholecystokinin and carbachol but not to JMV-180 in rat pancreatic acinar cells. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)49643-9] [Citation(s) in RCA: 235] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
43
|
Miller LJ, Hadac EM, Gates LK, Gaisano HY. Binding of a phenethyl ester analogue of cholecystokinin to the solubilized pancreatic cholecystokinin receptor: use in ligand-affinity chromatography. Biochem Biophys Res Commun 1992; 183:396-404. [PMID: 1550549 DOI: 10.1016/0006-291x(92)90494-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Pancreatic acinar cells have both high and low affinity receptors for cholecystokinin (CCK), yet their membranes appear to possess only a single class of binding sites. Recently, gallbladder membrane CCK receptors were shown to undergo inter-conversion between two affinity states dependent on G protein coupling. Keys for that observation were the differential binding affinities of CCK and a phenethyl ester analogue of CCK (OPE), with the high affinity state binding CCK with higher affinity than OPE, and the low affinity state binding OPE with higher affinity than CCK. Here, we performed analogous experiments using these ligands and both pancreatic membranes and a solubilized preparation. Both preparations were found to have only single affinity states of this receptor. However, the state on membranes had a higher affinity for CCK than for OPE, and that on the solubilized preparation had a higher affinity for OPE than for CCK. This supports the hypothesis that the ternary complex of ligand-receptor-G protein found in membranes represents the high affinity state of this receptor, while the uncoupled form of this receptor after solubilization represents its low affinity state. The high affinity of OPE for the solubilized receptor can be utilized in a purification strategy to follow receptor-bearing fractions and to provide an efficient and specific affinity-binding step.
Collapse
Affiliation(s)
- L J Miller
- Center for Basic Research in Digestive Diseases, Mayo Clinic and Foundation, Rochester, MN 55905
| | | | | | | |
Collapse
|
44
|
Leach SD, Gorelick FS, Modlin IM. New perspectives on acute pancreatitis. SCANDINAVIAN JOURNAL OF GASTROENTEROLOGY. SUPPLEMENT 1992; 192:29-38. [PMID: 1439566 DOI: 10.3109/00365529209095976] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The past decade has witnessed considerable changes in the clinical management of acute pancreatitis. Simultaneously, significant advances have been made in understanding the cellular and biochemical events involved in the initiation of this disease. This review summarizes recent clinical and scientific progress regarding acute pancreatitis and suggests areas for future investigation.
Collapse
Affiliation(s)
- S D Leach
- Dept. of Surgery, Yale University School of Medicine, New Haven, Connecticut 06510
| | | | | |
Collapse
|
45
|
Gorelick FS, Modlin IM, Leach SD, Carangelo R, Katz M. Intracellular proteolysis of pancreatic zymogens. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 1992; 65:407-20; discussion 437-40. [PMID: 1340058 PMCID: PMC2589730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Activation of pancreatic digestive zymogens within the pancreatic acinar cell may be an early event in the development of pancreatitis. To detect such activation, an immunoblot assay has been developed that measures the relative amounts of inactive zymogens and their respective active enzyme forms. Using this assay, high doses of cholecystokinin or carbachol were found to stimulate the intracellular conversion of at least three zymogens (procarboxypeptidase A1, procarboxypeptidase B, and chymotrypsinogen 2) to their active forms. Thus, this conversion may be a generalized phenomenon of pancreatic zymogens. The conversion is detected within ten minutes of treatment and is not associated with changes in acinar cell morphology; it has been predicted that the lysosomal thiol protease, cathepsin B, may initiate this conversion. Small amounts of cathepsin B are found in the secretory pathway, and cathepsin B can activate trypsinogen in vitro; however, exposure of acini to a thiol protease inhibitor (E64) did not block this conversion. Conversion was inhibited by the serine protease inhibitor, benzamidine, and by raising the intracellular pH, using chloroquine or monensin. This limited proteolytic conversion appears to require a low pH compartment and a serine protease activity. After long periods of treatment (60 minutes), the amounts of the active enzyme forms began to decrease; this observation suggested that the active enzyme forms were being degraded. Treatment of acini with E64 reduced this late decrease in active enzyme forms, suggesting that thiol proteases, including lysosomal hydrolases, may be involved in the degradation of the active enzyme forms. These findings indicate that pathways for zymogen activation as well as degradation of active enzyme forms are present within the pancreatic acinar cell.
Collapse
Affiliation(s)
- F S Gorelick
- Department of Medicine, Department of Veterans Affairs Medical Center, West Haven, Connecticut 06516
| | | | | | | | | |
Collapse
|
46
|
Rolland M, Rodriguez M, Lignon MF, Galas MC, Laur J, Aumelas A, Martinez J. Synthesis and biological activity of 2-phenylethyl ester analogues of C-terminal heptapeptide of cholecystokinin modified in Trp 30 region. INTERNATIONAL JOURNAL OF PEPTIDE AND PROTEIN RESEARCH 1991; 38:181-92. [PMID: 1723720 DOI: 10.1111/j.1399-3011.1991.tb01427.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have tried to evaluate the significance of the tryptophan side chain residue and of the surrounding peptide bonds in the antagonist activity of cholecystokinin analogues lacking the C-terminal amide function and having a D-tryptophan. In order to perform this study, analogues of the C-terminal heptapeptide of cholecystokinin were synthesized by replacing the C-terminal phenylalanine residue with 2-phenylethyl alcohol and by either replacing the tryptophan residue with an alanine, a norleucine and a phenylalanine residue, or introducing a "reduced peptide bond" in the tryptophan 30 region. Most of these compounds were able to reproduce only part of the response of cholecystokinin in stimulating amylase release from rat pancreatic acini, as was already observed for 2-phenylethyl ester analogues of CCK. These results point out the key role of tryptophan 30 in the biological response of cholecystokinin.
Collapse
Affiliation(s)
- M Rolland
- CCIPE, Faculty of Pharmacy, Montpellier, France
| | | | | | | | | | | | | |
Collapse
|
47
|
Down-regulation and recycling of high affinity cholecystokinin receptors on pancreatic acinar cells. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)99237-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
48
|
Piiper A, Plusczyk T, Eckhardt L, Schulz I. Effects of cholecystokinin, cholecystokinin JMV-180 and GTP analogs on enzyme secretion from permeabilized acini and chloride conductance in isolated zymogen granules of the rat pancreas. EUROPEAN JOURNAL OF BIOCHEMISTRY 1991; 197:391-8. [PMID: 1902787 DOI: 10.1111/j.1432-1033.1991.tb15923.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Previous studies have shown that hormonal activation of the Cl- conductance in pancreatic zymogen granules (ZG) is closely related to enzyme secretion from acinar cells. We have now examined the role of guanine nucleotides in stimulated and unstimulated protein secretion from isolated digitonin-permeabilized pancreatic acini and in the Cl- conductance of isolated ZG. Protein secretion from permeabilized isolated acini, measured at 0.1 mM Ca2+, increased with increasing cholecystokinin octapeptide (CCK-8) concentrations and decreased at high CCK-8 concentrations. The maximum secretion, approximately twice the control level, was reached at 1 nM CCK-8. The CCK analog, CCK JMV-180, which supposedly acts as an agonist on high-affinity CCK receptors and as an antagonist on low-affinity CCK receptors, stimulated maximum enzyme secretion at a CCK JMV-180 concentration of 0.1 microM and no decrease in secretion was observed at higher CCK JMV-180 concentrations, 0.1 mM guanosine 5'-[gamma-thio]triphosphate (GTP [S]) also increased the protein release by approximately twice that of the control and shifted the CCK-8 concentration causing maximum stimulation from 1 nM to 0.01 nM. GTP[S] concentrations greater than 0.1 mM inhibited protein release evoked by an optimal concentration of 1 nM CCK-8, 0.1 mM GTP[S] had no pronounced effect on the protein secretion stimulated by low concentrations of CCK JMV-180, but inhibited protein secretion evoked by CCK JMV-180 concentrations greater than 0.1 microM. This indicates that guanosine-nucleotide-binding proteins [G protein(s)] coupling to CCK receptors also mediate both CCK-induced increases and CCK-induced decreases of enzyme secretion at low and high CCK concentrations, respectively. ZG were prepared on a Percoll gradient from CCK-8-stimulated or CCK-JMV-180-stimulated and unstimulated acini. Their Cl- conductances were estimated in the absence of Ca2+ and in the presence of 1 mM EGTA from the rate of decrease in absorbance following addition of the K+ ionophore valinomycin as a measure of ZG osmotic lysis. The Cl- conductance in ZG from CCK-8-stimulated and CCK-JMV-180-stimulated acini was maximally activated at 1 pM and 10 nM respectively. At higher agonist concentrations, Cl- conductance was decreased. Direct addition of 10 microM GTP[S] to isolated ZG from unstimulated acini increased the rate of lysis by approximately 40% of the control value. This effect was approximately additive to that of CCK-8 or of CCK JMV-180 prestimulation.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- A Piiper
- Max-Planck-Institut für Biophysik, Frankfurt am Main, Federal Republic of Germany
| | | | | | | |
Collapse
|
49
|
|
50
|
Abstract
Acinar cells are one of the best studied models of exocytotic secretion. A number of different hormones and neurotransmitters interact with specific membrane receptors, and it is commonly held that pancreatic secretagogues stimulate enzyme release via the elevation of either cytosolic free Ca2+ or cellular cyclic adenosine monophosphate. The discovery of the pivotal role played by phospholipid metabolism in the chain of events leading to secretion, together with the introduction of sensitive techniques to monitor cytosolic free Ca2+, has generated a series of studies that have challenged this classical model. Thus, several observations in pancreatic acini as well as other cell types have argued against the notion that a generalized increase in cytosolic free Ca2+ represents a sufficient and necessary stimulus for exocytosis in nonexcitable cells. Furthermore, the demonstration that a single agonist activates multiple transduction pathways has served to refute the schematic view that receptor agonists activate only one second messenger system. The aim of this article is to review the recent advances in understanding the molecular and cellular mechanisms of signal transduction, with particular emphasis on the inositol lipid pathway, and to integrate this information into a new working model of enzyme secretion from acinar cells.
Collapse
Affiliation(s)
- R Bruzzone
- Department of Anatomy and Cellular Biology, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|