1
|
Rawat C, Heemers HV. Alternative splicing in prostate cancer progression and therapeutic resistance. Oncogene 2024; 43:1655-1668. [PMID: 38658776 PMCID: PMC11136669 DOI: 10.1038/s41388-024-03036-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/26/2024]
Abstract
Prostate cancer (CaP) remains the second leading cause of cancer deaths in western men. CaP mortality results from diverse molecular mechanisms that mediate resistance to the standard of care treatments for metastatic disease. Recently, alternative splicing has been recognized as a hallmark of CaP aggressiveness. Alternative splicing events cause treatment resistance and aggressive CaP behavior and are determinants of the emergence of the two major types of late-stage treatment-resistant CaP, namely castration-resistant CaP (CRPC) and neuroendocrine CaP (NEPC). Here, we review recent multi-omics data that are uncovering the complicated landscape of alternative splicing events during CaP progression and the impact that different gene transcript isoforms can have on CaP cell biology and behavior. We discuss renewed insights in the molecular machinery by which alternative splicing occurs and contributes to the failure of systemic CaP therapies. The potential for alternative splicing events to serve as diagnostic markers and/or therapeutic targets is explored. We conclude by considering current challenges and promises associated with splicing-modulating therapies, and their potential for clinical translation into CaP patient care.
Collapse
Affiliation(s)
- Chitra Rawat
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Hannelore V Heemers
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.
| |
Collapse
|
2
|
Nambu Y, Shirakawa T, Osawa K, Nishio H, Nozu K, Matsuo M, Awano H. Brothers with Becker muscular dystrophy show discordance in skeletal muscle computed tomography findings: A case report. SAGE Open Med Case Rep 2024; 12:2050313X231221436. [PMID: 38187815 PMCID: PMC10768573 DOI: 10.1177/2050313x231221436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 11/29/2023] [Indexed: 01/09/2024] Open
Abstract
Becker muscular dystrophy is caused by DMD mutations and is characterized by progressive muscle atrophy. The wide variations observed in muscle atrophy progression in Becker muscular dystrophy are considered multifactorial, including differences in mutations and environmental factors. In this case, two brothers, aged 2 and 3 years, had the identical DMD mutation, confirming their Becker muscular dystrophy diagnosis. They began using handrails when ascending and descending stairs at the age of 16 due to progressive muscular weakness. Over an 18-year follow-up, the older brother consistently had high serum creatine kinase levels, significantly over median levels. Muscle computed tomography finings revealed that the older brother's gluteus maximus and vastus femoris cross-sectional areas were only half and one-third of the younger brother's, respectively. The mean computed tomography values of gluteus maximus and vastus femoris were significantly lower in the older brother. Our report suggests that muscle atrophy in Becker muscular dystrophy cannot be solely explained by dystrophin mutation or environmental factors.
Collapse
Affiliation(s)
- Yoshinori Nambu
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Taku Shirakawa
- Faculty of Health Sciences, Department of Medical Technology, Kobe Tokiwa University, Kobe, Japan
| | - Kayo Osawa
- Faculty of Health Sciences, Department of Medical Technology, Kobe Tokiwa University, Kobe, Japan
| | - Hisahide Nishio
- Faculty of Rehabilitation, Research Center for Locomotion Biology, Kobe Gakuin University, Kobe, Japan
| | - Kandai Nozu
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masafumi Matsuo
- Faculty of Health Sciences, Department of Medical Technology, Kobe Tokiwa University, Kobe, Japan
| | - Hiroyuki Awano
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
- Organization for Research Initiative and Promotion, Tottori University, Yonago, Japan
| |
Collapse
|
3
|
Temaj G, Chichiarelli S, Saha S, Telkoparan-Akillilar P, Nuhii N, Hadziselimovic R, Saso L. An intricate rewiring of cancer metabolism via alternative splicing. Biochem Pharmacol 2023; 217:115848. [PMID: 37813165 DOI: 10.1016/j.bcp.2023.115848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/05/2023] [Accepted: 10/05/2023] [Indexed: 10/11/2023]
Abstract
All human genes undergo alternative splicing leading to the diversity of the proteins. However, in some cases, abnormal regulation of alternative splicing can result in diseases that trigger defects in metabolism, reduced apoptosis, increased proliferation, and progression in almost all tumor types. Metabolic dysregulations and immune dysfunctions are crucial factors in cancer. In this respect, alternative splicing in tumors could be a potential target for therapeutic cancer strategies. Dysregulation of alternative splicing during mRNA maturation promotes carcinogenesis and drug resistance in many cancer types. Alternative splicing (changing the target mRNA 3'UTR binding site) can result in a protein with altered drug affinity, ultimately leading to drug resistance.. Here, we will highlight the function of various alternative splicing factors, how it regulates the reprogramming of cancer cell metabolism, and their contribution to tumor initiation and proliferation. Also, we will discuss emerging therapeutics for treating tumors via abnormal alternative splicing. Finally, we will discuss the challenges associated with these therapeutic strategies for clinical applications.
Collapse
Affiliation(s)
- Gazmend Temaj
- Faculty of Pharmacy, College UBT, 10000 Prishtina, Kosovo
| | - Silvia Chichiarelli
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, 00185 Rome, Italy.
| | - Sarmistha Saha
- Department of Biotechnology, GLA University, Mathura 00185, Uttar Pradesh, India
| | | | - Nexhibe Nuhii
- Department of Pharmacy, Faculty of Medical Sciences, State University of Tetovo, 1200 Tetovo, Macedonia
| | - Rifat Hadziselimovic
- Faculty of Science, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", La Sapienza University, 00185 Rome, Italy.
| |
Collapse
|
4
|
Abstract
Muscular dystrophies are a group of genetic disorders characterized by varying degrees of progressive muscle weakness and degeneration. They are clinically and genetically heterogeneous but share the common histological features of dystrophic muscle. There is currently no cure for muscular dystrophies, which is of particular concern for the more disabling and/or lethal forms of the disease. Through the years, several therapies have encouragingly been developed for muscular dystrophies and include genetic, cellular, and pharmacological approaches. In this chapter, we undertake a comprehensive exploration of muscular dystrophy therapeutics under current development. Our review includes antisense therapy, CRISPR, gene replacement, cell therapy, nonsense suppression, and disease-modifying small molecule compounds.
Collapse
|
5
|
Barresi V, Musmeci C, Rinaldi A, Condorelli DF. Transcript-Targeted Therapy Based on RNA Interference and Antisense Oligonucleotides: Current Applications and Novel Molecular Targets. Int J Mol Sci 2022; 23:ijms23168875. [PMID: 36012138 PMCID: PMC9408055 DOI: 10.3390/ijms23168875] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/03/2022] [Accepted: 08/07/2022] [Indexed: 12/28/2022] Open
Abstract
The development of novel target therapies based on the use of RNA interference (RNAi) and antisense oligonucleotides (ASOs) is growing in an exponential way, challenging the chance for the treatment of the genetic diseases and cancer by hitting selectively targeted RNA in a sequence-dependent manner. Multiple opportunities are taking shape, able to remove defective protein by silencing RNA (e.g., Inclisiran targets mRNA of protein PCSK9, permitting a longer half-life of LDL receptors in heterozygous familial hypercholesteremia), by arresting mRNA translation (i.e., Fomivirsen that binds to UL123-RNA and blocks the translation into IE2 protein in CMV-retinitis), or by reactivating modified functional protein (e.g., Eteplirsen able to restore a functional shorter dystrophin by skipping the exon 51 in Duchenne muscular dystrophy) or a not very functional protein. In this last case, the use of ASOs permits modifying the expression of specific proteins by modulating splicing of specific pre-RNAs (e.g., Nusinersen acts on the splicing of exon 7 in SMN2 mRNA normally not expressed; it is used for spinal muscular atrophy) or by downregulation of transcript levels (e.g., Inotersen acts on the transthryretin mRNA to reduce its expression; it is prescribed for the treatment of hereditary transthyretin amyloidosis) in order to restore the biochemical/physiological condition and ameliorate quality of life. In the era of precision medicine, recently, an experimental splice-modulating antisense oligonucleotide, Milasen, was designed and used to treat an 8-year-old girl affected by a rare, fatal, progressive form of neurodegenerative disease leading to death during adolescence. In this review, we summarize the main transcriptional therapeutic drugs approved to date for the treatment of genetic diseases by principal regulatory government agencies and recent clinical trials aimed at the treatment of cancer. Their mechanism of action, chemical structure, administration, and biomedical performance are predominantly discussed.
Collapse
|
6
|
An Antisense Oligonucleotide against a Splicing Enhancer Sequence within Exon 1 of the MSTN Gene Inhibits Pre-mRNA Maturation to Act as a Novel Myostatin Inhibitor. Int J Mol Sci 2022; 23:ijms23095016. [PMID: 35563408 PMCID: PMC9101285 DOI: 10.3390/ijms23095016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 11/17/2022] Open
Abstract
Antisense oligonucleotides (ASOs) are agents that modulate gene function. ASO-mediated out-of-frame exon skipping has been employed to suppress gene function. Myostatin, encoded by the MSTN gene, is a potent negative regulator of skeletal muscle growth. ASOs that induce skipping of out-of-frame exon 2 of the MSTN gene have been studied for their use in increasing muscle mass. However, no ASOs are currently available for clinical use. We hypothesized that ASOs against the splicing enhancer sequence within exon 1 of the MSTN gene would inhibit maturation of pre-mRNA, thereby suppressing gene function. To explore this hypothesis, ASOs against sequences of exon 1 of the MSTN gene were screened for their ability to reduce mature MSTN mRNA levels. One screened ASO, named KMM001, decreased MSTN mRNA levels in a dose-dependent manner and reciprocally increased MSTN pre-mRNA levels. Accordingly, KMM001 decreased myostatin protein levels. KMM001 inhibited SMAD-mediated myostatin signaling in rhabdomyosarcoma cells. Remarkably, it did not decrease GDF11 mRNA levels, indicating myostatin-specific inhibition. As expected, KMM001 enhanced the proliferation of human myoblasts. We conclude that KMM001 is a novel myostatin inhibitor that inhibits pre-mRNA maturation. KMM001 has great promise for clinical applications and should be examined for its ability to treat various muscle-wasting conditions.
Collapse
|
7
|
Roshmi RR, Yokota T. Pharmacological Profile of Viltolarsen for the Treatment of Duchenne Muscular Dystrophy: A Japanese Experience. Clin Pharmacol 2021; 13:235-242. [PMID: 34938127 PMCID: PMC8688746 DOI: 10.2147/cpaa.s288842] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/12/2021] [Indexed: 01/11/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a fatal, X-linked recessive disorder characterized by progressive muscle loss and cardiorespiratory complications. Mutations in the DMD gene that eliminate the production of dystrophin protein are the underlying causes of DMD. Viltolarsen is a drug of phosphorodiamidate morpholino oligomer (PMO) chemistry, designed to skip exon 53 of the DMD gene. It aims to produce truncated but partially functional dystrophin in DMD patients and restore muscle function. Based on a preclinical study showing the ability of antisense PMOs targeting the DMD gene to improve muscle function in a large animal model, viltolarsen was developed by Nippon Shinyaku and the National Center of Neurology and Psychiatry in Japan. Following clinical trials conducted in Japan, Canada, and the United States showing significant improvements in muscle function, viltolarsen was approved for medical use in Japan in March 2020 and the United States in August 2020, respectively. Viltolarsen is a mutation-specific drug and will work for 8% of the persons with DMD who carry mutations amenable to exon 53 skipping. This review summarizes the pharmacological profile of viltolarsen, important clinical trials, and challenges, focusing on the contribution of Japanese patients and researchers in its development.
Collapse
Affiliation(s)
- Rohini Roy Roshmi
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| | - Toshifumi Yokota
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
8
|
Ito K, Takakusa H, Kakuta M, Kanda A, Takagi N, Nagase H, Watanabe N, Asano D, Goda R, Masuda T, Nakamura A, Onishi Y, Onoda T, Koizumi M, Takeshima Y, Matsuo M, Takaishi K. Renadirsen, a Novel 2'OMeRNA/ENA ® Chimera Antisense Oligonucleotide, Induces Robust Exon 45 Skipping for Dystrophin In Vivo. Curr Issues Mol Biol 2021; 43:1267-1281. [PMID: 34698059 PMCID: PMC8928966 DOI: 10.3390/cimb43030090] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 01/16/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a progressive muscle-wasting disease caused by out-of-frame or nonsense mutation in the dystrophin gene. It begins with a loss of ambulation between 9 and 14 years of age, followed by various other symptoms including cardiac dysfunction. Exon skipping of patients’ DMD pre-mRNA induced by antisense oligonucleotides (AOs) is expected to produce shorter but partly functional dystrophin proteins, such as those possessed by patients with the less severe Becker muscular dystrophy. We are working on developing modified nucleotides, such as 2′-O,4′-C-ethylene-bridged nucleic acids (ENAs), possessing high nuclease resistance and high affinity for complementary RNA strands. Here, we demonstrate the preclinical characteristics (exon-skipping activity in vivo, stability in blood, pharmacokinetics, and tissue distribution) of renadirsen, a novel AO modified with 2′-O-methyl RNA/ENA chimera phosphorothioate designed for dystrophin exon 45 skipping and currently under clinical trials. Notably, systemic delivery of renadirsen sodium promoted dystrophin exon skipping in cardiac muscle, skeletal muscle, and diaphragm, compared with AOs with the same sequence as renadirsen but conventionally modified by PMO and 2′OMePS. These findings suggest the promise of renadirsen sodium as a therapeutic agent that improves not only skeletal muscle symptoms but also other symptoms in DMD patients, such as cardiac dysfunction.
Collapse
Affiliation(s)
- Kentaro Ito
- Specialty Medicine Research Laboratories I, Daiichi Sankyo Co., Ltd., Shinagawa, Tokyo 1408710, Japan; (K.I.); (A.K.); (H.N.)
| | - Hideo Takakusa
- Drug Metabolism and Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd., Shinagawa, Tokyo 1408710, Japan; (H.T.); (N.W.); (D.A.); (R.G.)
| | - Masayo Kakuta
- Medical Information Department, Daiichi Sankyo Co., Ltd., Chuo, Tokyo 1038426, Japan;
| | - Akira Kanda
- Specialty Medicine Research Laboratories I, Daiichi Sankyo Co., Ltd., Shinagawa, Tokyo 1408710, Japan; (K.I.); (A.K.); (H.N.)
| | - Nana Takagi
- Safety and Risk Management Department, Daiichi Sankyo Co., Ltd., Chuo, Tokyo 1038426, Japan;
| | - Hiroyuki Nagase
- Specialty Medicine Research Laboratories I, Daiichi Sankyo Co., Ltd., Shinagawa, Tokyo 1408710, Japan; (K.I.); (A.K.); (H.N.)
| | - Nobuaki Watanabe
- Drug Metabolism and Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd., Shinagawa, Tokyo 1408710, Japan; (H.T.); (N.W.); (D.A.); (R.G.)
| | - Daigo Asano
- Drug Metabolism and Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd., Shinagawa, Tokyo 1408710, Japan; (H.T.); (N.W.); (D.A.); (R.G.)
| | - Ryoya Goda
- Drug Metabolism and Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd., Shinagawa, Tokyo 1408710, Japan; (H.T.); (N.W.); (D.A.); (R.G.)
| | - Takeshi Masuda
- Modality Research Laboratories, Daiichi Sankyo Co., Ltd., Shinagawa, Tokyo 1409710, Japan; (T.M.); (A.N.); (Y.O.); (M.K.)
| | - Akifumi Nakamura
- Modality Research Laboratories, Daiichi Sankyo Co., Ltd., Shinagawa, Tokyo 1409710, Japan; (T.M.); (A.N.); (Y.O.); (M.K.)
| | - Yoshiyuki Onishi
- Modality Research Laboratories, Daiichi Sankyo Co., Ltd., Shinagawa, Tokyo 1409710, Japan; (T.M.); (A.N.); (Y.O.); (M.K.)
| | - Toshio Onoda
- Intellectual Property Department, Daiichi Sankyo Co., Ltd., Shinagawa, Tokyo 1409710, Japan;
| | - Makoto Koizumi
- Modality Research Laboratories, Daiichi Sankyo Co., Ltd., Shinagawa, Tokyo 1409710, Japan; (T.M.); (A.N.); (Y.O.); (M.K.)
| | - Yasuhiro Takeshima
- Department of Pediatrics, Hyogo College of Medicine, Nishinomiya 6638501, Japan;
| | - Masafumi Matsuo
- Research Center for Locomotion Biology, Kobe Gakuin University, Nishi, Kobe 6512180, Japan;
| | - Kiyosumi Takaishi
- Specialty Medicine Research Laboratories I, Daiichi Sankyo Co., Ltd., Shinagawa, Tokyo 1408710, Japan; (K.I.); (A.K.); (H.N.)
- Correspondence:
| |
Collapse
|
9
|
Matsuo M. Antisense Oligonucleotide-Mediated Exon-skipping Therapies: Precision Medicine Spreading from Duchenne Muscular Dystrophy. JMA J 2021; 4:232-240. [PMID: 34414317 PMCID: PMC8355726 DOI: 10.31662/jmaj.2021-0019] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 04/13/2021] [Indexed: 11/12/2022] Open
Abstract
In 1995, we were the first to propose antisense oligonucleotide (ASO)-mediated exon-skipping therapy for the treatment of Duchenne muscular dystrophy (DMD), a noncurable, progressive muscle-wasting disease. DMD is caused by deletion mutations in one or more exons of the DMD gene that shift the translational reading frame and create a premature stop codon, thus prohibiting dystrophin production. The therapy aims to correct out-of-frame mRNAs to produce in-frame transcripts by removing an exon during splicing, with the resumption of dystrophin production. As this treatment is recognized as the most promising, many extensive studies have been performed to develop ASOs that induce the skipping of DMD exons. In 2016, an ASO designed to skip exon 51 was first approved by the Food and Drug Administration, which accelerated studies on the use of ASOs to treat other monogenic diseases. The ease of mRNA editing by ASO-mediated exon skipping has resulted in the further application of exon-skipping therapy to nonmonogenic diseases, such as diabetes mellites. Recently, this precision medicine strategy was drastically transformed for the emergent treatment of only one patient with one ASO, which represents a future aspect of ASO-mediated exon-skipping therapy for extremely rare diseases. Herein, the invention of ASO-mediated exon-skipping therapy for DMD and the current applications of ASO-mediated exon-skipping therapies are reviewed, and future perspectives on this therapeutic strategy are discussed. This overview will encourage studies on ASO-mediated exon-skipping therapy and will especially contribute to the development of treatments for noncurable diseases.
Collapse
Affiliation(s)
- Masafumi Matsuo
- KNC Department of Nucleic Acid Drug Discovery, Department of Physical Rehabilitation and Research Center for Locomotion Biology, Kobe Gakuin University, Kobe, Japan
| |
Collapse
|
10
|
El Marabti E, Abdel-Wahab O. Therapeutic Modulation of RNA Splicing in Malignant and Non-Malignant Disease. Trends Mol Med 2021; 27:643-659. [PMID: 33994320 DOI: 10.1016/j.molmed.2021.04.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/11/2021] [Accepted: 04/13/2021] [Indexed: 01/24/2023]
Abstract
RNA splicing is the enzymatic process by which non-protein coding sequences are removed from RNA to produce mature protein-coding mRNA. Splicing is thereby a major mediator of proteome diversity as well as a dynamic regulator of gene expression. Genetic alterations disrupting splicing of individual genes or altering the function of splicing factors contribute to a wide range of human genetic diseases as well as cancer. These observations have resulted in the development of therapies based on oligonucleotides that bind to RNA sequences and modulate splicing for therapeutic benefit. In parallel, small molecules that bind to splicing factors to alter their function or modify RNA processing of individual transcripts are being pursued for monogenic disorders as well as for cancer.
Collapse
Affiliation(s)
- Ettaib El Marabti
- Clinical Transplant Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
11
|
Fortunato F, Rossi R, Falzarano MS, Ferlini A. Innovative Therapeutic Approaches for Duchenne Muscular Dystrophy. J Clin Med 2021; 10:jcm10040820. [PMID: 33671409 PMCID: PMC7922390 DOI: 10.3390/jcm10040820] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 02/06/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is the most common childhood muscular dystrophy affecting ~1:5000 live male births. Following the identification of pathogenic variations in the dystrophin gene in 1986, the underlining genotype/phenotype correlations emerged and the role of the dystrophin protein was elucidated in skeletal, smooth, and cardiac muscles, as well as in the brain. When the dystrophin protein is absent or quantitatively or qualitatively modified, the muscle cannot sustain the stress of repeated contractions. Dystrophin acts as a bridging and anchoring protein between the sarcomere and the sarcolemma, and its absence or reduction leads to severe muscle damage that eventually cannot be repaired, with its ultimate substitution by connective tissue and fat. The advances of an understanding of the molecular pathways affected in DMD have led to the development of many therapeutic strategies that tackle different aspects of disease etiopathogenesis, which have recently led to the first successful approved orphan drugs for this condition. The therapeutic advances in this field have progressed exponentially, with second-generation drugs now entering in clinical trials as gene therapy, potentially providing a further effective approach to the condition.
Collapse
|
12
|
Fukushima S, Farea M, Maeta K, Rani AQM, Fujioka K, Nishio H, Matsuo M. Dual Fluorescence Splicing Reporter Minigene Identifies an Antisense Oligonucleotide to Skip Exon v8 of the CD44 Gene. Int J Mol Sci 2020; 21:ijms21239136. [PMID: 33266296 PMCID: PMC7729581 DOI: 10.3390/ijms21239136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/25/2020] [Accepted: 11/29/2020] [Indexed: 12/14/2022] Open
Abstract
Splicing reporter minigenes are used in cell-based in vitro splicing studies. Exon skippable antisense oligonucleotide (ASO) has been identified using minigene splicing assays, but these assays include a time- and cost-consuming step of reverse transcription PCR amplification. To make in vitro splicing assay easier, a ready-made minigene (FMv2) amenable to quantitative splicing analysis by fluorescence microscopy was constructed. FMv2 was designed to encode two fluorescence proteins namely, mCherry, a transfection marker and split eGFP, a marker of splicing reaction. The split eGFP was intervened by an artificial intron containing a multicloning site sequence. Expectedly, FMv2 transfected HeLa cells produced not only red mCherry but also green eGFP signals. Transfection of FMv2CD44v8, a modified clone of FMv2 carrying an insertion of CD44 exon v8 in the multicloning site, that was applied to screen exon v8 skippable ASO, produced only red signals. Among seven different ASOs tested against exon v8, ASO#14 produced the highest index of green signal positive cells. Hence, ASO#14 was the most efficient exon v8 skippable ASO. Notably, the well containing ASO#14 was clearly identified among the 96 wells containing randomly added ASOs, enabling high throughput screening. A ready-made FMv2 is expected to contribute to identify exon skippable ASOs.
Collapse
Affiliation(s)
- Sachiyo Fukushima
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (S.F.); (K.F.)
- Research Center for Locomotion Biology, Kobe Gakuin University, Kobe 651-2180, Japan; (M.F.); (K.M.); (A.Q.M.R.); (H.N.)
| | - Manal Farea
- Research Center for Locomotion Biology, Kobe Gakuin University, Kobe 651-2180, Japan; (M.F.); (K.M.); (A.Q.M.R.); (H.N.)
| | - Kazuhiro Maeta
- Research Center for Locomotion Biology, Kobe Gakuin University, Kobe 651-2180, Japan; (M.F.); (K.M.); (A.Q.M.R.); (H.N.)
- KNC Department of Nucleic Acid Drug Discovery, Faculty of Rehabilitation, Kobe Gakuin University, Kobe 651-2180, Japan
| | - Abdul Qawee Mahyoob Rani
- Research Center for Locomotion Biology, Kobe Gakuin University, Kobe 651-2180, Japan; (M.F.); (K.M.); (A.Q.M.R.); (H.N.)
- KNC Department of Nucleic Acid Drug Discovery, Faculty of Rehabilitation, Kobe Gakuin University, Kobe 651-2180, Japan
| | - Kazumichi Fujioka
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (S.F.); (K.F.)
| | - Hisahide Nishio
- Research Center for Locomotion Biology, Kobe Gakuin University, Kobe 651-2180, Japan; (M.F.); (K.M.); (A.Q.M.R.); (H.N.)
- Department of Occupational Therapy, Faculty of Rehabilitation, Kobe Gakuin University, Kobe 651-2180, Japan
| | - Masafumi Matsuo
- Research Center for Locomotion Biology, Kobe Gakuin University, Kobe 651-2180, Japan; (M.F.); (K.M.); (A.Q.M.R.); (H.N.)
- KNC Department of Nucleic Acid Drug Discovery, Faculty of Rehabilitation, Kobe Gakuin University, Kobe 651-2180, Japan
- Correspondence: ; Tel.: +81-78-974-6194
| |
Collapse
|
13
|
Dystrophin Dp71ab is monoclonally expressed in human satellite cells and enhances proliferation of myoblast cells. Sci Rep 2020; 10:17123. [PMID: 33051488 PMCID: PMC7553993 DOI: 10.1038/s41598-020-74157-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/28/2020] [Indexed: 12/15/2022] Open
Abstract
Dystrophin Dp71 is the smallest isoform of the DMD gene, mutations in which cause Duchenne muscular dystrophy (DMD). Dp71 has also been shown to have roles in various cellular processes. Stem cell-based therapy may be effective in treating DMD, but the inability to generate a sufficient number of stem cells remains a significant obstacle. Although Dp71 is comprised of many variants, Dp71 in satellite cells has not yet been studied. Here, the full-length Dp71 consisting of 18 exons from exons G1 to 79 was amplified by reverse transcription-PCR from total RNA of human satellite cells. The amplified product showed deletion of both exons 71 and 78 in all sequenced clones, indicating monoclonal expression of Dp71ab. Western blotting of the satellite cell lysate showed a band corresponding to over-expressed Dp71ab. Transfection of a plasmid expressing Dp71ab into human myoblasts significantly enhanced cell proliferation when compared to the cells transfected with the mock plasmid. However, transfection of the Dp71 expression plasmid encoding all 18 exons did not enhance myoblast proliferation. These findings indicated that Dp71ab, but not Dp71, is a molecular enhancer of myoblast proliferation and that transfection with Dp71ab may generate a high yield of stem cells for DMD treatment.
Collapse
|
14
|
Yamamura T, Horinouchi T, Adachi T, Terakawa M, Takaoka Y, Omachi K, Takasato M, Takaishi K, Shoji T, Onishi Y, Kanazawa Y, Koizumi M, Tomono Y, Sugano A, Shono A, Minamikawa S, Nagano C, Sakakibara N, Ishiko S, Aoto Y, Kamura M, Harita Y, Miura K, Kanda S, Morisada N, Rossanti R, Ye MJ, Nozu Y, Matsuo M, Kai H, Iijima K, Nozu K. Development of an exon skipping therapy for X-linked Alport syndrome with truncating variants in COL4A5. Nat Commun 2020; 11:2777. [PMID: 32488001 PMCID: PMC7265383 DOI: 10.1038/s41467-020-16605-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 05/12/2020] [Indexed: 11/10/2022] Open
Abstract
Currently, there are no treatments for Alport syndrome, which is the second most commonly inherited kidney disease. Here we report the development of an exon-skipping therapy using an antisense-oligonucleotide (ASO) for severe male X-linked Alport syndrome (XLAS). We targeted truncating variants in exon 21 of the COL4A5 gene and conducted a type IV collagen α3/α4/α5 chain triple helix formation assay, and in vitro and in vivo treatment efficacy evaluation. We show that exon skipping enabled trimer formation, leading to remarkable clinical and pathological improvements including expression of the α5 chain on glomerular and the tubular basement membrane. In addition, the survival period was clearly prolonged in the ASO treated mice group. This data suggests that exon skipping may represent a promising therapeutic approach for treating severe male XLAS cases. Alport syndrome is a progressive inherited nephritis accompanied by sensorineural loss of hearing and ocular abnormalities, for which there is currently no effective therapy. Here, the authors develop an exon-skipping therapy using an antisense-oligonucleotide and show it is effective in mouse models.
Collapse
Affiliation(s)
- Tomohiko Yamamura
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomoko Horinouchi
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomomi Adachi
- Rare Disease Laboratories, Daiichi Sankyo Co., Ltd., Shinagawa, Tokyo, Japan
| | - Maki Terakawa
- Rare Disease Laboratories, Daiichi Sankyo Co., Ltd., Shinagawa, Tokyo, Japan
| | - Yutaka Takaoka
- Division of Medical Informatics and Bioinformatics, Kobe University Hospital, Kobe, Japan
| | - Kohei Omachi
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | | | - Kiyosumi Takaishi
- Rare Disease Laboratories, Daiichi Sankyo Co., Ltd., Shinagawa, Tokyo, Japan
| | - Takao Shoji
- Modality Research Laboratories, Daiichi Sankyo Co., Ltd., Shinagawa, Tokyo, Japan
| | - Yoshiyuki Onishi
- Modality Research Laboratories, Daiichi Sankyo Co., Ltd., Shinagawa, Tokyo, Japan
| | - Yoshito Kanazawa
- Modality Research Laboratories, Daiichi Sankyo Co., Ltd., Shinagawa, Tokyo, Japan
| | - Makoto Koizumi
- Modality Research Laboratories, Daiichi Sankyo Co., Ltd., Shinagawa, Tokyo, Japan
| | - Yasuko Tomono
- Division of Molecular Cell Biology, Shigei Medical Research Institute, Okayama, Japan
| | - Aki Sugano
- Division of Medical Informatics and Bioinformatics, Kobe University Hospital, Kobe, Japan
| | - Akemi Shono
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shogo Minamikawa
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - China Nagano
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Nana Sakakibara
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shinya Ishiko
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yuya Aoto
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Misato Kamura
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yutaka Harita
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kenichiro Miura
- Department of Pediatric Nephrology, Tokyo Women's Medical University, Tokyo, Japan
| | - Shoichiro Kanda
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Naoya Morisada
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Rini Rossanti
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ming Juan Ye
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yoshimi Nozu
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masafumi Matsuo
- Department of Physical Therapy, Faculty of Rehabilitation, Kobe Gakuin University, Kobe, Japan
| | - Hirofumi Kai
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kazumoto Iijima
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kandai Nozu
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan.
| |
Collapse
|
15
|
Zhu Y, Deng H, Chen X, Li H, Yang C, Li S, Pan X, Tian S, Feng S, Tan X, Matsuo M, Zhang Z. Skipping of an exon with a nonsense mutation in the DMD gene is induced by the conversion of a splicing enhancer to a splicing silencer. Hum Genet 2019; 138:771-785. [DOI: 10.1007/s00439-019-02036-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 05/29/2019] [Indexed: 01/23/2023]
|
16
|
Abstract
Since its discovery in 1977, much has been known about RNA splicing and how it plays a central role in human development, function, and, notably, disease. Defects in RNA splicing account for at least 10% of all genetic disorders, with the number expected to increase as more information is uncovered on the contribution of noncoding genomic regions to disease. Splice modulation through the use of antisense oligonucleotides (AOs) has emerged as a promising avenue for the treatment of these disorders. In fact, two splice-switching AOs have recently obtained approval from the US Food and Drug Administration: eteplirsen (Exondys 51) for Duchenne muscular dystrophy, and nusinersen (Spinraza) for spinal muscular atrophy. These work by exon skipping and exon inclusion, respectively. In this chapter, we discuss the early development of AO-based splice modulation therapy-its invention, first applications, and its evolution into the approach we are now familiar with. We give a more extensive history of exon skipping in particular, as it is the splice modulation approach given the most focus in this book.
Collapse
Affiliation(s)
- Kenji Rowel Q Lim
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
- The Friends of Garrett Cumming Research and Muscular Dystrophy Canada HM Toupin Neurological Science Research Chair, Edmonton, AB, Canada.
| |
Collapse
|
17
|
Rinaldi C, Wood MJA. Antisense oligonucleotides: the next frontier for treatment of neurological disorders. Nat Rev Neurol 2017; 14:9-21. [PMID: 29192260 DOI: 10.1038/nrneurol.2017.148] [Citation(s) in RCA: 499] [Impact Index Per Article: 71.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Antisense oligonucleotides (ASOs) were first discovered to influence RNA processing and modulate protein expression over two decades ago; however, progress translating these agents into the clinic has been hampered by inadequate target engagement, insufficient biological activity, and off-target toxic effects. Over the years, novel chemical modifications of ASOs have been employed to address these issues. These modifications, in combination with elucidation of the mechanism of action of ASOs and improved clinical trial design, have provided momentum for the translation of ASO-based strategies into therapies. Many neurological conditions lack an effective treatment; however, as research progressively disentangles the pathogenic mechanisms of these diseases, they provide an ideal platform to test ASO-based strategies. This steady progress reached a pinnacle in the past few years with approvals of ASOs for the treatment of spinal muscular atrophy and Duchenne muscular dystrophy, which represent landmarks in a field in which disease-modifying therapies were virtually non-existent. With the rapid development of improved next-generation ASOs toward clinical application, this technology now holds the potential to have a dramatic effect on the treatment of many neurological conditions in the near future.
Collapse
Affiliation(s)
- Carlo Rinaldi
- Department of Physiology, Anatomy and Genetics, University of Oxford, Le Gros Clark Building, South Parks Road, Oxford OX1 3QX, UK
| | - Matthew J A Wood
- Department of Physiology, Anatomy and Genetics, University of Oxford, Le Gros Clark Building, South Parks Road, Oxford OX1 3QX, UK
| |
Collapse
|
18
|
Sako Y, Ninomiya K, Okuno Y, Toyomoto M, Nishida A, Koike Y, Ohe K, Kii I, Yoshida S, Hashimoto N, Hosoya T, Matsuo M, Hagiwara M. Development of an orally available inhibitor of CLK1 for skipping a mutated dystrophin exon in Duchenne muscular dystrophy. Sci Rep 2017; 7:46126. [PMID: 28555643 PMCID: PMC5448077 DOI: 10.1038/srep46126] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 03/13/2017] [Indexed: 12/27/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a fatal progressive muscle-wasting disease. Various attempts are underway to convert severe DMD to a milder phenotype by modulating the splicing of the dystrophin gene and restoring its expression. In our previous study, we reported TG003, an inhibitor of CDC2-like kinase 1 (CLK1), as a splice-modifying compound for exon-skipping therapy; however, its metabolically unstable feature hinders clinical application. Here, we show an orally available inhibitor of CLK1, named TG693, which promoted the skipping of the endogenous mutated exon 31 in DMD patient-derived cells and increased the production of the functional exon 31-skipped dystrophin protein. Oral administration of TG693 to mice inhibited the phosphorylation of serine/arginine-rich proteins, which are the substrates of CLK1, and modulated pre-mRNA splicing in the skeletal muscle. Thus, TG693 is a splicing modulator for the mutated exon 31 of the dystrophin gene in vivo, possibly possessing therapeutic potential for DMD patients.
Collapse
Affiliation(s)
- Yukiya Sako
- Department of Anatomy and Developmental Biology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kensuke Ninomiya
- Department of Anatomy and Developmental Biology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yukiko Okuno
- Medical Research Support Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masayasu Toyomoto
- Department of Anatomy and Developmental Biology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Atsushi Nishida
- Department of Medical Rehabilitation, Faculty of Rehabilitation, Kobegakuin University, Kobe, Japan
| | - Yuka Koike
- Department of Anatomy and Developmental Biology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kenji Ohe
- Department of Anatomy and Developmental Biology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Isao Kii
- Department of Anatomy and Developmental Biology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Suguru Yoshida
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Naohiro Hashimoto
- Department of Regenerative Medicine, National Center for Geriatrics and Gerontology, Oobu, Japan
| | - Takamitsu Hosoya
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masafumi Matsuo
- Department of Medical Rehabilitation, Faculty of Rehabilitation, Kobegakuin University, Kobe, Japan
| | - Masatoshi Hagiwara
- Department of Anatomy and Developmental Biology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
19
|
Suñé-Pou M, Prieto-Sánchez S, Boyero-Corral S, Moreno-Castro C, El Yousfi Y, Suñé-Negre JM, Hernández-Munain C, Suñé C. Targeting Splicing in the Treatment of Human Disease. Genes (Basel) 2017; 8:genes8030087. [PMID: 28245575 PMCID: PMC5368691 DOI: 10.3390/genes8030087] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/14/2017] [Accepted: 02/17/2017] [Indexed: 02/07/2023] Open
Abstract
The tightly regulated process of precursor messenger RNA (pre-mRNA) alternative splicing (AS) is a key mechanism in the regulation of gene expression. Defects in this regulatory process affect cellular functions and are the cause of many human diseases. Recent advances in our understanding of splicing regulation have led to the development of new tools for manipulating splicing for therapeutic purposes. Several tools, including antisense oligonucleotides and trans-splicing, have been developed to target and alter splicing to correct misregulated gene expression or to modulate transcript isoform levels. At present, deregulated AS is recognized as an important area for therapeutic intervention. Here, we summarize the major hallmarks of the splicing process, the clinical implications that arise from alterations in this process, and the current tools that can be used to deliver, target, and correct deficiencies of this key pre-mRNA processing event.
Collapse
Affiliation(s)
- Marc Suñé-Pou
- Department of Molecular Biology, Institute of Parasitology and Biomedicine "López Neyra" (IPBLN-CSIC), PTS, Granada 18016, Spain.
- Drug Development Service, Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Barcelona, Avda. Joan XXIII, s/n 08028 Barcelona, Spain.
| | - Silvia Prieto-Sánchez
- Department of Molecular Biology, Institute of Parasitology and Biomedicine "López Neyra" (IPBLN-CSIC), PTS, Granada 18016, Spain.
| | - Sofía Boyero-Corral
- Department of Molecular Biology, Institute of Parasitology and Biomedicine "López Neyra" (IPBLN-CSIC), PTS, Granada 18016, Spain.
| | - Cristina Moreno-Castro
- Department of Molecular Biology, Institute of Parasitology and Biomedicine "López Neyra" (IPBLN-CSIC), PTS, Granada 18016, Spain.
| | - Younes El Yousfi
- Department of Molecular Biology, Institute of Parasitology and Biomedicine "López Neyra" (IPBLN-CSIC), PTS, Granada 18016, Spain.
| | - Josep Mª Suñé-Negre
- Drug Development Service, Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Barcelona, Avda. Joan XXIII, s/n 08028 Barcelona, Spain.
| | - Cristina Hernández-Munain
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine "López Neyra" (IPBLN-CSIC), PTS, Granada 18016, Spain.
| | - Carlos Suñé
- Department of Molecular Biology, Institute of Parasitology and Biomedicine "López Neyra" (IPBLN-CSIC), PTS, Granada 18016, Spain.
| |
Collapse
|
20
|
Lee T, Awano H, Yagi M, Matsumoto M, Watanabe N, Goda R, Koizumi M, Takeshima Y, Matsuo M. 2'-O-Methyl RNA/Ethylene-Bridged Nucleic Acid Chimera Antisense Oligonucleotides to Induce Dystrophin Exon 45 Skipping. Genes (Basel) 2017; 8:genes8020067. [PMID: 28208626 PMCID: PMC5333056 DOI: 10.3390/genes8020067] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/02/2017] [Accepted: 02/07/2017] [Indexed: 12/17/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a fatal muscle-wasting disease characterized by dystrophin deficiency from mutations in the dystrophin gene. Antisense oligonucleotide (AO)-mediated exon skipping targets restoration of the dystrophin reading frame to allow production of an internally deleted dystrophin protein with functional benefit for DMD patients who have out-of-frame deletions. After accelerated US approval of eteplirsen (Exondys 51), which targets dystrophin exon 51 for skipping, efforts are now focused on targeting other exons. For improved clinical benefits, this strategy requires more studies of the delivery method and modification of nucleic acids. We studied a nucleotide with a 2′-O,4′-C-ethylene-bridged nucleic acid (ENA), which shows high nuclease resistance and high affinity for complementary RNA strands. Here, we describe the process of developing a 2′-O-methyl RNA(2′-OMeRNA)/ENA chimera AO to induce dystrophin exon 45 skipping. One 18-mer 2′-OMeRNA/ENA chimera (AO85) had the most potent activity for inducing exon 45 skipping in cultured myotubes. AO85 was administered to mdx mice without significant side effects. AO85 transfection into cultured myotubes from 13 DMD patients induced exon 45 skipping in all samples at different levels and dystrophin expression in 11 patients. These results suggest the possible efficacy of AO-mediated exon skipping changes in individual patients and highlight the 2′-OMeRNA/ENA chimera AO as a potential fundamental treatment for DMD.
Collapse
Affiliation(s)
- Tomoko Lee
- Department of Pediatrics, Hyogo College of Medicine, Nishinomiya 6638501, Japan.
| | - Hiroyuki Awano
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe 6500017, Japan.
| | - Mariko Yagi
- Nikoniko House Medical and Welfare Center, Kobe 6511102, Japan.
| | - Masaaki Matsumoto
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe 6500017, Japan.
| | - Nobuaki Watanabe
- Drug Metabolism & Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd., Tokyo 1408710, Japan.
| | - Ryoya Goda
- Drug Metabolism & Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd., Tokyo 1408710, Japan.
| | - Makoto Koizumi
- Modality Research Laboratories, Daiichi Sankyo Co., Ltd., Tokyo 1408710, Japan.
| | - Yasuhiro Takeshima
- Department of Pediatrics, Hyogo College of Medicine, Nishinomiya 6638501, Japan.
| | - Masafumi Matsuo
- Department of Physical Therapy, Faculty of Rehabilitation, Kobe Gakuin University, Kobe 6512180, Japan.
| |
Collapse
|
21
|
Cryptic splice activation but not exon skipping is observed in minigene assays of dystrophin c.9361+1G>A mutation identified by NGS. J Hum Genet 2017; 62:531-537. [PMID: 28100912 DOI: 10.1038/jhg.2016.162] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 12/01/2016] [Accepted: 12/07/2016] [Indexed: 02/06/2023]
Abstract
Next-generation sequencing (NGS) discloses nucleotide changes in the genome. Mutations at splicing regulatory elements are expected to cause splicing errors, such as exon skipping, cryptic splice site activation, partial exon loss or intron retention. In dystrophinopathy patients, prediction of splicing outcomes is essential to determine the phenotype: either severe Duchenne or mild Becker muscular dystrophy, based on the reading frame rule. In a Vietnamese patient, NGS identified a c.9361+1G>A mutation in the dystrophin gene and an additional DNA variation of A>G at +117 bases in intron 64. To ascertain the consequences of these DNA changes on dystrophin splicing, minigene constructs were prepared inserting dystrophin exon 64 plus various lengths of intron 64. Exon 64 skipping was observed in the minigene construct with 160 nucleotide (nt) of intron 64 sequence with both c.9361+1A and +117G. In contrast, minigene constructs with larger flanking intronic domains resulted in cryptic splice site activation rather than exon skipping. Meanwhile, the cryptic splice site activation was induced even in +117G when intron 64 was elongated to 272 nt and longer. It was expected that cryptic splice site activation is an in vivo splicing outcome.
Collapse
|
22
|
Shimizu-Motohashi Y, Miyatake S, Komaki H, Takeda S, Aoki Y. Recent advances in innovative therapeutic approaches for Duchenne muscular dystrophy: from discovery to clinical trials. Am J Transl Res 2016; 8:2471-2489. [PMID: 27398133 PMCID: PMC4931144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/03/2016] [Indexed: 06/06/2023]
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked progressive degenerative muscle disorder caused by the absence of dystrophin. There is no curative therapy, although innovative therapeutic approaches have been aggressively investigated over recent years. Currently, the international clinical trial registry platform for this disease has been constructed and clinical trials for innovative therapeutic approaches are underway. Among these, exon skipping and read-through of nonsense mutations are in the most advanced stages, with exon skipping theoretically applicable to a larger number of patients. To date, exon skipping that targets exons 51, 44, 45, and 53 is being globally investigated including in USA, EU, and Japan. The latest announcement from Japan was made, demonstrating successful dystrophin production in muscles of patients with DMD after treating with exon 53 skipping antisense oligonucleotides (ASOs). However, the innovative therapeutic approaches have demonstrated limited efficacy. To address this issue in exon skipping, studies to unveil the mechanism underlying gymnotic delivery of ASO uptake in living cells have been conducted in an effort to improve in vivo delivery. Further, establishing the infrastructures to integrate multi-institutional clinical trials are needed to facilitate the development of successful therapies for DMD, which ultimately is applicable to other myopathies and neurodegenerative diseases, including spinal muscular atrophy and motor neuron diseases.
Collapse
Affiliation(s)
- Yuko Shimizu-Motohashi
- Department of Child Neurology, National Center Hospital, National Center of Neurology and PsychiatryTokyo, Japan
| | - Shouta Miyatake
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and PsychiatryTokyo, Japan
| | - Hirofumi Komaki
- Department of Child Neurology, National Center Hospital, National Center of Neurology and PsychiatryTokyo, Japan
| | - Shin’ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and PsychiatryTokyo, Japan
| | - Yoshitsugu Aoki
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and PsychiatryTokyo, Japan
| |
Collapse
|
23
|
Havens MA, Hastings ML. Splice-switching antisense oligonucleotides as therapeutic drugs. Nucleic Acids Res 2016; 44:6549-63. [PMID: 27288447 PMCID: PMC5001604 DOI: 10.1093/nar/gkw533] [Citation(s) in RCA: 314] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 06/02/2016] [Indexed: 01/09/2023] Open
Abstract
Splice-switching oligonucleotides (SSOs) are short, synthetic, antisense, modified nucleic acids that base-pair with a pre-mRNA and disrupt the normal splicing repertoire of the transcript by blocking the RNA–RNA base-pairing or protein–RNA binding interactions that occur between components of the splicing machinery and the pre-mRNA. Splicing of pre-mRNA is required for the proper expression of the vast majority of protein-coding genes, and thus, targeting the process offers a means to manipulate protein production from a gene. Splicing modulation is particularly valuable in cases of disease caused by mutations that lead to disruption of normal splicing or when interfering with the normal splicing process of a gene transcript may be therapeutic. SSOs offer an effective and specific way to target and alter splicing in a therapeutic manner. Here, we discuss the different approaches used to target and alter pre-mRNA splicing with SSOs. We detail the modifications to the nucleic acids that make them promising therapeutics and discuss the challenges to creating effective SSO drugs. We highlight the development of SSOs designed to treat Duchenne muscular dystrophy and spinal muscular atrophy, which are currently being tested in clinical trials.
Collapse
Affiliation(s)
- Mallory A Havens
- Department of Biology, Lewis University, Romeoville, IL 60446, USA
| | - Michelle L Hastings
- Department of Cell Biology and Anatomy, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| |
Collapse
|
24
|
Matsuo M, Takeshima Y, Nishio H. Contributions of Japanese patients to development of antisense therapy for DMD. Brain Dev 2016; 38:4-9. [PMID: 26094594 DOI: 10.1016/j.braindev.2015.05.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 05/25/2015] [Accepted: 05/26/2015] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Duchenne muscular dystrophy (DMD) is a fatal progressive muscle wasting disease considered untreatable since its first description in 1868. In 1987, the dystrophin gene responsible for DMD was cloned. This paved the way for the development of therapies. Antisense oligonucleotide (AO)-mediated exon skipping therapy is now reaching the stage of marketing authorization. On the 20th anniversary of the proposal of AO-mediated exon skipping therapy for DMD, this review explores the contributions of Japanese patients. RESULTS In 1990, a Japanese DMD patient was reported as having a small deletion within dystrophin exon 19 and complicating exon 19 skipping in the absence of any mutation at the consensus splice sites. This led to identification of a splicing enhancer sequence within exon 19. Remarkably, AOs against this sequence were shown to induce exon skipping. This encouraged us to propose AO-mediated exon skipping therapy for DMD in 1995. The therapy's effectiveness was verified in a Japanese patient with a nonsense dystrophin mutation manifesting as Becker muscular dystrophy. The patient showed skipping of the nonsense mutation-encoding exon. Finally, a DMD patient carrying a deletion of exon 20 volunteered to undergo intravenous AO infusion, enabling us to obtain proof of concept. The findings from these three patients greatly facilitated studies on exon skipping therapy. As a result, more than 300 reports on AO-mediated exon skipping therapy for DMD have been published, including at least two a month during the last few years. CONCLUSION We greatly appreciate the important contributions of Japanese patients to development of the exon skipping therapy for DMD.
Collapse
Affiliation(s)
- Masafumi Matsuo
- Department of Medical Rehabilitation, Faculty of Rehabilitation, Kobe Gakuin University, Japan.
| | | | - Hisahide Nishio
- Department of Community Medicine and Social Healthcare Science, Kobe University Graduate School of Medicine, Japan
| |
Collapse
|
25
|
Bao TL, Veedu RN, Fletcher S, Wilton SD. Antisense oligonucleotide development for the treatment of muscular dystrophies. Expert Opin Orphan Drugs 2015. [DOI: 10.1517/21678707.2016.1122517] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
26
|
|
27
|
Wilton SD, Veedu RN, Fletcher S. The emperor's new dystrophin: finding sense in the noise. Trends Mol Med 2015; 21:417-26. [PMID: 26051381 DOI: 10.1016/j.molmed.2015.04.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 04/29/2015] [Accepted: 04/30/2015] [Indexed: 01/16/2023]
Abstract
Targeted dystrophin exon removal is a promising therapy for Duchenne muscular dystrophy (DMD); however, dystrophin expression in some reports is not supported by the associated data. As in the account of 'The Emperor's New Clothes', the validity of such claims must be questioned, with critical re-evaluation of available data. Is it appropriate to report clinical benefit and induction of dystrophin as dose dependent when the baseline is unclear? The inability to induce meaningful levels of dystrophin does not mean that dystrophin expression as an end point is irrelevant, nor that induced exon skipping as a strategy is flawed, but demands that drug safety and efficacy, and study parameters be addressed, rather than questioning the strategy or the validity of dystrophin as a biomarker.
Collapse
Affiliation(s)
- S D Wilton
- Centre for Comparative Genomics, Murdoch University, 90 South Street, Murdoch, WA 6009, Australia; West Australian Neuroscience Research Institute, Murdoch University, 90 South Street, Murdoch, WA 6009, Australia.
| | - R N Veedu
- Centre for Comparative Genomics, Murdoch University, 90 South Street, Murdoch, WA 6009, Australia; West Australian Neuroscience Research Institute, Murdoch University, 90 South Street, Murdoch, WA 6009, Australia
| | - S Fletcher
- Centre for Comparative Genomics, Murdoch University, 90 South Street, Murdoch, WA 6009, Australia; West Australian Neuroscience Research Institute, Murdoch University, 90 South Street, Murdoch, WA 6009, Australia
| |
Collapse
|
28
|
Current Challenges and Future Directions in Recombinant AAV-Mediated Gene Therapy of Duchenne Muscular Dystrophy. Pharmaceuticals (Basel) 2013; 6:813-36. [PMID: 24276316 PMCID: PMC3816704 DOI: 10.3390/ph6070813] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 06/14/2013] [Accepted: 06/14/2013] [Indexed: 01/01/2023] Open
Abstract
Various characteristics of adeno-associated virus (AAV)-based vectors with long-term safe expression have made it an exciting transduction tool for clinical gene therapy of Duchenne muscular dystrophy (DMD). Although host immune reactions against the vector as well as transgene products were detected in some instances of the clinical studies, there have been promising observations. Methods of producing AAV vectors for considerable in vivo experimentation and clinical investigations have been developed and a number of studies with AAV vector-mediated muscle transduction were attempted. Notably, an intravenous limb perfusion transduction technique enables extensive transgene expression in the skeletal muscles without noticeable adverse events. Furthermore, cardiac transduction by the rAAV9-microdystrophin would be promising to prevent development of cardiac dysfunction. Recent achievements in transduction technology suggest that long-term transgene expression with therapeutic benefits in DMD treatment would be achieved by the rAAV-mediated transduction strategy with an adequate regimen to regulate host immune response.
Collapse
|
29
|
Fletcher S, Meloni PL, Johnsen RD, Wong BL, Muntoni F, Wilton SD. Antisense suppression of donor splice site mutations in the dystrophin gene transcript. Mol Genet Genomic Med 2013; 1:162-73. [PMID: 24498612 PMCID: PMC3865583 DOI: 10.1002/mgg3.19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 05/13/2013] [Accepted: 05/13/2013] [Indexed: 12/02/2022] Open
Abstract
We describe two donor splice site mutations, affecting dystrophin exons 16 and 45 that led to Duchenne muscular dystrophy (DMD), through catastrophic inactivation of the mRNA. These gene lesions unexpectedly resulted in the retention of the downstream introns, thereby increasing the length of the dystrophin mRNA by 20.2 and 36 kb, respectively. Splice-switching antisense oligomers targeted to exon 16 excised this in-frame exon and the following intron from the patient dystrophin transcript very efficiently in vitro, thereby restoring the reading frame and allowing synthesis of near-normal levels of a putatively functional dystrophin isoform. In contrast, targeting splice-switching oligomers to exon 45 in patient cells promoted only modest levels of an out-of-frame dystrophin transcript after transfection at high oligomer concentrations, whereas dual targeting of exons 44 and 45 or 45 and 46 resulted in more efficient exon skipping, with concomitant removal of intron 45. The splice site mutations reported here appear highly amenable to antisense oligomer intervention. We suggest that other splice site mutations may need to be evaluated for oligomer interventions on a case-by-case basis.
Collapse
Affiliation(s)
- Sue Fletcher
- Centre for Comparative Genomics, Murdoch University South St, 6150, Perth, Western Australia, Australia ; Centre for Neuromuscular and Neurological Disorders, University of Western Australia Perth 6009, Western Australia, Australia
| | - Penny L Meloni
- Centre for Neuromuscular and Neurological Disorders, University of Western Australia Perth 6009, Western Australia, Australia
| | - Russell D Johnsen
- Centre for Neuromuscular and Neurological Disorders, University of Western Australia Perth 6009, Western Australia, Australia
| | - Brenda L Wong
- Department of Pediatrics, Cincinnati Children's Hospital Medical Centre and University of Cincinnati College of Medicine Cincinnati, 45229-3039, Ohio
| | - Francesco Muntoni
- The Dubowitz Neuromuscular Centre, University College London Institute of Child Health London London, WC1N 1EH, United Kingdom
| | - Stephen D Wilton
- Centre for Comparative Genomics, Murdoch University South St, 6150, Perth, Western Australia, Australia ; Centre for Neuromuscular and Neurological Disorders, University of Western Australia Perth 6009, Western Australia, Australia
| |
Collapse
|
30
|
Malueka RG, Takaoka Y, Yagi M, Awano H, Lee T, Dwianingsih EK, Nishida A, Takeshima Y, Matsuo M. Categorization of 77 dystrophin exons into 5 groups by a decision tree using indexes of splicing regulatory factors as decision markers. BMC Genet 2012; 13:23. [PMID: 22462762 PMCID: PMC3350383 DOI: 10.1186/1471-2156-13-23] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 03/31/2012] [Indexed: 12/29/2022] Open
Abstract
Background Duchenne muscular dystrophy, a fatal muscle-wasting disease, is characterized by dystrophin deficiency caused by mutations in the dystrophin gene. Skipping of a target dystrophin exon during splicing with antisense oligonucleotides is attracting much attention as the most plausible way to express dystrophin in DMD. Antisense oligonucleotides have been designed against splicing regulatory sequences such as splicing enhancer sequences of target exons. Recently, we reported that a chemical kinase inhibitor specifically enhances the skipping of mutated dystrophin exon 31, indicating the existence of exon-specific splicing regulatory systems. However, the basis for such individual regulatory systems is largely unknown. Here, we categorized the dystrophin exons in terms of their splicing regulatory factors. Results Using a computer-based machine learning system, we first constructed a decision tree separating 77 authentic from 14 known cryptic exons using 25 indexes of splicing regulatory factors as decision markers. We evaluated the classification accuracy of a novel cryptic exon (exon 11a) identified in this study. However, the tree mislabeled exon 11a as a true exon. Therefore, we re-constructed the decision tree to separate all 15 cryptic exons. The revised decision tree categorized the 77 authentic exons into five groups. Furthermore, all nine disease-associated novel exons were successfully categorized as exons, validating the decision tree. One group, consisting of 30 exons, was characterized by a high density of exonic splicing enhancer sequences. This suggests that AOs targeting splicing enhancer sequences would efficiently induce skipping of exons belonging to this group. Conclusions The decision tree categorized the 77 authentic exons into five groups. Our classification may help to establish the strategy for exon skipping therapy for Duchenne muscular dystrophy.
Collapse
Affiliation(s)
- Rusdy Ghazali Malueka
- Department of Pediatrics, Graduate School of Medicine, Kobe University, Chuo, Kobe 6500017, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Antisense-mediated exon skipping to restore the disrupted dystrophin reading frame is currently in clinical trials for Duchenne muscular dystrophy. This chapter describes the rationale of this approach and gives an overview of in vitro and in vivo experiments with antisense oligonucleotides and antisense genes. Finally, an overview of clinical trials is given and outstanding questions and hurdles are discussed.
Collapse
Affiliation(s)
- Annemieke Aartsma-Rus
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
32
|
Takeshima Y, Yagi M, Matsuo M. Optimizing RNA/ENA chimeric antisense oligonucleotides using in vitro splicing. Methods Mol Biol 2012; 867:131-41. [PMID: 22454059 DOI: 10.1007/978-1-61779-767-5_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A molecular therapy for Duchenne muscular dystrophy (DMD) that converts dystrophin mRNA from out-of-frame to in-frame transcripts by inducing exon skipping with antisense oligonucleotides (AOs) is now approaching clinical application. To exploit the broad therapeutic applicability of exon skipping therapy, it is necessary to identify AOs that are able to induce efficient and specific exon skipping. To optimize AOs, we have established an in vitro splicing system using cultured DMD myocytes. Here, we describe the process of identifying the best AO.Cultured DMD myocytes are established from a biopsy sample and the target exon is chosen. A series of AOs are designed to cover the whole target exon sequence. As AOs, we use 15-20-mer chimeric oligonucleotides consisting of 2'-O-methyl RNA and modified nucleic acid (2'-O, 4'-C-ethylene-bridged nucleic acid). Each AO is transfected individually into cultured DMD myocytes, and the resulting mRNA is analyzed by reverse transcription-PCR. The ability of each AO to induce exon skipping is examined by comparing the amount of cDNA with and without exon skipping. If necessary, having roughly localized the target region, another set of AOs are designed and the exon skipping abilities of the new AOs are examined. Finally, one AO is determined as the best for the molecular therapy.Our simple and reliable methods using an in vitro splicing system have enabled us to identify optimized AOs against many exons of the DMD gene.
Collapse
Affiliation(s)
- Yasuhiro Takeshima
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan.
| | | | | |
Collapse
|
33
|
Chemical treatment enhances skipping of a mutated exon in the dystrophin gene. Nat Commun 2011; 2:308. [PMID: 21556062 PMCID: PMC3113229 DOI: 10.1038/ncomms1306] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 04/11/2011] [Indexed: 12/25/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a fatal muscle wasting disease caused by a loss of the dystrophin protein. Control of dystrophin mRNA splicing to convert severe DMD to a milder phenotype is attracting much attention. Here we report a dystrophinopathy patient who has a point mutation in exon 31 of the dystrophin gene. Although the mutation generates a stop codon, a small amount of internally deleted, but functional, dystrophin protein is produced in the patient cells. An analysis of the mRNA reveals that the mutation promotes exon skipping and restores the open reading frame of dystrophin. Presumably, the mutation disrupts an exonic splicing enhancer and creates an exonic splicing silencer. Therefore, we searched for small chemicals that enhance exon skipping, and found that TG003 promotes the skipping of exon 31 in the endogenous dystrophin gene in a dose-dependent manner and increases the production of the dystrophin protein in the patient's cells. Duchenne muscular dystrophy is caused by a loss of the dystrophin gene, and control of dystrophin mRNA splicing could aid treatment of the disease. Nishida et al. show that a small molecule promotes skipping of exon 31 and increases production of a functional dystrophin protein in a patient.
Collapse
|
34
|
Malueka RG, Yagi M, Awano H, Lee T, Dwianingsih EK, Nishida A, Takeshima Y, Matsuo M. Antisense oligonucleotide induced dystrophin exon 45 skipping at a low half-maximal effective concentration in a cell-free splicing system. Nucleic Acid Ther 2011; 21:347-53. [PMID: 21967521 DOI: 10.1089/nat.2011.0310] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Antisense oligonucleotides (AOs) can facilitate the expression of internally deleted dystrophin in dystrophin-deficient Duchenne muscular dystrophy (DMD) by correcting the reading frame of the pre-mRNA with AO-mediated exon skipping. An antisense 18-mer 2'-O-methyl RNA/ethylene-bridged nucleic acid chimera AO targeting exon 45 of the dystrophin gene, AO85, can induce exon 45 skipping efficiently in cultured cells. AO85 is expected to facilitate dystrophin expression in 8%-9% of all DMD patients. Here, we examined the kinetics of AO85-mediated exon 45 skipping in a cell-free splicing system. In vitro transcribed pre-mRNAs containing dystrophin exon 45 and part of its flanking introns within a hybrid minigene were incubated with HeLa cell nuclear extract, and the resultant mRNAs were amplified by semiquantitative reverse transcriptase-polymerase chain reaction. Time-course analysis revealed that the splicing process fitted well to first order kinetics. Addition of AO85 produced an extra spliced product, deleting exon 45 (Δexon 45), indicating AO85-mediated exon 45 skipping. Production of Δexon 45 increased linearly with increasing concentrations of AO85, reaching a maximum of nearly 80% of the transcripts. The half-maximal effective concentration (EC(50)) of AO85 was 58.0 nM. The percentage of Δexon 45 among the transcripts decreased inversely with the pre-mRNA concentration; Lineweaver-Burk plotting revealed a competitive fashion of AO85 action. The low EC(50) indicates high potential of AO85 for clinical application.
Collapse
|
35
|
Abstract
The development of effective therapies for neuromuscular disorders such as Duchenne muscular dystrophy (DMD) is hampered by considerable challenges: skeletal muscle is the most abundant tissue in the body, and many neuromuscular disorders are multisystemic conditions. However, despite these barriers there has recently been substantial progress in the search for novel treatments. In particular, the use of antisense oligonucleotides, which are designed to target RNA and modulate pre-mRNA splicing to restore functional protein isoforms or directly inhibit the toxic effects of pathogenic RNAs, offers great promise and these approaches are now being tested in the clinic. Here, we review recent advances in the development of such antisense oligonucleotides and other promising novel approaches, including the induction of readthrough nonsense mutations.
Collapse
Affiliation(s)
- Francesco Muntoni
- UCL Institute of Child Health and Great Ormond Street Hospital, 30 Guildford Street, London WC1N 1EH, UK.
| | | |
Collapse
|
36
|
Goyenvalle A, Seto JT, Davies KE, Chamberlain J. Therapeutic approaches to muscular dystrophy. Hum Mol Genet 2011; 20:R69-78. [PMID: 21436158 DOI: 10.1093/hmg/ddr105] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Muscular dystrophies are a heterogeneous group of genetic disorders characterized by muscle weakness and wasting. Duchenne muscular dystrophy (DMD) is the most common and severe form of muscular dystrophy, and although the molecular mechanisms of the disease have been extensively investigated since the discovery of the gene in 1986, there is currently no effective treatment. However, new gene-based therapies have recently emerged with particular noted advances in using conventional gene replacement strategies, RNA-based technology and pharmacological approaches. While the proof of principle has been demonstrated in animal models, several clinical trials have recently been undertaken to investigate the feasibility of these strategies in patients. In particular, antisense-mediated exon skipping has shown encouraging results and holds promise for the treatment of dystrophic muscle. Here, we summarize the recent progress in therapeutic approaches to muscular dystrophies, with an emphasis on gene therapy and exon skipping for DMD.
Collapse
Affiliation(s)
- Aurélie Goyenvalle
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | | | | | | |
Collapse
|
37
|
Wilton SD, Fletcher S. Novel compounds for the treatment of Duchenne muscular dystrophy: emerging therapeutic agents. APPLICATION OF CLINICAL GENETICS 2011; 4:29-44. [PMID: 23776365 PMCID: PMC3681176 DOI: 10.2147/tacg.s8762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The identification of dystrophin and the causative role of mutations in this gene in Duchenne and Becker muscular dystrophies (D/BMD) was expected to lead to timely development of effective therapies. Despite over 20 years of research, corticosteroids remain the only available pharmacological treatment for DMD, although significant benefits and extended life have resulted from advances in the clinical care and management of DMD individuals. Effective treatment of DMD will require dystrophin restitution in skeletal, cardiac, and smooth muscles and nonmuscle tissues; however, modulation of muscle loss and regeneration has the potential to play an important role in altering the natural history of DMD, particularly in combination with other treatments. Emerging biological, molecular, and small molecule therapeutics are showing promise in ameliorating this devastating disease, and it is anticipated that regulatory environments will need to display some flexibility in order to accommodate the new treatment paradigms.
Collapse
Affiliation(s)
- Steve D Wilton
- Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Crawley, Perth, WA, Australia
| | | |
Collapse
|
38
|
Lu QL, Yokota T, Takeda S, Garcia L, Muntoni F, Partridge T. The status of exon skipping as a therapeutic approach to duchenne muscular dystrophy. Mol Ther 2010; 19:9-15. [PMID: 20978473 DOI: 10.1038/mt.2010.219] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is associated with mutations in the dystrophin gene that disrupt the open reading frame whereas the milder Becker's form is associated with mutations which leave an in-frame mRNA transcript that can be translated into a protein that includes the N- and C- terminal functional domains. It has been shown that by excluding specific exons at, or adjacent to, frame-shifting mutations, open reading frame can be restored to an out-of-frame mRNA, leading to the production of a partially functional Becker-like dystrophin protein. Such targeted exclusion can be achieved by administration of oligonucleotides that are complementary to sequences that are crucial to normal splicing of the exon into the transcript. This principle has been validated in mouse and canine models of DMD with a number of variants of oligonucleotide analogue chemistries and by transduction with adeno-associated virus (AAV)-small nuclear RNA (snRNA) reagents encoding the antisense sequence. Two different oligonucleotide agents are now being investigated in human trials for splicing out of exon 51 with some early indications of success at the biochemical level.
Collapse
Affiliation(s)
- Qi-Long Lu
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Neuromuscular/ALS Center, Carolinas Medical Center, Charlotte, North Carolina, USA
| | | | | | | | | | | |
Collapse
|
39
|
Bauman J, Jearawiriyapaisarn N, Kole R. Therapeutic potential of splice-switching oligonucleotides. Oligonucleotides 2010; 19:1-13. [PMID: 19125639 DOI: 10.1089/oli.2008.0161] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Alternative splicing enables a single pre-messenger RNA transcript to yield multiple protein isoforms, making it a major contributor to the diversity of the proteome. While this process is essential for normal development, aberrations in alternative splicing are the cause of a multitude of human diseases. Methods for manipulating alternative splicing would thus be of therapeutic value. Chemically modified antisense oligonucleotides that alter alternative splicing by directing splice site selection have been developed to achieve this end. These splice-switching oligonucleotides (SSOs) have been applied to correct aberrant splicing, induce expression of a therapeutic splice variant, or induce expression of a novel therapeutic splice variant in a number of disease-relevant genes. Recently, in vivo efficacy of SSOs has been reported using animal disease models, as well as in results from the first clinical trial.
Collapse
Affiliation(s)
- John Bauman
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina, USA
| | | | | |
Collapse
|
40
|
Kayali R, Bury F, Ballard M, Bertoni C. Site-directed gene repair of the dystrophin gene mediated by PNA-ssODNs. Hum Mol Genet 2010; 19:3266-81. [PMID: 20542988 DOI: 10.1093/hmg/ddq235] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Permanent correction of gene defects is an appealing approach to the treatment of genetic disorders. The use of single-stranded oligodeoxynucleotides (ssODNs) has been demonstrated to induce single-point mutations in the dystrophin gene and to restore dystrophin expression in the skeletal muscle of models of Duchenne muscular dystrophy (DMD). Here we show that ssODNs made of peptide nucleic acids (PNA-ssODNs) can achieve gene repair frequencies more than 10-fold higher than those obtained using an older generation of targeting oligonucleotides. Correction was demonstrated in muscles cells isolated from mdx(5cv) mice and was stably inherited over time. Direct intramuscular injection of PNA-ssODNs targeting the mdx(5cv) mutation resulted in a significant increase in dystrophin-positive fibers when compared with muscles that received the ssODNs designed to correct the dystrophin gene but made of unmodified bases. Correction was demonstrated at both the mRNA and the DNA levels using quantitative PCR and was confirmed by direct sequencing of amplification products. Analysis at the protein level demonstrated expression of full-length dystrophin in vitro as well as in vivo. These results demonstrate that oligonucleotides promoting strand invasion in the DNA double helix can significantly enhance gene repair frequencies of the dystrophin gene. The use of PNA-ssODNs has important implications in terms of both efficacy and duration of the repair process in muscles and may have a role in advancing the treatment of DMD.
Collapse
Affiliation(s)
- Refik Kayali
- Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
41
|
Wood MJA, Gait MJ, Yin H. RNA-targeted splice-correction therapy for neuromuscular disease. Brain 2010; 133:957-72. [PMID: 20150322 DOI: 10.1093/brain/awq002] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Splice-modulation therapy, whereby molecular manipulation of premessenger RNA splicing is engineered to yield genetic correction, is a promising novel therapy for genetic diseases of muscle and nerve-the prototypical example being Duchenne muscular dystrophy. Duchenne muscular dystrophy is the most common childhood genetic disease, affecting one in 3500 newborn boys, causing progressive muscle weakness, heart and respiratory failure and premature death. No cure exists for this disease and a number of promising new molecular therapies are being intensively studied. Duchenne muscular dystrophy arises due to mutations that disrupt the open-reading-frame in the DMD gene leading to the absence of the essential muscle protein dystrophin. Of all novel molecular interventions currently being investigated for Duchenne muscular dystrophy, perhaps the most promising method aiming to restore dystrophin expression to diseased cells is known as 'exon skipping' or splice-modulation, whereby antisense oligonucleotides eliminate the deleterious effects of DMD mutations by modulating dystrophin pre-messenger RNA splicing, such that functional dystrophin protein is produced. Recently this method was shown to be promising and safe in clinical trials both in The Netherlands and the UK. These trials studied direct antisense oligonucleotide injections into single peripheral lower limb muscles, whereas a viable therapy will need antisense oligonucleotides to be delivered systemically to all muscles, most critically to the heart, and ultimately to all other affected tissues including brain. There has also been considerable progress in understanding how such splice-correction methods could be applied to the treatment of related neuromuscular diseases, including spinal muscular atrophy and myotonic dystrophy, where defects of splicing or alternative splicing are closely related to the disease mechanism.
Collapse
Affiliation(s)
- Matthew J A Wood
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK.
| | | | | |
Collapse
|
42
|
Abstract
The muscular dystrophies are a heterogeneous group of over 40 disorders that are characterised by muscle weakness and wasting. The most common are Duchenne muscular dystrophy and Becker muscular dystrophy, which result from mutations within the gene encoding dystrophin; myotonic dystrophy type 1, which results from an expanded trinucleotide repeat in the myotonic dystrophy protein kinase gene; and facioscapulohumeral dystrophy, which is associated with contractions in the subtelomeric region of human chromosome 1. Currently the only treatments involve clinical management of symptoms, although several promising experimental strategies are emerging. These include gene therapy using adeno-associated viral, lentiviral and adenoviral vectors and nonviral vectors, such as plasmid DNA. Exon-skipping and cell-based therapies have also shown promise in the effective treatment and regeneration of dystrophic muscle. The availability of numerous animal models for Duchenne muscular dystrophy has enabled extensive testing of a wide range of therapeutic approaches for this type of disorder. Consequently, we focus here on the therapeutic developments for Duchenne muscular dystrophy as a model of the types of approaches being considered for various types of dystrophy. We discuss the advantages and limitations of each therapeutic strategy, as well as prospects and recent successes in the context of future clinical applications.
Collapse
|
43
|
Nozu K, Iijima K, Kawai K, Nozu Y, Nishida A, Takeshima Y, Fu XJ, Hashimura Y, Kaito H, Nakanishi K, Yoshikawa N, Matsuo M. In vivo and in vitro splicing assay of SLC12A1 in an antenatal salt-losing tubulopathy patient with an intronic mutation. Hum Genet 2009; 126:533-8. [PMID: 19513753 DOI: 10.1007/s00439-009-0697-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Accepted: 05/30/2009] [Indexed: 10/20/2022]
Abstract
Type I Bartter syndrome (BS), an inherited salt-losing tubulopathy, is caused by mutations of the SLC12A1 gene. While several intronic nucleotide changes in this gene have been detected, transcriptional analysis had not been conducted because mRNA analysis is possible only when renal biopsy specimens can be obtained or occasionally when mRNA is expressed in the leukocytes. This report concerns a type I BS patient due to compound heterozygosity for the SLC12A1 gene. Genomic DNA sequencing disclosed the presence of two novel heterozygous mutations of c.724 + 4A > G in intron 5 and c.2095delG in intron 16, but it remains to be determined whether the former would be likely to influence the transcription. In this report, we conducted both in vivo assay of RT-PCR analysis using RNA extracted from the proband's urinary sediments and in vitro functional splicing study by minigene construction, and obtained evidence that this intronic mutation leads to complete exon 5 skipping. To the best of our knowledge, this is the first study to use non-invasive methods for both an in vivo assay and an in vitro functional splicing assay of inherited kidney disease. These analytical assays could be adapted for all inherited kidney diseases.
Collapse
Affiliation(s)
- Kandai Nozu
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kusunokicho 7-5-1, Chuo, Kobe, Hyogo 650-0017, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Arnett ALH, Chamberlain JR, Chamberlain JS. Therapy for neuromuscular disorders. Curr Opin Genet Dev 2009; 19:290-7. [PMID: 19411172 DOI: 10.1016/j.gde.2009.03.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Revised: 03/17/2009] [Accepted: 03/20/2009] [Indexed: 12/21/2022]
Abstract
Research into therapeutic approaches for both recessive and dominant neuromuscular disorders has made great progress over the past few years. In the field of gene therapy, antisense-mediated exon skipping is being applied to bypass deleterious mutations in the dystrophin gene and restore dystrophin expression in animal models of muscular dystrophy. Approaches for the dominant genetic muscle diseases have turned toward elimination of the mutant gene product with anti-sense oligonucleotide therapy and RNA interference techniques. Refinements of adeno-associated viral vectors and strategies for their delivery are also leading towards future clinical trials. The discovery of new, multipotent cell lineages, some of which possess the ability to successfully engraft muscle following vascular delivery, presents exciting prospects for the field of stem cell therapy. These discoveries represent steady progress towards the development of effective therapies for a wide range of neuromuscular disorders.
Collapse
Affiliation(s)
- Andrea L H Arnett
- Medical Scientist Training Program, University of Washington, Seattle, WA 98195-7720, United States.
| | | | | |
Collapse
|
45
|
Nishiyama A, Takeshima Y, Zhang Z, Habara Y, Tran THT, Yagi M, Matsuo M. Dystrophin nonsense mutations can generate alternative rescue transcripts in lymphocytes. Ann Hum Genet 2008; 72:717-24. [PMID: 18652600 DOI: 10.1111/j.1469-1809.2008.00468.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Secondary alterations in splicing have been reported to produce semi-functional mRNA from several nonsense mutations in the dystrophin gene. Disruptions of exonic splicing enhancers by single nucleotide changes are thought to underlie such alterations. The precise frequencies of such nonsense mutation-dependent splicing alterations, however, remain unknown. Here we analyzed the splicing patterns of dystrophin mRNA in lymphocytes from 38 patients with dystrophinopathies due to nonsense mutations in the dystrophin gene. In seven of the cases (18%), we observed partial skipping of the nonsense-encoding exon. Two of the seven cases, however, exhibited complex activation of a nonsense mutation-created splice site, which resulted in the generation of novel transcripts. Examination of cis-regulatory splicing elements through calculation of splicing probability scores and identification of potential splicing enhancer or silencer sequences failed to disclose a single cause for exon skipping. Remarkably, individual differences in splicing patterns were observed for cells from patients with identical nonsense mutations (C.5899C>T). Although five cases produced semi-functional dystrophin mRNAs, only one of these exhibited a mild clinical course. These results provide important insights about targets for exon skipping induced by candidate antisense oligonucleotides and for ribosomal read-through of nonsense mutations.
Collapse
Affiliation(s)
- A Nishiyama
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | | | | | | | | | | | | |
Collapse
|
46
|
Meregalli M, Farini A, Torrente Y. Combining stem cells and exon skipping strategy to treat muscular dystrophy. Expert Opin Biol Ther 2008; 8:1051-61. [DOI: 10.1517/14712598.8.8.1051] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
47
|
Habara Y, Doshita M, Hirozawa S, Yokono Y, Yagi M, Takeshima Y, Matsuo M. A strong exonic splicing enhancer in dystrophin exon 19 achieve proper splicing without an upstream polypyrimidine tract. J Biochem 2007; 143:303-10. [PMID: 18039686 DOI: 10.1093/jb/mvm227] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Proper splicing is known to proceed under the control of conserved cis-elements located at exon-intron boundaries. Recently, it was shown that additional elements, such as exonic splicing enhancers (ESEs), are essential for the proper splicing of certain exons, in addition to the splice donor and acceptor site sequences; however, the relationship between these cis-elements is still unclear. In this report, we utilize dystrophin exon 19 to analyse the relationship between the ESE and its upstream acceptor site sequences. Dystrophin exon 19, which maintains adequate splicing donor and acceptor consensus sequences, encodes exonic splicing enhancer (dys-ESE19) sequences. Splice pattern analysis, using a minigene reporter expressed in HeLa cells, showed that either a strong polypyrimidine tract (PPT) or a fully active dys-ESE19 is sufficient for proper splicing. Each of these two cis-elements has enough activity for proper exon 19 splicing suggesting that the PPT, which is believed to be an essential cis-element for splicing, is dispensable when the downstream exon contains a strong ESE. This compensation was only seen in living cells but not in 'in vitro splicing'. This suggests the possibility that the previous splicing experiments using an in vitro splicing system could underestimate the activity of ESEs.
Collapse
Affiliation(s)
- Yasuaki Habara
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | | | | | | | | | | | | |
Collapse
|
48
|
Arechavala-Gomeza V, Graham IR, Popplewell LJ, Adams AM, Aartsma-Rus A, Kinali M, Morgan JE, van Deutekom JC, Wilton SD, Dickson G, Muntoni F. Comparative analysis of antisense oligonucleotide sequences for targeted skipping of exon 51 during dystrophin pre-mRNA splicing in human muscle. Hum Gene Ther 2007; 18:798-810. [PMID: 17767400 DOI: 10.1089/hum.2006.061] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is caused by mutations in the dystrophin gene that result in the absence of functional protein. In the majority of cases these are out-of-frame deletions that disrupt the reading frame. Several attempts have been made to restore the dystrophin mRNA reading frame by modulation of pre-mRNA splicing with antisense oligonucleotides (AOs), demonstrating success in cultured cells, muscle explants, and animal models. We are preparing for a phase I/IIa clinical trial aimed at assessing the safety and effect of locally administered AOs designed to inhibit inclusion of exon 51 into the mature mRNA by the splicing machinery, a process known as exon skipping. Here, we describe a series of systematic experiments to validate the sequence and chemistry of the exon 51 AO reagent selected to go forward into the clinical trial planned in the United Kingdom. Eight specific AO sequences targeting exon 51 were tested in two different chemical forms and in three different preclinical models: cultured human muscle cells and explants (wild type and DMD), and local in vivo administration in transgenic mice harboring the entire human DMD locus. Data have been validated independently in the different model systems used, and the studies describe a rational collaborative path for the preclinical selection of AOs for evaluation in future clinical trials.
Collapse
MESH Headings
- Alternative Splicing
- Animals
- Base Sequence
- Blotting, Western
- Cells, Cultured
- Dystrophin/chemistry
- Dystrophin/genetics
- Exons
- Gene Targeting
- Humans
- Mice
- Mice, Transgenic
- Molecular Sequence Data
- Muscle, Skeletal/cytology
- Muscle, Skeletal/metabolism
- Muscular Dystrophy, Duchenne/genetics
- Oligonucleotides, Antisense/analysis
- Oligonucleotides, Antisense/chemistry
- Oligonucleotides, Antisense/genetics
- Organ Culture Techniques
- RNA Precursors/metabolism
- RNA, Messenger/metabolism
- Reproducibility of Results
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
|
49
|
Aartsma-Rus A, van Ommen GJB. Antisense-mediated exon skipping: a versatile tool with therapeutic and research applications. RNA (NEW YORK, N.Y.) 2007; 13:1609-24. [PMID: 17684229 PMCID: PMC1986821 DOI: 10.1261/rna.653607] [Citation(s) in RCA: 179] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Antisense-mediated modulation of splicing is one of the few fields where antisense oligonucleotides (AONs) have been able to live up to their expectations. In this approach, AONs are implemented to restore cryptic splicing, to change levels of alternatively spliced genes, or, in case of Duchenne muscular dystrophy (DMD), to skip an exon in order to restore a disrupted reading frame. The latter allows the generation of internally deleted, but largely functional, dystrophin proteins and would convert a severe DMD into a milder Becker muscular dystrophy phenotype. In fact, exon skipping is currently one of the most promising therapeutic tools for DMD, and a successful first-in-man trial has recently been completed. In this review the applicability of exon skipping for DMD and other diseases is described. For DMD AONs have been designed for numerous exons, which has given us insight into their mode of action, splicing in general, and splicing of the DMD gene in particular. In addition, retrospective analysis resulted in guidelines for AON design for DMD and most likely other genes as well. This knowledge allows us to optimize therapeutic exon skipping, but also opens up a range of other applications for the exon skipping approach.
Collapse
Affiliation(s)
- Annemieke Aartsma-Rus
- DMD genetic therapy group, Department of Human Genetics, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands.
| | | |
Collapse
|
50
|
Buvoli M, Buvoli A, Leinwand LA. Interplay between exonic splicing enhancers, mRNA processing, and mRNA surveillance in the dystrophic Mdx mouse. PLoS One 2007; 2:e427. [PMID: 17487273 PMCID: PMC1855434 DOI: 10.1371/journal.pone.0000427] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Accepted: 04/15/2007] [Indexed: 02/05/2023] Open
Abstract
Background Pre-mRNA splicing, the removal of introns from RNA, takes place within the spliceosome, a macromolecular complex composed of five small nuclear RNAs and a large number of associated proteins. Spliceosome assembly is modulated by the 5′ and 3′ splice site consensus sequences situated at the ends of each intron, as well as by exonic and intronic splicing enhancers/silencers recognized by SR and hnRNP proteins. Nonsense mutations introducing a premature termination codon (PTC) often result in the activation of cellular quality control systems that reduce mRNA levels or alter the mRNA splicing pattern. The mdx mouse, a commonly used genetic model for Duchenne muscular dystrophy (DMD), lacks dystrophin by virtue of a premature termination codon (PTC) in exon 23 that also severely reduces the level of dystrophin mRNA. However, the effect of the mutation on dystrophin RNA processing has not yet been described. Methodology/Principal Finding Using combinations of different biochemical and cellular assays, we found that the mdx mutation partially disrupts a multisite exonic splicing enhancer (ESE) that is recognized by a 40 kDa SR protein. In spite of the presence of an inefficient intron 22 3′ splice site containing the rare GAG triplet, the mdx mutation does not activate nonsense-associated altered splicing (NAS), but induces exclusively nonsense-mediated mRNA decay (NMD). Functional binding sites for SR proteins were also identified in exon 22 and 24, and in vitro experiments show that SR proteins can mediate direct association between exon 22, 23, and 24. Conclusions/Significance Our findings highlight the complex crosstalk between trans-acting factors, cis-elements and the RNA surveillance machinery occurring during dystrophin mRNA processing. Moreover, they suggest that dystrophin exon–exon interactions could play an important role in preventing mdx exon 23 skipping, as well as in facilitating the pairing of committed splice sites.
Collapse
Affiliation(s)
- Massimo Buvoli
- Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, Colorado, United States of America
| | - Ada Buvoli
- Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, Colorado, United States of America
| | - Leslie A. Leinwand
- Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, Colorado, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|