1
|
Timofeeva A, Sedykh S, Nevinsky G. Post-Immune Antibodies in HIV-1 Infection in the Context of Vaccine Development: A Variety of Biological Functions and Catalytic Activities. Vaccines (Basel) 2022; 10:384. [PMID: 35335016 PMCID: PMC8955465 DOI: 10.3390/vaccines10030384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/23/2022] [Accepted: 02/28/2022] [Indexed: 12/14/2022] Open
Abstract
Unlike many other viruses, HIV-1 is highly variable. The structure of the viral envelope changes as the infection progresses and is one of the biggest obstacles in developing an HIV-1 vaccine. HIV-1 infection can cause the production of various natural autoantibodies, including catalytic antibodies hydrolyzing DNA, myelin basic protein, histones, HIV-integrase, HIV-reverse transcriptase, β-casein, serum albumin, and some other natural substrates. Currently, there are various directions for the development of HIV-1 vaccines: stimulation of the immune response on the mucous membranes; induction of cytotoxic T cells, which lyse infected cells and hold back HIV-infection; immunization with recombinant Env proteins or vectors encoding Env; mRNA-based vaccines and some others. However, despite many attempts to develop an HIV-1 vaccine, none have been successful. Here we review the entire spectrum of antibodies found in HIV-infected patients, including neutralizing antibodies specific to various viral epitopes, as well as antibodies formed against various autoantigens, catalytic antibodies against autoantigens, and some viral proteins. We consider various promising targets for developing a vaccine that will not produce unwanted antibodies in vaccinated patients. In addition, we review common problems in the development of a vaccine against HIV-1.
Collapse
Affiliation(s)
- Anna Timofeeva
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia; (S.S.); (G.N.)
| | - Sergey Sedykh
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia; (S.S.); (G.N.)
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Georgy Nevinsky
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia; (S.S.); (G.N.)
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
2
|
Sustained antigen availability during germinal center initiation enhances antibody responses to vaccination. Proc Natl Acad Sci U S A 2016; 113:E6639-E6648. [PMID: 27702895 DOI: 10.1073/pnas.1606050113] [Citation(s) in RCA: 270] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Natural infections expose the immune system to escalating antigen and inflammation over days to weeks, whereas nonlive vaccines are single bolus events. We explored whether the immune system responds optimally to antigen kinetics most similar to replicating infections, rather than a bolus dose. Using HIV antigens, we found that administering a given total dose of antigen and adjuvant over 1-2 wk through repeated injections or osmotic pumps enhanced humoral responses, with exponentially increasing (exp-inc) dosing profiles eliciting >10-fold increases in antibody production relative to bolus vaccination post prime. Computational modeling of the germinal center response suggested that antigen availability as higher-affinity antibodies evolve enhances antigen capture in lymph nodes. Consistent with these predictions, we found that exp-inc dosing led to prolonged antigen retention in lymph nodes and increased Tfh cell and germinal center B-cell numbers. Thus, regulating the antigen and adjuvant kinetics may enable increased vaccine potency.
Collapse
|
3
|
Nishiyama Y, Planque S, Hanson CV, Massey RJ, Paul S. CD4 binding determinant mimicry for HIV vaccine design. Front Immunol 2012; 3:383. [PMID: 23251137 PMCID: PMC3523313 DOI: 10.3389/fimmu.2012.00383] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 11/29/2012] [Indexed: 11/24/2022] Open
Abstract
The immunodominant epitopes expressed by the HIV-1 envelope protein gp120 are hypermutable, defeating attempts to develop an effective HIV vaccine. Targeting the structurally conserved gp120 determinant that binds host CD4 receptors (CD4BD) and initiates infection is a more promising route to vaccination, but this has proved difficult because of the conformational flexibility of gp120 and immune evasion mechanisms used by the virus. Mimicking the outer CD4BD conformational epitopes is difficult because of their discontinuous nature. The CD4BD region composed of residues 421–433 (CD4BDcore) is a linear epitope, but this region possesses B cell superantigenic character. While superantigen epitopes are vulnerable to a small subset of spontaneously produced neutralizing antibodies present in humans without infection (innate antibodies), their non-covalent binding to B cell receptors (BCRs) does not stimulate an effective adaptive response from B cells. Covalent binding at naturally occurring nucleophilic sites of the BCRs by an electrophilic gp120 (E-gp120) analog is a promising solution. E-gp120 induces the synthesis of neutralizing antibodies the CD4BDcore. The highly energetic covalent reaction is hypothesized to convert the abortive superantigens–BCR interaction into a stimulatory signal, and the binding of a spatially distinct epitope at the traditional combining site of the BCRs may furnish a second stimulatory signal. Flexible synthetic peptides can detect pre-existing CD4BDcore-specific neutralizing antibodies. However, induced-fit conformational transitions of the peptides dictated by the antibody combining site structure may induce the synthesis of non-neutralizing antibodies. Successful vaccine targeting of the CD4BD will require a sufficiently rigid immunogen that mimics the native epitope conformation and bypasses B cell checkpoints restricting synthesis of the neutralizing antibodies.
Collapse
Affiliation(s)
- Yasuhiro Nishiyama
- Chemical Immunology Research Center, Department of Pathology and Laboratory Medicine, University of Texas-Houston Medical School Houston, TX, USA
| | | | | | | | | |
Collapse
|
4
|
Planque SA, Mitsuda Y, Nishiyama Y, Karle S, Boivin S, Salas M, Morris MK, Hara M, Liao G, Massey RJ, Hanson CV, Paul S. Antibodies to a superantigenic glycoprotein 120 epitope as the basis for developing an HIV vaccine. THE JOURNAL OF IMMUNOLOGY 2012; 189:5367-81. [PMID: 23089396 DOI: 10.4049/jimmunol.1200981] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Failure to induce synthesis of neutralizing Abs to the CD4 binding determinant (CD4BD) of gp120, a central objective in HIV vaccine research, has been alternately ascribed to insufficient immunogen binding to Abs in their germline V region configuration expressed as BCRs, insufficient adaptive mutations in Ab V regions, and conformational instability of gp120. We employed peptide analogs of gp120 residues 421-433 within the CD4BD (CD4BD(core)) to identify Abs produced without prior exposure to HIV (constitutive Abs). The CD4BD(core) peptide was recognized by single-chain Fv fragments from noninfected humans with lupus that neutralized genetically diverse strains belonging to various HIV subtypes. Replacing the framework region (FR) of a V(H)4-family single-chain Fv with the corresponding V(H)3-family FRs from single-chain Fv JL427 improved the CD4BD(core) peptide-binding activity, suggesting a CD4BD(core) binding site outside the pocket formed by the CDRs. Replacement mutations in the FR site vicinity suggested the potential for adaptive improvement. A very small subset of serum CD4BD(core)-specific serum IgAs from noninfected humans without autoimmune disease isolated by epitope-specific chromatography neutralized the virus potently. A CD4BD(core)-specific, HIV neutralizing murine IgM with H and L chain V regions (V(H) and V(L) regions) free of immunogen-driven somatic mutations was induced by immunization with a CD4BD(core) peptide analog containing an electrophilic group that binds B cells covalently. The studies indicate broad and potent HIV neutralization by constitutive Abs as an innate, germline-encoded activity directed to the superantigenic CD4BD(core) epitope that is available for amplification for vaccination against HIV.
Collapse
Affiliation(s)
- Stephanie A Planque
- Department of Pathology and Laboratory Medicine, Chemical Immunology Research Center, University of Texas Medical School at Houston, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Paul S, Planque S, Nishiyama Y, Escobar M, Hanson C. Back to the future: covalent epitope-based HIV vaccine development. Expert Rev Vaccines 2010; 9:1027-43. [PMID: 20822346 DOI: 10.1586/erv.10.77] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Traditional HIV vaccine approaches have proved ineffective because the immunodominant viral epitopes are mutable and the conserved epitopes necessary for infection are not sufficiently immunogenic. The CD4 binding site expressed by the HIV envelope protein of glycoprotein 120 is essential for viral entry into host cells. In this article, we review the B-cell superantigenic character of the CD4 binding site as the cause of its poor immunogenicity. We summarize evidence supporting development of covalent immunization as the first vaccine strategy with the potential to induce an antibody response to a conserved HIV epitope that neutralizes genetically divergent HIV strains.
Collapse
Affiliation(s)
- Sudhir Paul
- Department of Pathology and Laboratory Medicine, Chemical Immunology Research Center, University of Texas-Houston Medical School, 6431 Fannin, MSB 2.230A, Houston, TX 77030, USA.
| | | | | | | | | |
Collapse
|
6
|
Neutralization of genetically diverse HIV-1 strains by IgA antibodies to the gp120-CD4-binding site from long-term survivors of HIV infection. AIDS 2010; 24:875-84. [PMID: 20186035 DOI: 10.1097/qad.0b013e3283376e88] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To identify an HIV epitope suitable for vaccine development. DESIGN Diverse HIV-1 strains express few structurally constant regions on their surface vulnerable to neutralizing antibodies. The mostly conserved CD4-binding site (CD4BS) of gp120 is essential for host cell binding and infection by the virus. Antibodies that recognize the CD4BS are rare, and one component of the CD4BS, the 421-433 peptide region, expresses B-cell superantigenic character, a property predicted to impair the anti-CD4BS adaptive immune response. METHODS IgA samples purified from the plasma of patients with HIV infection were analyzed for the ability to bind synthetic mimetics containing the 416-433 gp120 region and full-length gp120. Infection of peripheral blood mononuclear cells by clinical HIV isolates was measured by p24 ELISA. RESULTS IgA preparations from three patients with subtype B infection for 19-21 years neutralized heterologous, coreceptor CCR5-dependent subtype A, B, C, D, and AE strains with exceptional potency. The IgAs displayed specific binding of a synthetic 416-433 peptide mimetic dependent on recognition of the CD4-binding residues located in this region. Immunoadsorption, affinity chromatography, and mutation procedures indicated that HIV neutralization occurred by IgA recognition of the CD4BS. CONCLUSION These observations identify the 421-433 peptide region as a vulnerable HIV site to which survivors of infection can produce powerful neutralizing antibodies. This indicates that the human immune system can bypass restrictions on the adaptive B cell response to the CD4BS, opening the route to targeting the 421-433 region for attaining control of HIV infection.
Collapse
|
7
|
The search for protection against HIV infection. Ann Epidemiol 2009; 19:250-2. [PMID: 19344863 DOI: 10.1016/j.annepidem.2009.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Accepted: 01/30/2009] [Indexed: 11/24/2022]
Abstract
More than 25 years after the recognition of AIDS and the isolation of the causative agent, human immunodeficiency virus (HIV), we have been unable to develop a vaccine to protect against infection. The major obstacle to development of a vaccine has been the absence of naturally acquired protective immunity, which is characteristic of most infectious agents. We and others, however, have identified individuals who appear to be resistant to infection. Using a combination of epidemiology, molecular biology, and genetics, we hypothesize that these individuals are able to resist infection by clearing low doses of HIV from their systems. We further hypothesize that they are able to clear the virus through a highly efficient system of processing and presentation of HIV epitopes (antigens) to CD8+ cytotoxic cells, which activate them to remove virally infected cells. Subsequent studies have lent support to this hypothesis.
Collapse
|
8
|
Meyuhas R, Noy H, Fishman S, Margalit A, Montefiori DC, Gross G. Enhanced HIV-1 neutralization by a CD4-VH3-IgG1 fusion protein. Biochem Biophys Res Commun 2009; 386:402-6. [PMID: 19538939 DOI: 10.1016/j.bbrc.2009.06.057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Accepted: 06/12/2009] [Indexed: 10/20/2022]
Abstract
HIV-1 gp120 is an alleged B cell superantigen, binding certain VH3+ human antibodies. We reasoned that a CD4-VH3 fusion protein could possess higher affinity for gp120 and improved HIV-1 inhibitory capacity. To test this we produced several human IgG1 immunoligands harboring VH3. Unlike VH3-IgG1 or VH3-CD4-IgG1, CD4-VH3-IgG1 bound gp120 considerably stronger than CD4-IgG1. CD4-VH3-IgG1 exhibited approximately 1.5-2.5-fold increase in neutralization of two T-cell laboratory-adapted strains when compared to CD4-IgG1. CD4-VH3-IgG1 improved neutralization of 7/10 clade B primary isolates or pseudoviruses, exceeding 20-fold for JR-FL and 13-fold for Ba-L. It enhanced neutralization of 4/8 clade C viruses, and had negligible effect on 1/4 clade A pseudoviruses. We attribute this improvement to possible pairing of VH3 with CD4 D1 and stabilization of an Ig Fv-like structure, rather than to superantigen interactions. These novel findings support the current notion that CD4 fusion proteins can act as better HIV-1 entry inhibitors with potential clinical implications.
Collapse
Affiliation(s)
- Ronit Meyuhas
- Laboratory of Immunology, MIGAL, Kiryat Shmona 11016, Israel
| | | | | | | | | | | |
Collapse
|
9
|
Paul S, Planque SA, Nishiyama Y, Hanson CV. A covalent HIV vaccine: is there hope for the future? Future Virol 2009; 4:7-10. [PMID: 20333315 DOI: 10.2217/17460794.4.1.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Sudhir Paul
- Chemical Immunology Research Center, Department of Pathology, University of Texas-Houston Medical School, 6431 Fannin, Houston, TX 77030, USA, Tel.: +1 713 500 5347; ;
| | | | | | | |
Collapse
|
10
|
Lutz HU, Binder CJ, Kaveri S. Naturally occurring auto-antibodies in homeostasis and disease. Trends Immunol 2008; 30:43-51. [PMID: 19058756 DOI: 10.1016/j.it.2008.10.002] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Revised: 10/23/2008] [Accepted: 10/27/2008] [Indexed: 12/24/2022]
Abstract
Antibodies with germline or close to germline configuration exist in vertebrates, and these so-called 'naturally occurring auto-antibodies' (NAb) are directed to self and altered self components. Such NAbs have been attracting increasing interest because several of them, including some in their recombinant forms, have therapeutic potential. Whereas a large number of IgM and IgG NAbs have tissue homeostatic roles, others modulate and regulate cellular and enzyme properties. This review describes some of these NAbs and emphasizes how these low-titer, low-affinity NAbs interact with self and altered self and show functional potency in homeostasis and regulation, in addition to in diseases such as infarction and systemic inflammatory response syndrome.
Collapse
Affiliation(s)
- Hans U Lutz
- Institute of Biochemistry, ETH Zurich, CH 8093 Zurich, Switzerland.
| | | | | |
Collapse
|
11
|
Abstract
Immunoglobulins (Igs) in uninfected humans recognize residues 421-433 located in the B cell superantigenic site (SAg) of the HIV envelope protein gp120 and catalyze its hydrolysis by a serine protease-like mechanism. The catalytic activity is encoded by germline Ig variable (V) region genes, and is expressed at robust levels by IgMs and IgAs but poorly by IgGs. Mucosal IgAs are highly catalytic and neutralize HIV, suggesting that they constitute a first line of defense against HIV. Lupus patients produce the Igs at enhanced levels. Homology of the 421-433 region with an endogenous retroviral sequence and a bacterial protein may provide clues about the antigen driving anti-SAg synthesis in lupus patients and uninfected subjects. The potency and breadth of HIV neutralization revives hopes of clinical application of catalytic anti-421-433 Igs as immunotherapeutic and topical microbicide reagents. Adaptive improvement of anti-SAg catalytic Igs in HIV infected subjects is not customary. Further study of the properties of the naturally occurring anti-SAg catalytic Igs should provide valuable guidance in designing a prophylactic vaccine that amplifies protective catalytic immunity to HIV.
Collapse
|
12
|
Planque S, Mitsuda Y, Taguchi H, Salas M, Morris MK, Nishiyama Y, Kyle R, Okhuysen P, Escobar M, Hunter R, Sheppard HW, Hanson C, Paul S. Characterization of gp120 hydrolysis by IgA antibodies from humans without HIV infection. AIDS Res Hum Retroviruses 2007; 23:1541-54. [PMID: 18160012 DOI: 10.1089/aid.2007.0081] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Antibody hydrolysis of the superantigenic gp120 site and HIV-1 neutralization was studied as a potential anti-HIV mechanism in uninfected humans. gp120 hydrolysis by purified serum and salivary antibodies was determined by electrophoresis and peptide sequencing, the proteolytic mechanism was analyzed using electrophilic peptide analogs, and viral neutralization was studied using peripheral blood mononuclear cells as hosts. Polyclonal and monoclonal IgA but not IgG preparations selectively catalyzed the cleavage of HIV gp120 at rates sufficient to predict biologically relevant protection against the virus. The IgA hydrolytic reaction proceeded by noncovalent recognition of gp120 residues 421-433, a component of the superantigenic site of gp120, coordinated with peptide bond cleavage via a serine protease-like mechanism. The Lys-432-Ala-433 bond was one of the cleavage sites. Infection of peripheral blood mononuclear cells by a primary isolate of HIV was neutralized by the IgA but not IgG fractions. The neutralizing activity was specifically inhibited by an electrophilic inhibitor of the catalytic activity. The existence of catalytic IgAs to gp120 in uninfected humans suggests their role in resistance to HIV.
Collapse
Affiliation(s)
- Stephanie Planque
- Chemical Immunology Research Center, Departments of Pathology and Laboratory Medicine and Hemophilia and Thrombophilia Center, University of Texas-Houston Medical School, Houston, Texas 77030
| | - Yukie Mitsuda
- Chemical Immunology Research Center, Departments of Pathology and Laboratory Medicine and Hemophilia and Thrombophilia Center, University of Texas-Houston Medical School, Houston, Texas 77030
| | - Hiroaki Taguchi
- Chemical Immunology Research Center, Departments of Pathology and Laboratory Medicine and Hemophilia and Thrombophilia Center, University of Texas-Houston Medical School, Houston, Texas 77030
| | - Maria Salas
- Viral and Rickettsial Disease Laboratory, California Department of Public Health, Richmond, California 94804
| | - Mary-Kate Morris
- Viral and Rickettsial Disease Laboratory, California Department of Public Health, Richmond, California 94804
| | - Yasuhiro Nishiyama
- Chemical Immunology Research Center, Departments of Pathology and Laboratory Medicine and Hemophilia and Thrombophilia Center, University of Texas-Houston Medical School, Houston, Texas 77030
| | - Robert Kyle
- Division of Hematology, Mayo Clinic, Rochester, Minnesota 55905
| | - Pablo Okhuysen
- Chemical Immunology Research Center, Departments of Pathology and Laboratory Medicine and Hemophilia and Thrombophilia Center, University of Texas-Houston Medical School, Houston, Texas 77030
| | - Miguel Escobar
- Chemical Immunology Research Center, Departments of Pathology and Laboratory Medicine and Hemophilia and Thrombophilia Center, University of Texas-Houston Medical School, Houston, Texas 77030
| | - Robert Hunter
- Chemical Immunology Research Center, Departments of Pathology and Laboratory Medicine and Hemophilia and Thrombophilia Center, University of Texas-Houston Medical School, Houston, Texas 77030
| | - Haynes W. Sheppard
- Viral and Rickettsial Disease Laboratory, California Department of Public Health, Richmond, California 94804
| | - Carl Hanson
- Viral and Rickettsial Disease Laboratory, California Department of Public Health, Richmond, California 94804
| | - Sudhir Paul
- Chemical Immunology Research Center, Departments of Pathology and Laboratory Medicine and Hemophilia and Thrombophilia Center, University of Texas-Houston Medical School, Houston, Texas 77030
| |
Collapse
|
13
|
Nishiyama Y, Karle S, Planque S, Taguchi H, Paul S. Antibodies to the superantigenic site of HIV-1 gp120: Hydrolytic and binding activities of the light chain subunit. Mol Immunol 2007; 44:2707-18. [PMID: 17222909 DOI: 10.1016/j.molimm.2006.12.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Revised: 12/02/2006] [Accepted: 12/05/2006] [Indexed: 01/24/2023]
Abstract
Antibodies (Abs) to the superantigenic determinant of HIV gp120 (gp120(SAg)) are potential protective agents against HIV infection. We report that the light chain subunits of Abs cloned from lupus patients using phage library methods bind and hydrolyze gp120(SAg) independent of the heavy chain. Unlike frequent gp120(SAg) recognition by intact Abs attributable to V(H) domain structural elements, the isolated light chains expressed this activity rarely. Four light chains capable of gp120(SAg) recognition were identified by fractionating phage displayed light chains using peptide probes containing gp120 residues 421-433, a gp120(SAg) component. Three light chains expressed non-covalent gp120(SAg) binding and one expressed gp120(SAg) hydrolyzing activity. The hydrolytic light chain was isolated by covalent phage fractionation using an electrophilic analog of residues 421-433. This light chain hydrolyzed a reporter gp120(SAg) substrate and full-length gp120. Other peptide substrates and proteins were hydrolyzed at lower rates or not at all. Consistent with the expected nucleophilic mechanism of hydrolysis, the light chain reacted selectively and covalently with the electrophilic gp120(SAg) peptide analog. The hydrolytic reaction entailed a fast initial step followed by a slower rate limiting step, suggesting rapid substrate acylation and slow deacylation. All four gp120(SAg)-recognizing light chains contained sequence diversifications relative to their germline gene counterparts. These observations indicate that in rare instances, the light chain subunit can bind and hydrolyze gp120(SAg) without the participation of the heavy chain. The pairing of such light chains with heavy chains capable of gp120(SAg) recognition represents a potential mechanism for generating protective Abs with enhanced HIV binding strength and anti-viral proteolytic activity.
Collapse
Affiliation(s)
- Yasuhiro Nishiyama
- Chemical Immunology and Therapeutics Research Center, Department of Pathology and Laboratory Medicine, University of Texas-Houston Medical School, 6431 Fannin, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
14
|
He B, Qiao X, Klasse PJ, Chiu A, Chadburn A, Knowles DM, Moore JP, Cerutti A. HIV-1 envelope triggers polyclonal Ig class switch recombination through a CD40-independent mechanism involving BAFF and C-type lectin receptors. THE JOURNAL OF IMMUNOLOGY 2006; 176:3931-41. [PMID: 16547227 DOI: 10.4049/jimmunol.176.7.3931] [Citation(s) in RCA: 172] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Switching from IgM to IgG and IgA is essential for antiviral immunity and requires engagement of CD40 on B cells by CD40L on CD4(+) T cells. HIV-1 is thought to impair CD40-dependent production of protective IgG and IgA by inducing progressive loss of CD4(+) T cells. Paradoxically, this humoral immunodeficiency is associated with B cell hyperactivation and increased production of nonprotective IgG and IgA that are either nonspecific or specific for HIV-1 envelope glycoproteins, including gp120. Nonspecific and gp120-specific IgG and IgA are sensitive to antiretroviral therapy and remain sustained in infected individuals with very few CD4(+) T cells. One interpretation is that some HIV-1 Ags elicit IgG and IgA class switch DNA recombination (CSR) in a CD40-independent fashion. We show that a subset of B cells binds gp120 through mannose C-type lectin receptors (MCLRs). In the presence of gp120, MCLR-expressing B cells up-regulate the CSR-inducing enzyme, activation-induced cytidine deaminase, and undergo CSR from IgM to IgG and IgA. CSR is further enhanced by IL-4 or IL-10, whereas Ab secretion requires a B cell-activating factor of the TNF family. This CD40L-related molecule is produced by monocytes upon CD4, CCR5, and CXCR4 engagement by gp120 and cooperates with IL-4 and IL-10 to up-regulate MCLRs on B cells. Thus, gp120 may elicit polyclonal IgG and IgA responses by linking the innate and adaptive immune systems through the B cell-activating factor of the TNF family. Chronic activation of B cells through this CD40-independent pathway could impair protective T cell-dependent Ab responses by inducing immune exhaustion.
Collapse
Affiliation(s)
- Bing He
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Paul S, Nishiyama Y, Planque S, Taguchi H. Theory of proteolytic antibody occurrence. Immunol Lett 2006; 103:8-16. [PMID: 16290203 DOI: 10.1016/j.imlet.2005.10.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2005] [Revised: 10/09/2005] [Accepted: 10/09/2005] [Indexed: 11/22/2022]
Abstract
Antibodies (Abs) with proteolytic and other catalytic activities have been characterized in the blood and mucosal secretions of humans and experimental animals. The catalytic activity can be traced to nucleophilic sites of innate origin located in Ab germline variable regions. Discoveries of the natural chemical reactivity of Abs were initially met with bewilderment, as the notion had taken hold that catalytic activities can be introduced into Abs by artificial means, but somatically operative selection pressures are designed only to adapt non-covalent Ab binding to antigen ground states. Unsurprisingly, initial efforts to engineer Abs with catalytic activity were oriented towards improving the non-covalent binding at the atoms immediately within the transition state reaction center. Slowly, however, dogmatic approaches to Ab catalysis have given way to the realization that efficient and specific catalytic Abs can be prepared by improving the natural nucleophilic reactivity combined with non-covalent recognition of epitope regions remote from the reaction center. The field remains beset, however, with controversy. This article attempts to provide a rational basis for natural Ab catalysis, in the hope that understanding this phenomenon will stimulate medical and basic science advances in the field.
Collapse
Affiliation(s)
- Sudhir Paul
- Chemical Immunology and Therapeutics Research Center, Department of Pathology and Laboratory Medicine, University of Texas-Houston Medical School, 6431 Fannin, 77030, USA.
| | | | | | | |
Collapse
|
16
|
Paul S, Nishiyama Y, Planque S, Karle S, Taguchi H, Hanson C, Weksler ME. Antibodies as defensive enzymes. ACTA ACUST UNITED AC 2005; 26:485-503. [PMID: 15633014 DOI: 10.1007/s00281-004-0191-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2004] [Accepted: 10/12/2004] [Indexed: 10/26/2022]
Abstract
Antibodies (Abs) and enzymes are structural and functional relatives. Abs with promiscuous peptidase activity are ubiquitous in healthy humans, evidently derived from germline variable domain immunoglobulin genes encoding the serine protease-like nucleophilic function. Exogenous and endogenous electrophilic antigens can bind the nucleophilic sites covalently, and recent evidence suggests that immunization with such antigens can induce proteolytic antibodies. Previously, Ab catalytic activities have been linked to pathogenic autoimmune reactions, but recent studies indicate that proteolytic Abs may also serve beneficial functions. An example is the rapid and selective cleavage of the HIV-1 coat protein gp120 by IgMs found in uninfected humans. The selectivity of this reaction appears to derive from recognition of gp120 as a superantigen. A second example is the cleavage of amyloid beta-peptide by IgM and IgG from aged humans, a phenomenon that may represent a specific proteolytic response to a neurotoxic endogenous peptide implicated in the pathogenesis of Alzheimer's disease.
Collapse
Affiliation(s)
- Sudhir Paul
- Chemical Immunology and Therapeutics Research Center, Department of Pathology and Laboratory Medicine, University of Texas-Houston Medical School, MSB 2.250, 6431 Fannin, Houston, TX 77030, USA.
| | | | | | | | | | | | | |
Collapse
|
17
|
Paul S, Karle S, Planque S, Taguchi H, Salas M, Nishiyama Y, Handy B, Hunter R, Edmundson A, Hanson C. Naturally occurring proteolytic antibodies: selective immunoglobulin M-catalyzed hydrolysis of HIV gp120. J Biol Chem 2004; 279:39611-9. [PMID: 15269209 DOI: 10.1074/jbc.m406719200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report the selective catalytic cleavage of the HIV coat protein gp120, a B cell superantigen, by IgM antibodies (Abs) from uninfected humans and mice that had not been previously exposed to gp120. The rate of IgM-catalyzed gp120 cleavage was greater than of other polypeptide substrates, including the bacterial superantigen protein A. The kinetic parameters of gp120 cleavage varied over a broad range depending on the source of the IgMs, and turnover numbers as great as 2.1/min were observed, suggesting that different Abs possess distinct gp120 recognition properties. IgG Abs failed to cleave gp120 detectably. The Fab fragment of a monoclonal IgM cleaved gp120, suggesting that the catalytic activity belongs to the antibody combining site. The electrophoretic profile of gp120 incubated with a monoclonal human IgM suggested hydrolysis at several sites. One of the cleavage sites was identified as the Lys(432)-Ala(433) peptide bond, located within the region thought to be the Ab-recognizable superantigenic determinant. A covalently reactive peptide analog (CRA) corresponding to gp120 residues 421-431 with a C-terminal amidino phosphonate diester mimetic of the Lys(432)-Ala(433) bond was employed to probe IgM nucleophilic reactivity. The peptidyl CRA inhibited the IgM-catalyzed cleavage of gp120 and formed covalent IgM adducts at levels exceeding a control hapten CRA devoid of the peptide sequence. These observations suggest that IgMs can selectively cleave gp120 by a nucleophilic mechanism and raise the possibility of their role as defense enzymes.
Collapse
Affiliation(s)
- Sudhir Paul
- Chemical Immunology and Therapeutics Research Center, Department of Pathology and Laboratory Medicine, University of Texas-Houston Medical School, Houston, Texas 77030, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Viau M, Zouali M. Molecular determinants of the human antibody response to HIV-1: implications for disease control. J Clin Immunol 2001; 21:410-9. [PMID: 11811786 DOI: 10.1023/a:1013125726870] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Various aspects of the immune response to HIV-1 infection remain unclear. While seropositive subjects generally mount a strong humoral response, the antibodies produced are not effective in halting disease progression. Molecular characterization of the antibody repertoire specific for HIV-1 antigens represents an approach to further our understanding of the mechanisms involved in mounting a humoral immunity in this infection. Recently, the content, structure, and organization of the human immunoglobulin-variable gene loci have been elucidated and a number of laboratories have characterized the variable gene elements of human anti-HIV-1 antibodies derived from infected persons by cell fusion or by Epstein-Barr virus transformation. The results show evidence for extensive somatic mutations that lead to preferential amino acid substitutions in the hypervariable regions, an indication of an antigen-driven process. Multiple other molecular events also are engaged in generating antibody diversity, including various types of fusions of variable genes, usage of inverted diversity genes, and addition of extragenomic nucleotides. Most importantly, there is a paucity of antibodies expressing the major V(H)3 gene family, which could result from the capacity of gp120 to act as superantigen for human B cells. This V(H)3+ antibody deficit also has been observed in B cells isolated ex vivo from the patients. Since V(H)3+ antibodies play an essential role in immune defense against infections, the abnormalities observed in HIV-1 infection may predispose to opportunistic infections and further compromise the immune defense mechanisms of the subjects.
Collapse
Affiliation(s)
- M Viau
- Hôpital Broussais, INSERM U 430, Paris, France
| | | |
Collapse
|
19
|
Veljkovic V, Metlas R, Köhler H, Urnovitz HB, Prljic J, Veljkovic N, Johnson E, Müller S. AIDS epidemic at the beginning of the third millennium: time for a new AIDS vaccine strategy. Vaccine 2001; 19:1855-62. [PMID: 11228354 DOI: 10.1016/s0264-410x(00)00194-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Current expansion of AIDS pandemic significantly accelerates AIDS vaccine research resulting in development and clinical testing of several AIDS vaccine candidates. At the same time, available experimental and clinical data demonstrate that current AIDS vaccine strategy is unsuccessful resulting in development of inefficient and harmful vaccines. This overview briefly summarizes reported results which point out the requirement for moratorium on the current clinical trials of HIV-1 gp120/160 vaccines and urgent need for development of a new, efficient and safe AIDS vaccine strategy.
Collapse
Affiliation(s)
- V Veljkovic
- Laboratory for Multidisciplinary Research, Institute of Nuclear Sciences VINCA, Belgrade, Yugoslavia.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Neshat MN, Goodglick L, Lim K, Braun J. Mapping the B cell superantigen binding site for HIV-1 gp120 on a V(H)3 Ig. Int Immunol 2000; 12:305-12. [PMID: 10700465 DOI: 10.1093/intimm/12.3.305] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The emerging class of B cell superantigens includes HIV-1 gp120, which binds to many members of the V(H)3 Ig gene family. The present study addresses the structural features of V(H)3 antibodies conferring gp120 binding activity using a panel of recombinant full-length and Fab Ig proteins. Binding activity was fully conferred by the Fab portion of the Ig molecule. The V(H) region was the major determinant of binding; diverse light chains were permissive for gp120 binding. A series of recombinant V(H)3-V(H)1 chimeric molecules was created to analyze the contribution of different subregions of V(H)3 to gp120 binding. Hypervariable loop 1 (H1) substitution alone caused a 10-fold reduction in binding activity. The framework subregions (FR1, FR2 and FR3) and H2 also influenced binding, since substitutions of various combinations of these subregions conferred 10- to 100-fold binding reductions. We conclude that gp120 binding occurs through a non-conventional interaction involving multiple discontinuously arrayed residues spanning the V(H), and including roles in gp120 contact and favorable conformation of the V(H).
Collapse
Affiliation(s)
- M N Neshat
- Department of Pathology and Laboratory Medicine, and The Molecular Biology Institute, University of California-Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095-1732, USA
| | | | | | | |
Collapse
|
21
|
Torán JL, Kremer L, Sánchez-Pulido L, de Alborán IM, del Real G, Llorente M, Valencia A, de Mon MA, Martínez-A C. Molecular analysis of HIV-1 gp120 antibody response using isotype IgM and IgG phage display libraries from a long-term non-progressor HIV-1-infected individual. Eur J Immunol 1999; 29:2666-75. [PMID: 10508241 DOI: 10.1002/(sici)1521-4141(199909)29:09<2666::aid-immu2666>3.0.co;2-q] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
To characterize the variable heavy chain (VH)3 antibody response to HIV-1 gp120, we analyzed a panel of IgM and IgG1 Fab fragments from phage display isotype libraries from a long-term, non-progressor HIV-1-infected individual. The IgM Fab antibodies isolated had low affinity for gp120, were not restricted to a particular VH3 germ-line gene, and consisted mainly of unmutated VH genes. In contrast, IgG Fab fragments were gp120 specific, with high affinity and extensive somatic mutation; all were clonally related and were derived from a single VH3 germ-line gene (DP50). One IgG Fab (S8) has DP50 VH region nucleotide substitutions identical to those of IgM Fab M025 and uses similar DH and JH segments, suggesting that S8 arose from M025 by isotype switching. In addition, somatic mutation in the IgG heavy chain third complementarity-determining region results in a 100-fold affinity increase for gp120, which correlates with a similar increase in neutralization capacity. These results imply that in vivo IgM to IgG isotype switch and affinity maturation may be important for protection and long-term survival in certain HIV-1-infected individuals.
Collapse
Affiliation(s)
- J L Torán
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, CSIC/UAM, Campus de Cantoblanco, Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Metlas R, Trajkovic D, Srdic T, Veljkovic V, Colombatti A. Human immunodeficiency virus V3 peptide-reactive antibodies are present in normal HIV-negative sera. AIDS Res Hum Retroviruses 1999; 15:671-7. [PMID: 10331446 DOI: 10.1089/088922299310971] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A structural relation between consensus sequences of the portion of HIV-1 gp120 involving the V3 loop (V3 peptide) and the variable domains of human immunoglobulin members of the VH-III gene family was proposed to trigger an imbalance of the idiotypic network during the course of HIV infection. Thus, the repertoires of immunoglobulins in healthy individuals should contain antigenic determinant(s) complementary to particular V3 loop epitope(s). In this study we investigated the specific binding to the V3 peptide of antibodies present in sera of HIV-positive and of clinically normal HIV-negative subjects. Two groups of HIV-positive sera differing in antibody titers to V3 peptide, arbitrarily referred here as high- and low-reactive HIV-positive sera, were distinguished on the basis of an ELISA. Antibodies were affinity purified on V3 peptide and their titers in both HIV-negative and low-reactive HIV-positive sera were nearly superimposable and much lower than the titers of those from high-reactive HIV-positive sera. Also, the quality of the two groups of antibodies differed: much higher amounts of soluble V3 peptide were needed to partly compete the binding of antibodies from HIV-negative sera to insoluble V3 peptide as compared with those from HIV-positive sera, suggesting that the latter had higher affinity for V3 peptide. All of the affinity-purified antibodies bound poorly to unrelated peptides, even to those sharing sequence similarity with the V3 peptide. The present observations suggest that in HIV infection antigen-driven affinity maturation of preimmune immunoglobulins with idiotypes complementary to V3 epitope(s) participating in physiological autoreactivity might be at work.
Collapse
Affiliation(s)
- R Metlas
- R&D Division, Diapharm, Belgrade, Yugoslavia
| | | | | | | | | |
Collapse
|
23
|
Juompan L, Lambin P, Zouali M. Selective deficit in antibodies specific for the superantigen binding site of gp120 in HIV infection. FASEB J 1998; 12:1473-80. [PMID: 9806756 DOI: 10.1096/fasebj.12.14.1473] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
HIV infection is characterized by accelerated apoptosis and progressive loss of B cells. To see whether these abnormalities are related to the property of gp120 to act as a superantigen for VH3(+) B cells, we probed the temporal development of VH3(+) antibodies in HIV-1-infected subjects over a 7-year period. We found that VH3(+) antibodies specific for the gp120 superantigen binding site are deficient. Since VH3(+) antibodies impart protective responses to infectious agents, we quantified VH3(+) antibodies in serum samples from HIV-seropositive slow progressors and from patients who progressed to AIDS-related manifestations. We found that paucity in VH3(+) antibodies is a marker of rapid clinical decline. Remarkably, anti-gp160 VH3(+) antibodies showed a gradual decrease in progressors and, with time, varied depending on the viral load. We conclude that disease aggravation is associated with a decrease of the magnitude of the humoral response, that VH3(+) antibodies play an important role in protection, and that their underexpression may accelerate disease progression. We propose that vaccine preparations able to trigger VH3(+) antibodies might confer a better protection against HIV infection. This work also represents a novel mechanism of humoral deficiency resulting from the capacity of a viral antigen to affect an important subset of the B cell repertoire and to induce B cell death by apoptosis.
Collapse
Affiliation(s)
- L Juompan
- Département d'Immunologie, Institut Pasteur, 75015 Paris, France
| | | | | |
Collapse
|
24
|
Townsley-Fuchs J, Neshat MS, Margolin DH, Braun J, Goodglick L. HIV-1 gp120: a novel viral B cell superantigen. Int Rev Immunol 1997; 14:325-38. [PMID: 9186784 DOI: 10.3109/08830189709116523] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The envelope glycoprotein of the human immunodeficiency virus (HIV-1), gp120, has recently been characterized as a novel immunoglobulin superantigen (Ig-SAg) [1,2]. Analogous to the interaction of SAgs with T cells, gp120 binds to an unusually large proportion of immunoglobulins (lgs) from HIV-uninfected individuals; most, if not all of these Igs are members of the VH3 family [3]. Functionally, gp120 preferentially stimulates VH3 B cells in vitro. This stimulation correlates with an in vivo VH3 activation during HIV infection. Curiously, this initial activation is followed by a subsequent depletion of VH3-expressing B cells as individuals progress to AIDS. In this article we will review our current understanding of the superantigenic properties of HIV gp120. Specifically we will focus on structural aspects of the binding interaction. on the ontological development of these superantigen-binding antibodies, and on potential roles that this unconventional Ig-pathogen interaction might play in the pathogenesis of HIV-induced disease.
Collapse
Affiliation(s)
- J Townsley-Fuchs
- Department of Pathology, University of California, Los Angeles 90095-1732, USA
| | | | | | | | | |
Collapse
|