1
|
Zhang WZ, Wu CY, Lai H. A Review on the Role of DNA Methylation in Aortic Disease Associated With Marfan Syndrome. Cardiol Res 2025; 16:169-177. [PMID: 40370619 PMCID: PMC12074684 DOI: 10.14740/cr2033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/08/2025] [Indexed: 05/16/2025] Open
Abstract
Marfan syndrome (MFS) is a genetic disorder primarily affecting the connective tissue, with cardiovascular complications as the leading cause of mortality. While mutations in the FBN1 gene are the primary cause, the severity and progression of the disease can vary significantly among individuals. DNA methylation, a key epigenetic regulatory mechanism, has garnered attention in MFS research, particularly regarding methylation changes in the FBN1 locus and their effects on fibrillin-1 expression. Differential methylation and expression of genes related to inflammation (e.g., interleukin (IL)-10, IL-17) and oxidative stress (e.g., PON2, TP53INP1) have been linked to MFS aortic pathology. These alterations likely contribute to disease progression by influencing inflammatory responses, smooth muscle cell apoptosis, and biomechanical properties of the aorta. The transforming growth factor-beta (TGF-β) signaling pathway plays a central role in MFS pathology, with aberrant methylation of related genes potentially elevating active TGF-β levels and exacerbating aortic lesions. Notably, tissue-specific methylation patterns, especially in smooth muscle cells of the aorta, remain poorly understood. A deeper understanding of DNA methylation's role in MFS could pave the way for early interventions and epigenetic-targeted therapies.
Collapse
Affiliation(s)
- Wei Ze Zhang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chen Ye Wu
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hao Lai
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Guan X, Meng J, Yi W, Ye K, Gao H, Hong Y, Qu L, Ding S, Long Q. TERT promoter methylation predicts overall survival, immune cell infiltration and response to immunotherapy in clear cell renal cell carcinoma. Clin Epigenetics 2025; 17:88. [PMID: 40448175 DOI: 10.1186/s13148-025-01897-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 05/10/2025] [Indexed: 06/02/2025] Open
Abstract
PURPOSE Telomerase reverse transcriptase (TERT) is one of the most well-established oncogenes in tumor development and progression. It is widely known that TERT promoter hypermethylation is associated with its transcription activation. Despite its canonical role in maintaining telomere length in cancer cells, TERT is also involved in various oncogenic processes independent of its enzymatic activity. However, the role of TERT in the tumor immune microenvironment has been largely unexplored. Hence, we assessed the associations between TERT promoter methylation and its expression, clinicopathological features, overall survival, immune cell infiltration, and response to immune checkpoint inhibitor therapy in clear cell renal cell carcinoma. METHODS A single-sample gene-set enrichment analysis algorithm was used to quantify the relative abundance of each type of immune cell infiltration in the tumor microenvironment (TME) of the TCGA KIRC cohort. We used Spearman's rank correlation to calculate the correlation coefficients between TERT promoter methylation and immune cell infiltration. The relative methylation of cg11625005 in our validation cohort was detected by pyrosequencing and the relative infiltration of CD4 + and CD8 + T cells infiltration in the TME was measured by immunohistochemistry. RESULTS The TERT promoter was significantly hypermethylated in clear cell renal cell tumor tissues, which was related to the transcriptional activation of TERT. TERT promoter hypermethylation was significantly correlated with aggressive phenotypes and poor survival in clear cell renal cell carcinoma patients. Furthermore, TERT promoter methylation was significantly positively correlated with CD4 + /CD8 + T cells infiltration and immune checkpoint molecule (CTLA-4, TIGIT, PD-1 and LAG3) expression. And TERT promoter methylation was correlated with the therapeutic response to anti-PD1 immunotherapy. CONCLUSION TERT promoter methylation is a promising predictive biomarker of immune cell infiltration, overall survival, clinicopathological characteristics and response to anti-PD1 immunotherapy treatment in clear cell renal cell carcinoma patients.
Collapse
Affiliation(s)
- Xinyu Guan
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jiahao Meng
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Wenjun Yi
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Kun Ye
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Hongyu Gao
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yue Hong
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Limeng Qu
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Shirong Ding
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, China.
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| | - Qian Long
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, China.
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| |
Collapse
|
3
|
Lanna A. Unexpected links between cancer and telomere state. Semin Cancer Biol 2025; 110:46-55. [PMID: 39952372 DOI: 10.1016/j.semcancer.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 01/05/2025] [Accepted: 01/22/2025] [Indexed: 02/17/2025]
Abstract
Eukaryotes possess chromosome ends known as telomeres. As telomeres shorten, organisms age, a process defined as senescence. Although uncontrolled telomere lengthening has been naturally connected with cancer developments and immortalized state, many cancers are instead characterized by extremely short, genomically unstable telomeres that may hide cancer cells from immune attack. By contrast, other malignancies feature extremely long telomeres due to absence of 'shelterin' end cap protecting factors. The reason for rampant telomere extension in these cancers had remained elusive. Hence, while telomerase supports tumor progression and escape in cancers with very short telomeres, it is possible that different - transfer based or alternative - lengthening pathways be involved in the early stage of tumorigenesis, when telomere length is intact. In this Review, I hereby discuss recent discoveries in the field of telomeres and highlight unexpected links connecting cancer and telomere state. We hope these parallelisms may inform new therapies to eradicate cancers.
Collapse
Affiliation(s)
- Alessio Lanna
- Sentcell UK laboratories, Tuscany Life Sciences, GSK Vaccine Campus, Siena, Italy; University College London, Division of Medicine, London, United Kingdom; Monte-Carlo, Principality of Monaco, France.
| |
Collapse
|
4
|
Chen H, Han C, Ha C. EXT1 and Its Methylation Involved in the Progression of Uterine Corpus Endometrial Carcinoma Pathogenesis. Appl Biochem Biotechnol 2025; 197:2133-2150. [PMID: 39673673 DOI: 10.1007/s12010-024-05116-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2024] [Indexed: 12/16/2024]
Abstract
Uterine corpus endometrial carcinoma (UCEC) is one of the most common gynecologic tumors. Due to the high recurrence and metastasis of UCEC, it is crucial for patients to find new biomarkers for diagnosis and therapy. In this study, R software and the TCGA database were used to screen candidate UCEC predictive markers. Western blot and RT-qPCR were performed to detect protein and mRNA expression of EXT1 in UCEC cell lines. In addition, MTT assay, flow cytometry, transwell assay, and wound healing assay were conducted to assess the cell viability, apoptosis, invasion, and migration in UCEC cells. Overlap-extension PCR technique was employed to construct the vector targeting the deletion of the methylated segment of EXT1. The results showed that a total of 11 candidate genes were obtained and EXT1 was identified as a potential target. The expression and methylation levels of EXT1 were both increased in UCEC tissues and cell lines, as well as elevated EXT1 was closely related to the poor prognosis of patients. Besides, the knockdown of EXT1 significantly inhibited the malignant biological behaviors in UCEC cells. Additionally, the current study also found that the deletion of 1559-2146 bp CpG island segment upregulated EXT1 expression and promoted malignant biological behaviors in UCEC cells. Furthermore, the presence of m7G RNA methylation in UCEC cells also was found. In conclusion, the methylation of EXT1 influenced the gene expression, thereby affecting the malignant biological behaviors in UCEC cells and regulating the pathological progression of UCEC.
Collapse
Affiliation(s)
- Hua Chen
- Department of Gynecology, General Hospital of Ningxia Medical University, Shengli South Street, Xingqing District, Yinchuan, 750004, Ningxia, China
| | - Cailing Han
- Department of Anesthesiology, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Chunfang Ha
- Department of Gynecology, General Hospital of Ningxia Medical University, Shengli South Street, Xingqing District, Yinchuan, 750004, Ningxia, China.
| |
Collapse
|
5
|
Li Y, Zhang F, Qin Z, Yang ST. Development of 3D Cell-Based Fluorescent Reporter Assay for Screening of Drugs Downregulating Telomerase Reverse Transcriptase. Bioengineering (Basel) 2025; 12:335. [PMID: 40281695 PMCID: PMC12024458 DOI: 10.3390/bioengineering12040335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/08/2025] [Accepted: 03/18/2025] [Indexed: 04/29/2025] Open
Abstract
A fluorescent cell-based assay was developed for the screening of chemicals repressing the expression of human telomerase reverse transcriptase (hTERT). hTERT is reactivated during carcinogenesis and is overexpressed in more than 90% of cancers but is almost silent in normal tissue cells. Because of its critical role in cancer, hTERT is a target in various therapeutic strategies for cancer treatment. In this study, the hTERT promoter was cloned in MCF7 breast cancer cells and used to control the expression of enhanced green fluorescent protein (EGFP). The fluorescence of EGFP indicated the activity of the hTERT promoter, and, in the presence of an hTERT repressor, the EGFP fluorescence signal was reduced as compared to the EGFP fluorescence controlled by the human cytomegalovirus (CMV) promoter, which was not affected by changes in culture conditions and worked as a control. The EGFP reporter cells were cultivated in three-dimensional (3D) microbioreactors to resemble the in vivo tumor physiology and provide in vivo-like responses. The assay's predictability was demonstrated with three known hTERT inhibitors, pristimerin, epigallocatechin gallate, and n-butylidenephthalide, and further evaluated with five widely used anticancer compounds, doxorubicin, cisplatin, paclitaxel, blasticidin, and tamoxifen. The results showed overall accuracy of over 83.3%, demonstrating the feasibility of using the hTERT promoter with EGFP as a reporter for the screening of potential cancer drugs targeting hTERT.
Collapse
Affiliation(s)
| | | | | | - Shang-Tian Yang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH 43210, USA; (Y.L.)
| |
Collapse
|
6
|
Shou S, Maolan A, Zhang D, Jiang X, Liu F, Li Y, Zhang X, Geer E, Pu Z, Hua B, Guo Q, Zhang X, Pang B. Telomeres, telomerase, and cancer: mechanisms, biomarkers, and therapeutics. Exp Hematol Oncol 2025; 14:8. [PMID: 39871386 PMCID: PMC11771031 DOI: 10.1186/s40164-025-00597-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 01/15/2025] [Indexed: 01/29/2025] Open
Abstract
Telomeres and telomerase play crucial roles in the initiation and progression of cancer. As biomarkers, they aid in distinguishing benign from malignant tissues. Despite the promising therapeutic potential of targeting telomeres and telomerase for therapy, translating this concept from the laboratory to the clinic remains challenging. Many candidate drugs remain in the experimental stage, with only a few advancing to clinical trials. This review explores the relationship between telomeres, telomerase, and cancer, synthesizing their roles as biomarkers and reviewing the outcomes of completed trials. We propose that changes in telomere length and telomerase activity can be used to stratify cancer stages. Furthermore, we suggest that differential expression of telomere and telomerase components at the subcellular level holds promise as a biomarker. From a therapeutic standpoint, combining telomerase-targeted therapies with drugs that mitigate the adverse effects of telomerase inhibition may offer a viable strategy.
Collapse
Affiliation(s)
- Songting Shou
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ayidana Maolan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Di Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaochen Jiang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fudong Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yi Li
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiyuan Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - En Geer
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhenqing Pu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Baojin Hua
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Qiujun Guo
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Xing Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Bo Pang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
7
|
Mishra A, Patel TN. Telomerase in cancer- ongoing quest and future discoveries. Mol Biol Rep 2025; 52:161. [PMID: 39862360 DOI: 10.1007/s11033-025-10251-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 01/10/2025] [Indexed: 01/27/2025]
Abstract
Telomerase, constituted by the dynamic duo of telomerase reverse transcriptase (TERT), the catalytic entity, and an integral RNA component (TERC), is predominantly suppressed in differentiated human cells due to postnatal transcriptional repression of the TERT gene. Dysregulation of telomerase significantly contributes to cancer development via telomere-dependent and independent mechanisms. Telomerase activity is often elevated in advanced cancers, with TERT reactivation and upregulation of TERC observed in early tumorigenesis. Beyond their primary function of telomere maintenance, TERT and TERC exhibit multifaceted roles in regulating gene expression, signal transduction pathways, and cellular metabolism. The presence of the enzymatic component TERT in both the nucleus and mitochondria underscores its non-canonical roles. Cell death is prevented in TERT-upregulated cells regardless of the DNA damage events and safeguards mitochondrial DNA from oxidative damage. This highlights its protective role in cancer cells where it intersects with glucose metabolism and epigenetic regulation, shaping tumor phenotypes. Oncogenic viruses exploit various strategies to manipulate telomerase activity, aiding cancer progression. The perpetual cell proliferation facilitated by telomerase is a hallmark of cancer, making it an attractive therapeutic target. Inhibitors targeting the catalytic subunit of telomerase, nutraceutical-based compounds, and telomerase-based vaccines represent promising avenues for cancer therapy. Considering the pivotal roles played by the complete enzyme telomerase and TERT component in cancer initiation, substantial endeavors have been dedicated to unravel the mechanisms driving telomerase activation and TERT induction. This review also explores how computational modeling can be leveraged to uncover new insights in telomere research, and efficient targeted therapies.
Collapse
Affiliation(s)
- Apurwa Mishra
- Department of Integrative Biology, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Trupti N Patel
- Department of Integrative Biology, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
8
|
Iskandar M, Xiao Barbero M, Jaber M, Chen R, Gomez-Guevara R, Cruz E, Westerheide S. A Review of Telomere Attrition in Cancer and Aging: Current Molecular Insights and Future Therapeutic Approaches. Cancers (Basel) 2025; 17:257. [PMID: 39858038 PMCID: PMC11764024 DOI: 10.3390/cancers17020257] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/09/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES As cells divide, telomeres shorten through a phenomenon known as telomere attrition, which leads to unavoidable senescence of cells. Unprotected DNA exponentially increases the odds of mutations, which can evolve into premature aging disorders and tumorigenesis. There has been growing academic and clinical interest in exploring this duality and developing optimal therapeutic strategies to combat telomere attrition in aging and cellular immortality in cancer. The purpose of this review is to provide an updated overview of telomere biology and therapeutic tactics to address aging and cancer. METHODS We used the Rayyan platform to review the PubMed database and examined the ClinicalTrial.gov registry to gain insight into clinical trials and their results. RESULTS Cancer cells activate telomerase or utilize alternative lengthening of telomeres to escape telomere shortening, leading to near immortality. Contrarily, normal cells experience telomeric erosion, contributing to premature aging disorders, such as Werner syndrome and Hutchinson-Gilford Progeria, and (2) aging-related diseases, such as neurodegenerative and cardiovascular diseases. CONCLUSIONS The literature presents several promising therapeutic approaches to potentially balance telomere maintenance in aging and shortening in cancer. This review highlights gaps in knowledge and points to the potential of these optimal interventions in preclinical and clinical studies to inform future research in cancer and aging.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sandy Westerheide
- Department of Molecular Biosciences, University of South Florida, 4202 East Fowler Avenue, ISA2015, Tampa, FL 33620, USA; (M.I.); (M.X.B.); (M.J.); (R.C.); (R.G.-G.); (E.C.)
| |
Collapse
|
9
|
Wang X, Li QQ, Tang YX, Li Y, Zhang L, Xu FF, Fu XL, Ye K, Ma JQ, Guo SM, Ma FY, Liu ZY, Shi XH, Li XM, Sun HM, Wu Y, Zhang WY, Ye LH. Oncoprotein LAMTOR5-mediated CHOP silence via DNA hypermethylation and miR-182/miR-769 in promotion of liver cancer growth. Acta Pharmacol Sin 2024; 45:2625-2645. [PMID: 38942954 PMCID: PMC11579023 DOI: 10.1038/s41401-024-01310-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/08/2024] [Indexed: 06/30/2024]
Abstract
C/EBP homologous protein (CHOP) triggers the death of multiple cancers via endoplasmic reticulum (ER) stress. However, the function and regulatory mechanism of CHOP in liver cancer remain elusive. We have reported that late endosomal/lysosomal adapter, mitogen-activated protein kinase and mTOR activator 5 (LAMTOR5) suppresses apoptosis in various cancers. Here, we show that the transcriptional and posttranscriptional inactivation of CHOP mediated by LAMTOR5 accelerates liver cancer growth. Clinical bioinformatic analysis revealed that the expression of CHOP was low in liver cancer tissues and that its increased expression predicted a good prognosis. Elevated CHOP contributed to destruction of LAMTOR5-induced apoptotic suppression and proliferation. Mechanistically, LAMTOR5-recruited DNA methyltransferase 1 (DNMT1) to the CpG3 region (-559/-429) of the CHOP promoter and potentiated its hypermethylation to block its interaction with general transcription factor IIi (TFII-I), resulting in its inactivation. Moreover, LAMTOR5-enhanced miR-182/miR-769 reduced CHOP expression by targeting its 3'UTR. Notably, lenvatinib, a first-line targeted therapy for liver cancer, could target the LAMTOR5/CHOP axis to prevent liver cancer progression. Accordingly, LAMTOR5-mediated silencing of CHOP via the regulation of ER stress-related apoptosis promotes liver cancer growth, providing a theoretical basis for the use of lenvatinib for the treatment of liver cancer.
Collapse
Affiliation(s)
- Xue Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Qian-Qian Li
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yan-Xin Tang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Ye Li
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Lu Zhang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
- Chinese Academy of Medical Sciences & Peking Union Medical College Institute of Biomedical Engineering, Tianjin, 300192, China
| | - Fei-Fei Xu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
- Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, 300192, China
| | - Xue-Li Fu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Kai Ye
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jia-Qi Ma
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Shi-Man Guo
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Fang-Yuan Ma
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Zhi-Yu Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xu-He Shi
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xian-Meng Li
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Hui-Min Sun
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yue Wu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Wei-Ying Zhang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| | - Li-Hong Ye
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
10
|
El Azzouzi M, El Ahanidi H, Hassan I, Tetou M, Ameur A, Bensaid M, Al Bouzidi A, Oukabli M, Alaoui CH, Addoum B, Chaoui I, Benbacer L, Mzibri ME, Attaleb M. Comprehensive behavioural assessment of TERT in bladder cancer. Urol Oncol 2024; 42:451.e19-451.e29. [PMID: 39147693 DOI: 10.1016/j.urolonc.2024.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND Telomerase activity plays a crucial role in cancer development and progression. Thus, telomerase activation through the interplay of mutations and epigenetic alterations in the telomerase reverse transcriptase (TERT) promoter may provide further insight into bladder cancer induction and progression. METHODS In this study 100 bladder tumour tissues were selected, and four molecular signatures were analysed: THOR methylation status, TERT promotor mutation, telomere length, and TERT expression. RESULTS In our study, 88% of bladder cancer patients had an hypermethylation of the THOR region and 60% had mutations in the TERT promoter region. TERT promoter methylation was observed in all stages and grades of bladder cancer. While, TERT promoter mutations were detected in advanced stages and grades. In our cohort, high levels of TERT expression and long telomeres have been found in noninvasive cases of bladder cancer, with a significant association between TERT expression and Telomere length. Interestingly, patients with low TERT expression and cases with long telomeres had significantly longer Disease-free survival and overall survival. CONCLUSION The methylation and mutations occurring in the TERT promoter are implicated in bladder carcinogenesis, offering added prognostic and supplying novel insight into telomere biology in cancer.
Collapse
Affiliation(s)
- Meryem El Azzouzi
- Biology and Medical Research Unit, CNESTEN, Rabat, Morocco; Rabat Medical and Pharmacy School, Mohammed V University in Rabat, Rabat, Morocco
| | - Hajar El Ahanidi
- Biology and Medical Research Unit, CNESTEN, Rabat, Morocco; Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland; Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland
| | - Ilias Hassan
- Rabat Medical and Pharmacy School, Mohammed V University in Rabat, Rabat, Morocco; Department of Urology, Military Hospital Mohammed V, Rabat, Morocco
| | - Mohammed Tetou
- Rabat Medical and Pharmacy School, Mohammed V University in Rabat, Rabat, Morocco; Department of Urology, Military Hospital Mohammed V, Rabat, Morocco
| | - Ahmed Ameur
- Rabat Medical and Pharmacy School, Mohammed V University in Rabat, Rabat, Morocco; Department of Urology, Military Hospital Mohammed V, Rabat, Morocco
| | - Mounia Bensaid
- Laboratory of Pathological Anatomy, Military Hospital Mohamed V, Rabat, Morocco; Royal School of Military Health Service, Rabat, Morocco
| | | | - Mohamed Oukabli
- Rabat Medical and Pharmacy School, Mohammed V University in Rabat, Rabat, Morocco; Laboratory of Pathological Anatomy, Military Hospital Mohamed V, Rabat, Morocco
| | - Chaimae Hafidi Alaoui
- Biology and Medical Research Unit, CNESTEN, Rabat, Morocco; Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | | | - Imane Chaoui
- Biology and Medical Research Unit, CNESTEN, Rabat, Morocco
| | - Laila Benbacer
- Biology and Medical Research Unit, CNESTEN, Rabat, Morocco
| | | | | |
Collapse
|
11
|
Constantinou SM, Bennett DC. Cell Senescence and the Genetics of Melanoma Development. Genes Chromosomes Cancer 2024; 63:e23273. [PMID: 39422311 DOI: 10.1002/gcc.23273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 10/19/2024] Open
Abstract
Cutaneous malignant melanoma is an aggressive skin cancer with an approximate lifetime risk of 1 in 38 in the UK. While exposure to ultraviolet radiation is a key environmental risk factor for melanoma, up to ~10% of patients report a family history of melanoma, and ~1% have a strong family history. The understanding of causal mutations in melanoma has been critical to the development of novel targeted therapies that have contributed to improved outcomes for late-stage patients. Here, we review current knowledge of the genes affected by familial melanoma mutations and their partial overlap with driver genes commonly mutated in sporadic melanoma development. One theme linking a set of susceptibility loci/genes is the regulation of skin pigmentation and suntanning. The largest functional set of susceptibility variants, typically with high penetrance, includes CDKN2A, RB1, and telomerase reverse transcriptase (TERT) mutations, associated with attenuation of cell senescence. We discuss the mechanisms of action of these gene sets in the biology and progression of nevi and melanoma.
Collapse
Affiliation(s)
- Sophie M Constantinou
- Molecular & Cellular Sciences Research Section, City St George's, University of London, London, UK
| | - Dorothy C Bennett
- Molecular & Cellular Sciences Research Section, City St George's, University of London, London, UK
| |
Collapse
|
12
|
Kim JJ, Ahn A, Ying JY, Pollens-Voigt J, Ludlow AT. Effect of aging and exercise on hTERT expression in thymus tissue of hTERT transgenic bacterial artificial chromosome mice. GeroScience 2024:10.1007/s11357-024-01319-5. [PMID: 39222198 DOI: 10.1007/s11357-024-01319-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024] Open
Abstract
Telomere shortening occurs with aging in immune cells and may be related to immunosenescence. Exercise can upregulate telomerase activity and attenuate telomere shortening in immune cells, but it is unknown if exercise impacts other immune tissues such as the thymus. This study aimed to examine human telomerase reverse transcriptase (hTERT) alternative splicing (AS) in response to aging and exercise in thymus tissue. Transgenic mice with a human TERT bacterial artificial chromosome integrated into its genome (hTERT-BAC) were utilized in two different exercise models. Mice of different ages were assigned to an exercise cage (running wheel) or not for 3 weeks prior to thymus tissue excision. Middle-aged mice (16 months) were exposed or not to treadmill running (30 min at 60% maximum speed) prior to thymus collection. hTERT transcript variants were measured by RT-PCR. hTERT transcripts decreased with aging (r = - 0.7511, p < 0.0001) and 3 weeks of wheel running did not counteract this reduction. The ratio of exons 7/8 containing hTERT to total hTERT transcripts increased with aging (r = 0.3669, p = 0.0423) but 3 weeks of voluntary wheel running attenuated this aging-driven effect (r = 0.2013, p = 0.4719). Aging increased the expression of senescence marker p16 with no impact of wheel running. Thymus regeneration transcription factor, Foxn1, went down with age with no impact of wheel running exercise. Acute treadmill exercise did not induce any significant changes in thymus hTERT expression or AS variant ratio (p > 0.05). In summary, thymic hTERT expression is reduced with aging. Exercise counteracted a shift in hTERT AS ratio with age. Our data demonstrate that aging impacts telomerase expression and that exercise impacts dysregulated splicing that occurs with aging.
Collapse
Affiliation(s)
- Jeongjin J Kim
- School of Kinesiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Alexander Ahn
- School of Kinesiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jeffrey Y Ying
- School of Kinesiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | - Andrew T Ludlow
- School of Kinesiology, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
13
|
Shou S, Li Y, Chen J, Zhang X, Zhang C, Jiang X, Liu F, Yi L, Zhang X, Geer E, Pu Z, Pang B. Understanding, diagnosing, and treating pancreatic cancer from the perspective of telomeres and telomerase. Cancer Gene Ther 2024; 31:1292-1305. [PMID: 38594465 PMCID: PMC11405285 DOI: 10.1038/s41417-024-00768-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/11/2024]
Abstract
Telomerase is associated with cellular aging, and its presence limits cellular lifespan. Telomerase by preventing telomere shortening can extend the number of cell divisions for cancer cells. In adult pancreatic cells, telomeres gradually shorten, while in precancerous lesions of cancer, telomeres in cells are usually significantly shortened. At this time, telomerase is still in an inactive state, and it is not until before and after the onset of cancer that telomerase is reactivated, causing cancer cells to proliferate. Methylation of the telomerase reverse transcriptase (TERT) promoter and regulation of telomerase by lactate dehydrogenase B (LDHB) is the mechanism of telomerase reactivation in pancreatic cancer. Understanding the role of telomeres and telomerase in pancreatic cancer will help to diagnose and initiate targeted therapy as early as possible. This article reviews the role of telomeres and telomerase as biomarkers in the development of pancreatic cancer and the progress of research on telomeres and telomerase as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Songting Shou
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuanliang Li
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiaqin Chen
- Department of Gastroenterology, Dongzhimen Hospital, Beijing, China
| | - Xing Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chuanlong Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaochen Jiang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fudong Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li Yi
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiyuan Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - En Geer
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhenqing Pu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bo Pang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
14
|
Li S, Hu G, Chen Y, Sang Y, Tang Q, Liu R. TERT upstream promoter methylation regulates TERT expression and acts as a therapeutic target in TERT promoter mutation-negative thyroid cancer. Cancer Cell Int 2024; 24:271. [PMID: 39097722 PMCID: PMC11297792 DOI: 10.1186/s12935-024-03459-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/25/2024] [Indexed: 08/05/2024] Open
Abstract
BACKGROUND DNA hypermethylation and hotspot mutations were frequently observed in the upstream and core promoter of telomerase reverse transcriptase (TERT), respectively, and they were associated with increased TERT expression and adverse clinical outcomes in thyroid cancer. In TERT promoter mutant cancer cells, the hypomethylated TERT mutant allele was active and the hypermethylated TERT wild-type allele was silenced. However, whether and how the upstream promoter methylation regulates TERT expression in TERT mutation-negative cells were largely unknown. METHODS DNA demethylating agents 5-azacytidine and decitabine and a genomic locus-specific demethylation system based on dCas9-TET1 were used to assess the effects of TERT upstream promoter methylation on TERT expression, cell growth and apoptosis of thyroid cancer cells. Regulatory proteins binding to TERT promoter were identified by CRISPR affinity purification in situ of regulatory elements (CAPTURE) combined with mass spectrometry. The enrichments of selected regulatory proteins and histone modifications were evaluated by chromatin immunoprecipitation. RESULTS The level of DNA methylation at TERT upstream promoter and expression of TERT were significantly decreased after treatment with 5-azacytidine or decitabine in TERT promoter wild-type thyroid cancer cells. Genomic locus-specific demethylation of TERT upstream promoter induced TERT downregulation, along with cell apoptosis and growth inhibition. Consistently, demethylating agents sharply inhibited the growth of thyroid cancer cells harboring hypermethylated TERT but had little effect on cells with TERT hypomethylation. Moreover, we identified that the chromatin remodeling protein CHD4 binds to methylated TERT upstream promoter and promotes its transcription by suppressing the enrichment of H3K9me3 and H3K27me3 at TERT promoter. CONCLUSIONS This study uncovered the mechanism of promoter methylation mediated TERT activation in TERT promoter mutation-negative thyroid cancer cells and indicated TERT upstream promoter methylation as a therapeutic target for thyroid cancer.
Collapse
Affiliation(s)
- Shiyong Li
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan Second Road, Guangzhou, Guangdong, 510080, China
| | - Guanghui Hu
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan Second Road, Guangzhou, Guangdong, 510080, China
| | - Yulu Chen
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan Second Road, Guangzhou, Guangdong, 510080, China
| | - Ye Sang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan Second Road, Guangzhou, Guangdong, 510080, China
| | - Qin Tang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan Second Road, Guangzhou, Guangdong, 510080, China
| | - Rengyun Liu
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan Second Road, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
15
|
Kiri S, Ryba T. Cancer, metastasis, and the epigenome. Mol Cancer 2024; 23:154. [PMID: 39095874 PMCID: PMC11295362 DOI: 10.1186/s12943-024-02069-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
Cancer is the second leading cause of death worldwide and disease burden is expected to increase globally throughout the next several decades, with the majority of cancer-related deaths occurring in metastatic disease. Cancers exhibit known hallmarks that endow them with increased survival and proliferative capacities, frequently as a result of de-stabilizing mutations. However, the genomic features that resolve metastatic clones from primary tumors are not yet well-characterized, as no mutational landscape has been identified as predictive of metastasis. Further, many cancers exhibit no known mutation signature. This suggests a larger role for non-mutational genome re-organization in promoting cancer evolution and dissemination. In this review, we highlight current critical needs for understanding cell state transitions and clonal selection advantages for metastatic cancer cells. We examine links between epigenetic states, genome structure, and misregulation of tumor suppressors and oncogenes, and discuss how recent technologies for understanding domain-scale regulation have been leveraged for a more complete picture of oncogenic and metastatic potential.
Collapse
Affiliation(s)
- Saurav Kiri
- College of Medicine, University of Central Florida, 6850 Lake Nona Blvd., Orlando, 32827, Florida, USA.
| | - Tyrone Ryba
- Department of Natural Sciences, New College of Florida, 5800 Bay Shore Rd., Sarasota, 34243, Florida, USA.
| |
Collapse
|
16
|
Zhang J, Chen J, Xu M, Zhu T. Exploring prognostic DNA methylation genes in bladder cancer: a comprehensive analysis. Discov Oncol 2024; 15:331. [PMID: 39095590 PMCID: PMC11297003 DOI: 10.1007/s12672-024-01206-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024] Open
Abstract
The current study aimed to investigate the status of genes with prognostic DNA methylation sites in bladder cancer (BLCA). We obtained bulk transcriptome sequencing data, methylation data, and single-cell sequencing data of BLCA from public databases. Initially, Cox survival analysis was conducted for each methylation site, and genes with more than 10 methylation sites demonstrating prognostic significance were identified to form the BLCA prognostic methylation gene set. Subsequently, the intersection of marker genes associated with epithelial cells in single-cell sequencing analysis was obtained to acquire epithelial cell prognostic methylation genes. Utilizing ten machine learning algorithms for multiple combinations, we selected key genes (METRNL, SYT8, COL18A1, TAP1, MEST, AHNAK, RPP21, AKAP13, RNH1) based on the C-index from multiple validation sets. Single-factor and multi-factor Cox analyses were conducted incorporating clinical characteristics and model genes to identify independent prognostic factors (AHNAK, RNH1, TAP1, Age, and Stage) for constructing a Nomogram model, which was validated for its good diagnostic efficacy, prognostic prediction ability, and clinical decision-making benefits. Expression patterns of model genes varied among different clinical features. Seven immune cell infiltration prediction algorithms were used to assess the correlation between immune cell scores and Nomogram scores. Finally, drug sensitivity analysis of Nomogram model genes was conducted based on the CMap database, followed by molecular docking experiments. Our research offers a reference and theoretical basis for prognostic evaluation, drug selection, and understanding the impact of DNA methylation changes on the prognosis of BLCA.
Collapse
Affiliation(s)
- Jianzhong Zhang
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Junyan Chen
- China Medical University, Shenyang, Liaoning, China
| | - Manrou Xu
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Tong Zhu
- Panjin Central Hospital, Panjin, Liaoning, China.
| |
Collapse
|
17
|
Papageorgakopoulou MA, Bania A, Lagogianni IA, Birmpas K, Assimakopoulou M. The Role of Glia Telomere Dysfunction in the Pathogenesis of Central Nervous System Diseases. Mol Neurobiol 2024; 61:5868-5881. [PMID: 38240992 PMCID: PMC11249767 DOI: 10.1007/s12035-024-03947-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/09/2024] [Indexed: 07/16/2024]
Abstract
Maintaining the telomere length is decisive for the viability and homeostasis process of all the cells of an organism, including human glial cells. Telomere shortening of microglial cells has been widely associated with the onset and progression of neurodegenerative diseases such as Parkinson's and Alzheimer's disease. Additionally, traumatic brain injury appears to have a positive correlation with the telomere-shortening process of microglia, and telomere length can be used as a non-invasive biomarker for the clinical management of these patients. Moreover, telomere involvement through telomerase reactivation and homologous recombination also known as the alternative lengthening of telomeres (ALT) has been described in gliomagenesis pathways, and particular focus has been given in the translational significance of these mechanisms in gliomas diagnosis and prognostic classification. Finally, glia telomere shortening is implicated in some psychiatric diseases. Given that telomere dysfunction of glial cells is involved in the central nervous system (CNS) disease pathogenesis, it represents a promising drug target that could lead to the incorporation of new tools in the medicinal arsenal for the management of so far incurable conditions.
Collapse
Affiliation(s)
| | - Angelina Bania
- School of Medicine, University of Patras, 26504, Patras, Greece
| | | | | | - Martha Assimakopoulou
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Patras, Preclinical Medicine Department Building, 1 Asklipiou, 26504, Patras, Greece.
| |
Collapse
|
18
|
Liu X, Wang J, Su D, Wang Q, Li M, Zuo Z, Han Q, Li X, Zhen F, Fan M, Chen T. Development and validation of a glioma prognostic model based on telomere-related genes and immune infiltration analysis. Transl Cancer Res 2024; 13:3182-3199. [PMID: 39145097 PMCID: PMC11319981 DOI: 10.21037/tcr-23-2294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 06/04/2024] [Indexed: 08/16/2024]
Abstract
Background Gliomas are the most prevalent primary brain tumors, and patients typically exhibit poor prognoses. Increasing evidence suggests that telomere maintenance mechanisms play a crucial role in glioma development. However, the prognostic value of telomere-related genes in glioma remains uncertain. This study aimed to construct a prognostic model of telomere-related genes and further elucidate the potential association between the two. Methods We acquired RNA-seq data for low-grade glioma (LGG) and glioblastoma (GBM), along with corresponding clinical information from The Cancer Genome Atlas (TCGA) database, and normal brain tissue data from the Genotype-Tissue Expression (GTEX) database for differential analysis. Telomere-related genes were obtained from TelNet. Initially, we conducted a differential analysis on TCGA and GTEX data to identify differentially expressed telomere-related genes, followed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses on these genes. Subsequently, univariate Cox analysis and log-rank tests were employed to obtain prognosis-related genes. Least absolute shrinkage and selection operator (LASSO) regression analysis and multivariate Cox regression analysis were sequentially utilized to construct prognostic models. The model's robustness was demonstrated using receiver operating characteristic (ROC) curve analysis, and multivariate Cox regression of risk scores for clinical characteristics and prognostic models were calculated to assess independent prognostic factors. The aforementioned results were validated using the Chinese Glioma Genome Atlas (CGGA) dataset. Finally, the CIBERSORT algorithm analyzed differences in immune cell infiltration levels between high- and low-risk groups, and candidate genes were validated in the Human Protein Atlas (HPA) database. Results Differential analysis yielded 496 differentially expressed telomere-related genes. GO and KEGG pathway analyses indicated that these genes were primarily involved in telomere-related biological processes and pathways. Subsequently, a prognostic model comprising ten telomere-related genes was constructed through univariate Cox regression analysis, log-rank test, LASSO regression analysis, and multivariate Cox regression analysis. Patients were stratified into high-risk and low-risk groups based on risk scores. Kaplan-Meier (K-M) survival analysis revealed worse outcomes in the high-risk group compared to the low-risk group, and establishing that this prognostic model was a significant independent prognostic factor for glioma patients. Lastly, immune infiltration analysis was conducted, uncovering notable differences in the proportion of multiple immune cell infiltrations between high- and low-risk groups, and eight candidate genes were verified in the HPA database. Conclusions This study successfully constructed a prognostic model of telomere-related genes, which can more accurately predict glioma patient prognosis, offer potential targets and a theoretical basis for glioma treatment, and serve as a reference for immunotherapy through immune infiltration analysis.
Collapse
Affiliation(s)
- Xiaozhuo Liu
- Department of Neurosurgery, Affiliated Hospital of North China University of Science and Technology, Tangshan, China
| | - Jingjing Wang
- Department of Imaging, Affiliated Hospital of North China University of Science and Technology, Tangshan, China
| | - Dongpo Su
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Qing Wang
- Department of Neurosurgery, Affiliated Hospital of North China University of Science and Technology, Tangshan, China
| | - Mei Li
- Department of Neurosurgery, Affiliated Hospital of North China University of Science and Technology, Tangshan, China
| | - Zhengyao Zuo
- Department of Neurosurgery, Affiliated Hospital of North China University of Science and Technology, Tangshan, China
| | - Qian Han
- Department of Neurosurgery, Affiliated Hospital of North China University of Science and Technology, Tangshan, China
| | - Xin Li
- Department of Neurosurgery, Affiliated Hospital of North China University of Science and Technology, Tangshan, China
| | - Fameng Zhen
- Department of Neurosurgery, Affiliated Hospital of North China University of Science and Technology, Tangshan, China
| | - Mingming Fan
- Department of Neurosurgery, Affiliated Hospital of North China University of Science and Technology, Tangshan, China
| | - Tong Chen
- Department of Neurosurgery, Affiliated Hospital of North China University of Science and Technology, Tangshan, China
| |
Collapse
|
19
|
Santourlidis S, Araúzo-Bravo MJ, Brodell RT, Hassan M, Bendhack ML. hTERT Epigenetics Provides New Perspectives for Diagnosis and Evidence-Based Guidance of Chemotherapy in Cancer. Int J Mol Sci 2024; 25:7331. [PMID: 39000438 PMCID: PMC11242863 DOI: 10.3390/ijms25137331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
Strong epigenetic pan-cancer biomarkers are required to meet several current, urgent clinical needs and to further improve the present chemotherapeutic standard. We have concentrated on the investigation of epigenetic alteration of the hTERT gene, which is frequently epigenetically dysregulated in a number of cancers in specific developmental stages. Distinct DNA methylation profiles were identified in our data on early urothelial cancer. An efficient EpihTERT assay could be developed utilizing suitable combinations with sequence-dependent thermodynamic parameters to distinguish between differentially methylated states. We infer from this data set, the epigenetic context, and the related literature that a CpG-rich, 2800 bp region, a prominent CpG island, surrounding the transcription start of the hTERT gene is the crucial epigenetic zone for the development of a potent biomarker. In order to accurately describe this region, we have named it "Acheron" (Ἀχέρων). In Greek mythology, this is the river of woe and misery and the path to the underworld. Exploitation of the DNA methylation profiles focused on this region, e.g., idiolocal normalized Methylation Specific PCR (IDLN-MSP), opens up a wide range of new possibilities for diagnosis, determination of prognosis, follow-up, and detection of residual disease. It may also have broad implications for the choice of chemotherapy.
Collapse
Affiliation(s)
- Simeon Santourlidis
- Institute of Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich Heine University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany
| | - Marcos J. Araúzo-Bravo
- Group of Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, 20014 San Sebastián, Spain;
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Robert T. Brodell
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS 39216, USA;
| | - Mohamed Hassan
- Institut National de la Santé et de la Recherche Médicale, 67000 Strasbourg, France;
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Marcelo L. Bendhack
- Department of Urology, Red Cross University Hospital, Positivo University, Rua Mauá 1111, Curitiba 80030-200, Brazil;
| |
Collapse
|
20
|
Sang Y, Hu G, Xue J, Chen M, Hong S, Liu R. Risk stratification by combining common genetic mutations and TERT promoter methylation in papillary thyroid cancer. Endocrine 2024; 85:304-312. [PMID: 38356100 DOI: 10.1007/s12020-024-03722-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/30/2024] [Indexed: 02/16/2024]
Abstract
PURPOSE Risk stratification based on somatic mutations in TERT promoter and BRAF/RAS has been well established for papillary thyroid cancer (PTC), and there is emerging evidence showed that TERT promoter methylation was frequently observed in thyroid cancer patients with adverse features. This study was aimed to comprehensive explore the prognostic value of BRAF/RAS mutations, TERT promoter mutations, and TERT promoter methylation in PTC. METHODS The relationships of BRAF/RAS mutations, TERT promoter mutations, and TERT promoter methylation with clinical characteristics and outcomes of PTC were analyzed in 382 patients with PTC. RESULTS TERT promoter mutation and hypermethylation were collectively observed in 52 (13.6%) samples and associated with BRAF/RAS mutation, aggressive clinical characteristics, and poor clinical outcomes of PTC. Coexistence of BRAF/RAS and TERT alterations was found in 45 of 382 (11.8%) PTC patients and strongly associated with old patient age, extrathyroidal extension, advanced pathologic T stage and metastasis. Importantly, patients with both BRAF/RAS and TERT alterations had higher rates of tumor recurrence (13.6% vs 1.5%, P = 0.042) and disease progression (24.4% vs 3.3%, P < 0.001) than patients without any alterations, and cox regression analysis revealed that the coexistence of BRAF/RAS and TERT alterations, but not BRAF/RAS or TERT alterations alone, increased the risk of progression-free interval with an adjusted HR of 10.35 (95% CI: 1.79-59.81, P = 0.009). CONCLUSIONS This study suggested that comprehensively analysis of BRAF/RAS mutations, TERT promoter mutation and methylation is an effective strategy to identify high-risk patients with PTC.
Collapse
Affiliation(s)
- Ye Sang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, No. 58, Zhongshan Second Road, Guangzhou, China
| | - Guanghui Hu
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, No. 58, Zhongshan Second Road, Guangzhou, China
| | - Junyu Xue
- Department of Endocrinology, The First Affiliated Hospital, Sun Yat-Sen University, No. 58, Zhongshan Second Road, Guangzhou, China
| | - Mengke Chen
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, No. 58, Zhongshan Second Road, Guangzhou, China
| | - Shubin Hong
- Department of Endocrinology, The First Affiliated Hospital, Sun Yat-Sen University, No. 58, Zhongshan Second Road, Guangzhou, China
| | - Rengyun Liu
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, No. 58, Zhongshan Second Road, Guangzhou, China.
| |
Collapse
|
21
|
Saucedo R, Ferreira-Hermosillo A, Robledo-Clemente M, Díaz-Velázquez MF, Valencia-Ortega J. Association of DNA Methylation with Infant Birth Weight in Women with Gestational Diabetes. Metabolites 2024; 14:361. [PMID: 39057684 PMCID: PMC11278577 DOI: 10.3390/metabo14070361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Offspring exposed to gestational diabetes mellitus (GDM) exhibit greater adiposity at birth. This early-life phenotype may increase offspring risk of developing obesity, metabolic syndrome, type 2 diabetes, and cardiovascular disease later in life. Infants born to women with GDM have a dysregulation of several hormones, cytokines, and growth factors related to fetal fat mass growth. One of the molecular mechanisms of GDM influencing these factors is epigenetic alterations, such as DNA methylation (DNAm). This review will examine the role of DNAm as a potential biomarker for monitoring fetal growth during pregnancy in women with GDM. This information is relevant since it may provide useful new biomarkers for the diagnosis, prognosis, and treatment of fetal growth and its later-life health consequences.
Collapse
Affiliation(s)
- Renata Saucedo
- Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico; (R.S.); (A.F.-H.)
| | - Aldo Ferreira-Hermosillo
- Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico; (R.S.); (A.F.-H.)
| | - Magalhi Robledo-Clemente
- Hospital de Gineco Obstetricia 3, Centro Médico Nacional La Raza, Instituto Mexicano del Seguro Social, Mexico City 02990, Mexico; (M.R.-C.); (M.F.D.-V.)
| | - Mary Flor Díaz-Velázquez
- Hospital de Gineco Obstetricia 3, Centro Médico Nacional La Raza, Instituto Mexicano del Seguro Social, Mexico City 02990, Mexico; (M.R.-C.); (M.F.D.-V.)
| | - Jorge Valencia-Ortega
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 11000, Mexico
| |
Collapse
|
22
|
Graham MK, Xu B, Davis C, Meeker AK, Heaphy CM, Yegnasubramanian S, Dyer MA, Zeineldin M. The TERT Promoter is Polycomb-Repressed in Neuroblastoma Cells with Long Telomeres. CANCER RESEARCH COMMUNICATIONS 2024; 4:1533-1547. [PMID: 38837897 PMCID: PMC11188873 DOI: 10.1158/2767-9764.crc-22-0287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 05/04/2023] [Accepted: 05/22/2024] [Indexed: 06/07/2024]
Abstract
Acquiring a telomere maintenance mechanism is a hallmark of high-risk neuroblastoma and commonly occurs by expressing telomerase (TERT). Telomerase-negative neuroblastoma has long telomeres and utilizes the telomerase-independent alternative lengthening of telomeres (ALT) mechanism. Conversely, no discernable telomere maintenance mechanism is detected in a fraction of neuroblastoma with long telomeres. Here, we show, unlike most cancers, DNA of the TERT promoter is broadly hypomethylated in neuroblastoma. In telomerase-positive neuroblastoma cells, the hypomethylated DNA promoter is approximately 1.5 kb. The TERT locus shows active chromatin marks with low enrichment for the repressive mark, H3K27me3. MYCN, a commonly amplified oncogene in neuroblstoma, binds to the promoter and induces TERT expression. Strikingly, in neuroblastoma with long telomeres, the hypomethylated region spans the entire TERT locus, including multiple nearby genes with enrichment for the repressive H3K27me3 chromatin mark. Furthermore, subtelomeric regions showed enrichment of repressive chromatin marks in neuroblastomas with long telomeres relative to those with short telomeres. These repressive marks were even more evident at the genic loci, suggesting a telomere position effect (TPE). Inhibiting H3K27 methylation by three different EZH2 inhibitors induced the expression of TERT in cell lines with long telomeres and H3K27me3 marks in the promoter region. EZH2 inhibition facilitated MYCN binding to the TERT promoter in neuroblastoma cells with long telomeres. Taken together, these data suggest that epigenetic regulation of TERT expression differs in neuroblastoma depending on the telomere maintenance status, and H3K27 methylation is important in repressing TERT expression in neuroblastoma with long telomeres. SIGNIFICANCE The epigenetic landscape of the TERT locus is unique in neuroblastoma. The DNA at the TERT locus, unlike other cancer cells and similar to normal cells, are hypomethylated in telomerase-positive neuroblastoma cells. The TERT locus is repressed by polycomb repressive complex-2 complex in neuroblastoma cells that have long telomeres and do not express TERT. Long telomeres in neuroblastoma cells are also associated with repressive chromatin states at the chromosomal termini, suggesting TPE.
Collapse
Affiliation(s)
- Mindy K. Graham
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Urology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - Beisi Xu
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Christine Davis
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Alan K. Meeker
- Department of Urology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Christopher M. Heaphy
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Srinivasan Yegnasubramanian
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Michael A. Dyer
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee
- Howard Hughes Medical Institute, Chevy Chase, Maryland
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Maged Zeineldin
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
23
|
Waitkus MS, Erman EN, Reitman ZJ, Ashley DM. Mechanisms of telomere maintenance and associated therapeutic vulnerabilities in malignant gliomas. Neuro Oncol 2024; 26:1012-1024. [PMID: 38285162 PMCID: PMC11145458 DOI: 10.1093/neuonc/noae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Indexed: 01/30/2024] Open
Abstract
A majority of cancers (~85%) activate the enzyme telomerase to maintain telomere length over multiple rounds of cellular division. Telomerase-negative cancers activate a distinct, telomerase-independent mechanism of telomere maintenance termed alternative lengthening of telomeres (ALT). ALT uses homologous recombination to maintain telomere length and exhibits features of break-induced DNA replication. In malignant gliomas, the activation of either telomerase or ALT is nearly ubiquitous in pediatric and adult tumors, and the frequency with which these distinct telomere maintenance mechanisms (TMMs) is activated varies according to genetically defined glioma subtypes. In this review, we summarize the current state of the field of TMMs and their relevance to glioma biology and therapy. We review the genetic alterations and molecular mechanisms leading to telomerase activation or ALT induction in pediatric and adult gliomas. With this background, we review emerging evidence on strategies for targeting TMMs for glioma therapy. Finally, we comment on critical gaps and issues for moving the field forward to translate our improved understanding of glioma telomere maintenance into better therapeutic strategies for patients.
Collapse
Affiliation(s)
- Matthew S Waitkus
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina, USA
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Elise N Erman
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina, USA
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Zachary J Reitman
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina, USA
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, USA
| | - David M Ashley
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina, USA
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
24
|
Lee Y, Park CK, Park SH. Prognostic Impact of TERT Promoter Mutations in Adult-Type Diffuse Gliomas Based on WHO2021 Criteria. Cancers (Basel) 2024; 16:2032. [PMID: 38893152 PMCID: PMC11171308 DOI: 10.3390/cancers16112032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/07/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Mutation in the telomerase reverse transcriptase promoter (TERTp )is commonly observed in various malignancies, such as central nervous system (CNS) tumors, malignant melanoma, bladder cancer, and thyroid carcinoma. These mutations are recognized as significant poor prognostic factors for these tumors. In this investigation, a total of 528 cases of adult-type diffuse gliomas diagnosed at a single institution were reclassified according to the 2021 WHO classifications of CNS tumors, 5th edition (WHO2021). The study analyzed clinicopathological and genetic features, including TERTp mutations in each tumor. The impact of known prognostic factors on patient outcomes was analyzed through Kaplan-Meier survival and Cox regression analysis. TERTp mutations were predominantly identified in 94.1% of oligodendrogliomas (ODG), followed by 66.3% in glioblastoma, IDH-wildtype (GBM-IDHwt), and 9.2% of astrocytomas, IDH-mutant (A-IDHm). When considering A-IDHm and GBM as astrocytic tumors (Group 1) and ODGs (Group 2), TERTp mutations emerged as a significant adverse prognostic factor (p = 0.013) in Group 1. However, within each GBM-IDHwt and A-IDHm, the presence of TERTp mutations did not significantly impact patient prognosis (p = 0.215 and 0.268, respectively). Due to the high frequency of TERTp mutations in Group 2 (ODG) and their consistent prolonged survival, a statistical analysis to evaluate their impact on overall survival was deemed impractical. When considering MGMTp status, the combined TERTp-mutated and MGMTp-unmethylated group exhibited the worst prognosis in OS (p = 0.018) and PFS (p = 0.034) of GBM. This study confirmed that the classification of tumors according to the WHO2021 criteria effectively reflected prognosis. Both uni- and multivariate analyses in GBM, age, MGMTp methylation, and CDKN2A/B homozygous deletion were statistically significant prognostic factors while in univariate analysis in A-IDHm, grade 4, the Ki-67 index and MYCN amplifications were statistically significant prognostic factors. This study suggests that it is important to classify and manage tumors based on their genetic characteristics in adult-type diffuse gliomas.
Collapse
Affiliation(s)
- Yujin Lee
- Department of Hospital Pathology, St. Vincent’s Hospital, The Catholic University of Korea College of Medicine, 93, Jungbu-daero, Paldal-gu, Suwon 16247, Gyeonggi-do, Republic of Korea;
| | - Chul-Kee Park
- Department of Neurosurgery, Seoul National University College of Medicine, 103 Deahak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Sung-Hye Park
- Department of Pathology, Seoul National University College of Medicine, 103 Deahak-ro, Jongno-gu, Seoul 03080, Republic of Korea
- Neuroscience Institute, Seoul National University College of Medicine, 103 Deahak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| |
Collapse
|
25
|
Ma X, Mei S, Wuyun Q, Zhou L, Sun D, Yan J. Epigenetics in diabetic cardiomyopathy. Clin Epigenetics 2024; 16:52. [PMID: 38581056 PMCID: PMC10996175 DOI: 10.1186/s13148-024-01667-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/28/2024] [Indexed: 04/07/2024] Open
Abstract
Diabetic cardiomyopathy (DCM) is a critical complication that poses a significant threat to the health of patients with diabetes. The intricate pathological mechanisms of DCM cause diastolic dysfunction, followed by impaired systolic function in the late stages. Accumulating researches have revealed the association between DCM and various epigenetic regulatory mechanisms, including DNA methylation, histone modifications, non-coding RNAs, and other epigenetic molecules. Recently, a profound understanding of epigenetics in the pathophysiology of DCM has been broadened owing to advanced high-throughput technologies, which assist in developing potential therapeutic strategies. In this review, we briefly introduce the epigenetics regulation and update the relevant progress in DCM. We propose the role of epigenetic factors and non-coding RNAs (ncRNAs) as potential biomarkers and drugs in DCM diagnosis and treatment, providing a new perspective and understanding of epigenomics in DCM.
Collapse
Affiliation(s)
- Xiaozhu Ma
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Shuai Mei
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Qidamugai Wuyun
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Li Zhou
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Dating Sun
- Department of Cardiology, Wuhan No. 1 Hospital, Wuhan Hospital of Traditional Chinese and Western Medicine, Wuhan, China
| | - Jiangtao Yan
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China.
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China.
- Genetic Diagnosis Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
26
|
Rahimi D, Sharifi R, Jaberie H, Naghibalhossaini F. Antiproliferative and Antitelomerase Effects of Silymarin on Human Colorectal and Hepatocellular Carcinoma Cells. PLANTA MEDICA 2024; 90:298-304. [PMID: 38219733 DOI: 10.1055/a-2244-8788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Silymarin, a widely-used hepatoprotective agent, has shown antitumor properties in both in vitro and animal studies. Currently, there is limited knowledge regarding silymarin's antitelomerase effects on human colorectal cancer and hepatocyte carcinoma cells. In this study, we investigated the antiproliferative and antitelomerase effects of silymarin on four human colorectal cancer and HepG2 hepatocyte carcinoma cell lines. The cell viability and telomerase activity were assessed using MTT and the telomerase repeat amplification protocol assay, respectively. We also investigated the effects of silymarin on the expression of human telomerase reverse transcriptase and its promoter methylation in HepG2 cells by real-time RT-PCR and methylation-specific PCR, respectively. Silymarin treatment inhibited cell proliferation and telomerase activity in all cancer cells. After 24 h of treatment, silymarin exhibited IC50 values ranging from 19 - 56.3 µg/mL against these cancer cells. A 30-min treatment with silymarin at the IC50 concentration effectively inhibited telomerase activity in cell-free extracts of both colorectal cancer and hepatocyte carcinoma cells. Treatment of HepG2 cells with 10 and 30 µg/mL of silymarin for 48 h resulted in a decrease in human telomerase reverse transcriptase expression to 75 and 35% of the level observed in the untreated control (p < 0.01), respectively. Treatment with silymarin (10, 30, and 60 µg/mL) for 48 h did not affect human telomerase reverse transcriptase promoter methylation in HepG2 cells. In conclusion, our findings suggest that silymarin inhibits cancer cell growth by directly inhibiting telomerase activity and downregulating its human telomerase reverse transcriptase catalytic subunit. However, silymarin did not affect human telomerase reverse transcriptase promoter methylation at the concentrations of 10 - 60 µg/mL used in this study.
Collapse
Affiliation(s)
- Daruosh Rahimi
- Department of Biochemistry, Shiraz University of Medical Sciences, School of Medicine, Shiraz, Iran
| | - Roya Sharifi
- Department of Laboratory Sciences, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Hajar Jaberie
- Department of Biochemistry, Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | | |
Collapse
|
27
|
Takasawa K, Asada K, Kaneko S, Shiraishi K, Machino H, Takahashi S, Shinkai N, Kouno N, Kobayashi K, Komatsu M, Mizuno T, Okubo Y, Mukai M, Yoshida T, Yoshida Y, Horinouchi H, Watanabe SI, Ohe Y, Yatabe Y, Kohno T, Hamamoto R. Advances in cancer DNA methylation analysis with methPLIER: use of non-negative matrix factorization and knowledge-based constraints to enhance biological interpretability. Exp Mol Med 2024; 56:646-655. [PMID: 38433247 PMCID: PMC10985003 DOI: 10.1038/s12276-024-01173-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 11/27/2023] [Accepted: 12/13/2023] [Indexed: 03/05/2024] Open
Abstract
DNA methylation is an epigenetic modification that results in dynamic changes during ontogenesis and cell differentiation. DNA methylation patterns regulate gene expression and have been widely researched. While tools for DNA methylation analysis have been developed, most of them have focused on intergroup comparative analysis within a dataset; therefore, it is difficult to conduct cross-dataset studies, such as rare disease studies or cross-institutional studies. This study describes a novel method for DNA methylation analysis, namely, methPLIER, which enables interdataset comparative analyses. methPLIER combines Pathway Level Information Extractor (PLIER), which is a non-negative matrix factorization (NMF) method, with regularization by a knowledge matrix and transfer learning. methPLIER can be used to perform intersample and interdataset comparative analysis based on latent feature matrices, which are obtained via matrix factorization of large-scale data, and factor-loading matrices, which are obtained through matrix factorization of the data to be analyzed. We used methPLIER to analyze a lung cancer dataset and confirmed that the data decomposition reflected sample characteristics for recurrence-free survival. Moreover, methPLIER can analyze data obtained via different preprocessing methods, thereby reducing distributional bias among datasets due to preprocessing. Furthermore, methPLIER can be employed for comparative analyses of methylation data obtained from different platforms, thereby reducing bias in data distribution due to platform differences. methPLIER is expected to facilitate cross-sectional DNA methylation data analysis and enhance DNA methylation data resources.
Collapse
Affiliation(s)
- Ken Takasawa
- Division of Medical AI Research and Development, National Cancer Center Research Institute, Tokyo, 104-0045, Japan.
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo, 103-0027, Japan.
| | - Ken Asada
- Division of Medical AI Research and Development, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo, 103-0027, Japan
| | - Syuzo Kaneko
- Division of Medical AI Research and Development, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo, 103-0027, Japan
| | - Kouya Shiraishi
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
| | - Hidenori Machino
- Division of Medical AI Research and Development, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo, 103-0027, Japan
| | - Satoshi Takahashi
- Division of Medical AI Research and Development, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo, 103-0027, Japan
| | - Norio Shinkai
- Division of Medical AI Research and Development, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo, 103-0027, Japan
| | - Nobuji Kouno
- Division of Medical AI Research and Development, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo, 103-0027, Japan
| | - Kazuma Kobayashi
- Division of Medical AI Research and Development, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo, 103-0027, Japan
| | - Masaaki Komatsu
- Division of Medical AI Research and Development, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo, 103-0027, Japan
| | - Takaaki Mizuno
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, 104-0045, Japan
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, 104-0045, Japan
| | - Yu Okubo
- Department of Thoracic Surgery, National Cancer Center Hospital, Tokyo, 104-0045, Japan
| | - Masami Mukai
- Division of Medical Informatics, National Cancer Center Hospital, Tokyo, 104-0045, Japan
| | - Tatsuya Yoshida
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, 104-0045, Japan
| | - Yukihiro Yoshida
- Department of Thoracic Surgery, National Cancer Center Hospital, Tokyo, 104-0045, Japan
| | - Hidehito Horinouchi
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, 104-0045, Japan
| | - Shun-Ichi Watanabe
- Department of Thoracic Surgery, National Cancer Center Hospital, Tokyo, 104-0045, Japan
| | - Yuichiro Ohe
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, 104-0045, Japan
| | - Yasushi Yatabe
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, 104-0045, Japan
| | - Takashi Kohno
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
| | - Ryuji Hamamoto
- Division of Medical AI Research and Development, National Cancer Center Research Institute, Tokyo, 104-0045, Japan.
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo, 103-0027, Japan.
| |
Collapse
|
28
|
Koca DS, Kolpakov V, Ihlow J, von Laffert M, Erb-Eigner K, Herbst H, Kriese K, Schweizer L, Bertelmann E. Prevalence of TERT Promoter Mutations in Orbital Solitary Fibrous Tumors. Curr Issues Mol Biol 2024; 46:1467-1484. [PMID: 38392213 PMCID: PMC10887834 DOI: 10.3390/cimb46020095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/24/2024] Open
Abstract
The orbital manifestation of a solitary fibrous tumor (SFT) is exceptionally rare and poses specific challenges in diagnosis and treatment. Its rather exceptional behavior among all SFTs comprises a high tendency towards local recurrence, but it rarely culminates in metastatic disease. This raises the question of prognostic factors in orbital SFTs (oSFTs). Telomerase reverse transcriptase (TERT)-promoter mutations have previously been linked to an unfavorable prognosis in SFTs of other locations. We analyzed the prevalence of TERT promoter mutations of SFTs in the orbital compartment. We performed a retrospective, descriptive clinico-histopathological analysis of nine cases of oSFTs between the years of 2017 and 2021. A TERT promoter mutation was present in one case, which was classified with intermediate metastatic risk. Local recurrence or progress occurred in six cases after primary resection; no distant metastases were reported. Multimodal imaging repeatedly showed particular morphologic patterns, including tubular vascular structures and ADC reduction. The prevalence of the TERT promoter mutation in oSFT was 11%, which is similar to the prevalence of extra-meningeal SFTs of the head and neck and lower than that in other extra-meningeal compartments. In the present study, the TERT promoter mutation in oSFT manifested in a case with an unfavorable prognosis, comprising aggressive local tumor growth, local recurrence, and eye loss.
Collapse
Affiliation(s)
- David Sinan Koca
- Department of Ophthalmology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Vladimir Kolpakov
- Department of Ophthalmology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Jana Ihlow
- Institute of Pathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Berlin Institute of Health Charité Clinician Scientist Program, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin Institute of Health Biomedical Innovation Academy, Anna-Louisa-Karsch-Str., 210178 Berlin, Germany
| | - Maximilian von Laffert
- Institute of Pathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Department of Diagnostics, Institute of Pathology, Universitätsklinikum Leipzig AöR, Liebigstraße 26, 04103 Leipzig, Germany
| | - Katharina Erb-Eigner
- Department of Radiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Hermann Herbst
- Department of Pathology, Vivantes Hospital Neukölln, Vivantes Netzwerk für Gesundheit GmbH Berlin, Rudower Straße 48, 12351 Berlin, Germany
| | - Karen Kriese
- Department of Pathology, Vivantes Hospital Neukölln, Vivantes Netzwerk für Gesundheit GmbH Berlin, Rudower Straße 48, 12351 Berlin, Germany
| | - Leonille Schweizer
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Edinger Institute, Institute of Neurology, University of Frankfurt am Main, 60528 Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt-Mainz, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Frankfurt Cancer Institute (FCI), 60596 Frankfurt am Main, Germany
| | - Eckart Bertelmann
- Department of Ophthalmology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany
| |
Collapse
|
29
|
Liu M, Zhang Y, Jian Y, Gu L, Zhang D, Zhou H, Wang Y, Xu ZX. The regulations of telomerase reverse transcriptase (TERT) in cancer. Cell Death Dis 2024; 15:90. [PMID: 38278800 PMCID: PMC10817947 DOI: 10.1038/s41419-024-06454-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/28/2024]
Abstract
Abnormal activation of telomerase occurs in most cancer types, which facilitates escaping from cell senescence. As the key component of telomerase, telomerase reverse transcriptase (TERT) is regulated by various regulation pathways. TERT gene changing in its promoter and phosphorylation respectively leads to TERT ectopic expression at the transcription and protein levels. The co-interacting factors play an important role in the regulation of TERT in different cancer types. In this review, we focus on the regulators of TERT and these downstream functions in cancer regulation. Determining the specific regulatory mechanism will help to facilitate the development of a cancer treatment strategy that targets telomerase and cancer cell senescence. As the most important catalytic subunit component of telomerase, TERT is rapidly regulated by transcriptional factors and PTM-related activation. These changes directly influence TERT-related telomere maintenance by regulating telomerase activity in telomerase-positive cancer cells, telomerase assembly with telomere-binding proteins, and recruiting telomerase to the telomere. Besides, there are also non-canonical functions that are influenced by TERT, including the basic biological functions of cancer cells, such as proliferation, apoptosis, cell cycle regulation, initiating cell formation, EMT, and cell invasion. Other downstream effects are the results of the influence of transcriptional factors by TERT. Currently, some small molecular inhibitors of TERT and TERT vaccine are under research as a clinical therapeutic target. Purposeful work is in progress.
Collapse
Affiliation(s)
- Mingdi Liu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China
| | - Yuning Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China
| | - Yongping Jian
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China
| | - Liting Gu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China
| | - Dan Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China
| | - Honglan Zhou
- Department of Urology, The First Hospital of Jilin University, Changchun, 130021, Jilin, China.
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China.
| | - Zhi-Xiang Xu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China.
- Department of Urology, The First Hospital of Jilin University, Changchun, 130021, Jilin, China.
| |
Collapse
|
30
|
Li S, Xue J, Jiang K, Chen Y, Zhu L, Liu R. TERT promoter methylation is associated with high expression of TERT and poor prognosis in papillary thyroid cancer. Front Oncol 2024; 14:1325345. [PMID: 38313800 PMCID: PMC10834694 DOI: 10.3389/fonc.2024.1325345] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/04/2024] [Indexed: 02/06/2024] Open
Abstract
The telomerase reverse transcriptase (TERT) is overexpressed and associated with poor prognosis in papillary thyroid cancer (PTC), the most common subtype of thyroid cancer. The overexpression of TERT in PTC was partially attributed to transcriptional activation by two hotspot mutations in the core promoter region of this gene. As one of the major epigenetic mechanisms of gene expression regulation, DNA methylation has been proved to regulate several tumor-related genes in PTC. However, the association of TERT promoter DNA methylation with TERT expression and PTC progression is still unclear. By treating PTC cell lines with demethylating agent decitabine, we found that the TERT promoter methylation and the genes' expression were remarkably decreased. Consistently, PTC patients with TERT hypermethylation had significantly higher TERT expression than patients with TERT hypomethylation. Moreover, TERT hypermethylated patients showed significant higher rates of poor clinical outcomes than patients with TERT hypomethylation. Results from the cox regression analysis showed that the hazard ratios (HRs) of TERT hypermethylation for overall survival, disease-specific survival, disease-free interval (DFI) and progression-free interval (PFI) were 4.81 (95% CI, 1.61-14.41), 8.28 (95% CI, 2.14-32.13), 3.56 (95% CI, 1.24-10.17) and 3.32 (95% CI, 1.64-6.71), respectively. The HRs for DFI and PFI remained significant after adjustment for clinical risk factors. These data suggest that promoter DNA methylation upregulates TERT expression and associates with poor clinical outcomes of PTC, thus holds the potential to be a valuable prognostic marker for PTC risk stratification.
Collapse
Affiliation(s)
- Shiyong Li
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Junyu Xue
- Department of Endocrinology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ke Jiang
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yulu Chen
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lefan Zhu
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Rengyun Liu
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
31
|
Li Z, Ying Y, Zeng X, Liu J, Xie Y, Deng Z, Hu Z, Yang J. DNMT1/DNMT3a-mediated promoter hypermethylation and transcription activation of ICAM5 augments thyroid carcinoma progression. Funct Integr Genomics 2024; 24:12. [PMID: 38228798 DOI: 10.1007/s10142-024-01293-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/18/2024]
Abstract
Promoter methylation is one of the most studied epigenetic modifications and it is highly relevant to the onset and progression of thyroid carcinoma (THCA). This study investigates the promoter methylation and expression pattern of intercellular adhesion molecule 5 (ICAM5) in THCA. CpG islands with aberrant methylation pattern in THCA, and the expression profiles of the corresponding genes in THCA, were analyzed using bioinformatics. ICAM5 was suggested to have a hypermethylation status, and it was highly expressed in THCA tissues and cells. Its overexpression promoted proliferation, mobility, and tumorigenic activity of THCA cells. As for the downstream signaling, ICAM5 was found to activate the MAPK/ERK and MAPK/JNK signaling pathways. Either inhibition of ERK or JNK blocked the oncogenic effects of ICAM5. DNA methyltransferases 1 (DNMT1) and DNMT3a were found to induce promoter hypermethylation of ICAM5 in THCA cells. Knockdown of DNMT1 or DNMT3a decreased the ICAM5 expression and suppressed malignant properties of THCA cells in vitro and in vivo, which were, however, restored by further artificial ICAM5 overexpression. Collectively, this study reveals that DNMT1 and DNMT3a mediates promoter hypermethylation and transcription activation of ICAM5 in THCA, which promotes malignant progression of THCA through the MAPK signaling pathway.
Collapse
Affiliation(s)
- Zanbin Li
- Department of Thyroid and Hernia Surgery, First Affiliated Hospital of Gannan Medical College, No. 128, Jinling West Road, Ganzhou, 341000, Jiangxi, People's Republic of China
| | - Yong Ying
- Department of Thyroid and Hernia Surgery, First Affiliated Hospital of Gannan Medical College, No. 128, Jinling West Road, Ganzhou, 341000, Jiangxi, People's Republic of China
| | - Xiangtai Zeng
- Department of Thyroid and Hernia Surgery, First Affiliated Hospital of Gannan Medical College, No. 128, Jinling West Road, Ganzhou, 341000, Jiangxi, People's Republic of China
| | - Jiafeng Liu
- Department of Thyroid and Hernia Surgery, First Affiliated Hospital of Gannan Medical College, No. 128, Jinling West Road, Ganzhou, 341000, Jiangxi, People's Republic of China
| | - Yang Xie
- Department of Thyroid and Hernia Surgery, First Affiliated Hospital of Gannan Medical College, No. 128, Jinling West Road, Ganzhou, 341000, Jiangxi, People's Republic of China
| | - Zefu Deng
- Department of Thyroid and Hernia Surgery, First Affiliated Hospital of Gannan Medical College, No. 128, Jinling West Road, Ganzhou, 341000, Jiangxi, People's Republic of China
| | - Zhiqiang Hu
- Department of Thyroid and Hernia Surgery, First Affiliated Hospital of Gannan Medical College, No. 128, Jinling West Road, Ganzhou, 341000, Jiangxi, People's Republic of China
| | - Junjie Yang
- Department of Thyroid and Hernia Surgery, First Affiliated Hospital of Gannan Medical College, No. 128, Jinling West Road, Ganzhou, 341000, Jiangxi, People's Republic of China.
| |
Collapse
|
32
|
Akram F, Tanveer R, Andleeb S, Shah FI, Ahmad T, Shehzadi S, Akhtar AM, Syed G. Deciphering the Epigenetic Symphony of Cancer: Insights and Epigenetic Therapies Implications. Technol Cancer Res Treat 2024; 23:15330338241250317. [PMID: 38780251 PMCID: PMC11119348 DOI: 10.1177/15330338241250317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/01/2024] [Accepted: 04/08/2024] [Indexed: 05/25/2024] Open
Abstract
Epigenetic machinery is a cornerstone in normal cell development, orchestrating tissue-specific gene expression in mammalian cells. Aberrations in this intricate landscape drive substantial changes in gene function, emerging as a linchpin in cancer etiology and progression. While cancer was conventionally perceived as solely a genetic disorder, its contemporary definition encompasses genetic alterations intertwined with disruptive epigenetic abnormalities. This review explores the profound impact of DNA methylation, histone modifications, and noncoding RNAs on fundamental cellular processes. When these pivotal epigenetic mechanisms undergo disruption, they intricately guide the acquisition of the 6 hallmark characteristics of cancer within seemingly normal cells. Leveraging the latest advancements in decoding these epigenetic intricacies holds immense promise, heralding a new era in developing targeted and more efficacious treatment modalities against cancers driven by aberrant epigenetic modifications.
Collapse
Affiliation(s)
- Fatima Akram
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Rida Tanveer
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Sahar Andleeb
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Fatima Iftikhar Shah
- Department of Medical Lab Technology, The University of Lahore, Lahore, Pakistan
| | - Tayyab Ahmad
- Department of Medicine, Fatima Memorial Hospital, Lahore, Pakistan
| | - Somia Shehzadi
- Department of Medical Lab Technology, The University of Lahore, Lahore, Pakistan
| | | | - Ghania Syed
- Centre for Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
33
|
Chen X, Qin Z, Zhu X, Wang L, Li C, Wang H. Identification and validation of telomerase related lncRNAs signature to predict prognosis and tumor immunotherapy response in bladder cancer. Sci Rep 2023; 13:21816. [PMID: 38071230 PMCID: PMC10710514 DOI: 10.1038/s41598-023-49167-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023] Open
Abstract
Telomerase allows eukaryotic cells to proliferate indefinitely, an important characteristic of tumor cells. Telomerase-related long no coding RNAs (TERLs) are involved in prognosis and drug sensitivity prediction; however, their association with bladder cancer (BLCA) is still unreported. The objective of this research is to determine a predictive prognostic TERL signature for OS and to provide an efficient treatment option for BLCA. The RNA sequence, clinical information, and mutational data of BLCA patients were acquired from The Cancer Genome Atlas (TCGA) database. With the help of the data from least absolute shrinkage and selection operator (LASSO) regression and Cox regression, a prognostic signature was established including 14 TERLs, which could divide BLCA patients into low-risk (L-R) and high-risk (H-R) cohorts. The time-dependent receiver operating characteristic (ROC) curve demonstrated the greater predictive power of the model. By combing the TERLs-based signature and clinical risk factors (age, sex, grade, and stage), a prognostic nomogram was constructed to forecast the survival rates of patients with BLCA at 1-, 3-, and 5-years, which was well matched by calibration plots C-index and Decision curve analysis (DCA). Furthermore, the L-R cohort showed higher tumor mutation burden (TMB) and lower tumor immune dysfunction and exclusion (TIDE) than the H-R cohort, as well as substantial variability in immune cell infiltration and immune function between the two cohorts was elucidated. As for external validation, LINC01711 and RAP2C-AS1 were identified as poor prognostic factors by survival analysis from the Kaplan-Meier Plotter database, which were validated in BLCA cell lines (EJ, 253J, T24, and 5637) and SV-HUC-1 cells as the control group using qRT-PCR. In addition, interference with the expression of RAP2C-AS1 suppresses the proliferation and migration of BLCA cells, and RAP2C-AS1 could affect the expression of CD274 and CTLA4, which could serve as prognostic markers and characterize the tumor microenvironment in BLCA. Overall, the model based on the 14-TERLs signature can efficiently predict the prognosis and drug treatment response in individuals with bladder cancer.
Collapse
Affiliation(s)
- Xiaoxu Chen
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zheng Qin
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xiao Zhu
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Lili Wang
- Department of Oncology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Changying Li
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Haitao Wang
- Department of Oncology, The Second Hospital of Tianjin Medical University, Tianjin, China.
| |
Collapse
|
34
|
Deng XM, Zhang Y, Gao PL, Zhang Z. Primary hepatic carcinosarcoma with osteosarcoma components: A case report and literature review. Asian J Surg 2023; 46:5765-5767. [PMID: 37659925 DOI: 10.1016/j.asjsur.2023.08.136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 08/22/2023] [Indexed: 09/04/2023] Open
Affiliation(s)
- Xiao-Min Deng
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yu Zhang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Pei-Lu Gao
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhang Zhang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
35
|
Ramazi S, Dadzadi M, Sahafnejad Z, Allahverdi A. Epigenetic regulation in lung cancer. MedComm (Beijing) 2023; 4:e401. [PMID: 37901797 PMCID: PMC10600507 DOI: 10.1002/mco2.401] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 10/31/2023] Open
Abstract
Lung cancer is indeed a major cause of cancer-related deaths worldwide. The development of tumors involves a complex interplay of genetic, epigenetic, and environmental factors. Epigenetic mechanisms, including DNA methylation (DNAm), histone modifications, and microRNA expression, play a crucial role in this process. Changes in DNAm patterns can lead to the silencing of important genes involved in cellular functions, contributing to the development and progression of lung cancer. MicroRNAs and exosomes have also emerged as reliable biomarkers for lung cancer. They can provide valuable information about early diagnosis and treatment assessment. In particular, abnormal hypermethylation of gene promoters and its effects on tumorigenesis, as well as its roles in the Wnt signaling pathway, have been extensively studied. Epigenetic drugs have shown promise in the treatment of lung cancer. These drugs target the aberrant epigenetic modifications that are involved in the development and progression of the disease. Several factors have been identified as drug targets in non-small cell lung cancer. Recently, combination therapy has been discussed as a successful strategy for overcoming drug resistance. Overall, understanding the role of epigenetic mechanisms and their targeting through drugs is an important area of research in lung cancer treatment.
Collapse
Affiliation(s)
- Shahin Ramazi
- Department of BiophysicsFaculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | - Maedeh Dadzadi
- Department of BiotechnologyFaculty of Advanced Science and TechnologyTehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Zahra Sahafnejad
- Department of BiophysicsFaculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | - Abdollah Allahverdi
- Department of BiophysicsFaculty of Biological SciencesTarbiat Modares UniversityTehranIran
| |
Collapse
|
36
|
Kumar N, Sethi G. Telomerase and hallmarks of cancer: An intricate interplay governing cancer cell evolution. Cancer Lett 2023; 578:216459. [PMID: 37863351 DOI: 10.1016/j.canlet.2023.216459] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/02/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023]
Abstract
Transformed cells must acquire specific characteristics to be malignant. Weinberg and Hanahan characterize these characteristics as cancer hallmarks. Though these features are independently driven, substantial signaling crosstalk in transformed cells efficiently promotes these feature acquisitions. Telomerase is an enzyme complex that maintains telomere length. However, its main component, Telomere reverse transcriptase (TERT), has been found to interact with various signaling molecules like cMYC, NF-kB, BRG1 and cooperate in transcription and metabolic reprogramming, acting as a strong proponent of malignant features such as cell death resistance, sustained proliferation, angiogenesis activation, and metastasis, among others. It allows cells to avoid replicative senescence and achieve endless replicative potential. This review summarizes both the canonical and noncanonical functions of TERT and discusses how they promote cancer hallmarks. Understanding the role of Telomerase in promoting cancer hallmarks provides vital insight into the underlying mechanism of cancer genesis and progression and telomerase intervention as a possible therapeutic target for cancer treatment. More investigation into the precise molecular mechanisms of telomerase-mediated impacts on cancer hallmarks will contribute to developing more focused and customized cancer treatment methods.
Collapse
Affiliation(s)
- Naveen Kumar
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, 138673, Singapore
| | - Gautam Sethi
- Department of Pharmacology and NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| |
Collapse
|
37
|
Wu Y, Hou J, Ren R, Chen Z, Yue M, Li L, Hou H, Zheng X, Li L. DNA methylation and lipid metabolism are involved in GA-induced maize aleurone layers PCD as revealed by transcriptome analysis. BMC PLANT BIOLOGY 2023; 23:584. [PMID: 37993774 PMCID: PMC10664605 DOI: 10.1186/s12870-023-04565-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/27/2023] [Indexed: 11/24/2023]
Abstract
BACKGROUND The aleurone layer is a part of many plant seeds, and during seed germination, aleurone cells undergo PCD, which is promoted by GA from the embryo. However, the numerous components of the GA signaling pathway that mediate PCD of the aleurone layers remain to be identified. Few genes and transcriptomes have been studied thus far in aleurone layers to improve our understanding of how PCD occurs and how the regulatory mechanism functions during PCD. Our previous studies have shown that histone deacetylases (HDACs) are required in GA-induced PCD of aleurone layer. To further explore the molecular mechanisms by which epigenetic modifications regulate aleurone PCD, we performed a global comparative transcriptome analysis of embryoless aleurones treated with GA or histone acetylase (HAT) inhibitors. RESULTS In this study, a total of 7,919 differentially expressed genes (DEGs) were analyzed, 2,554 DEGs of which were found to be common under two treatments. These identified DEGs were involved in various biological processes, including DNA methylation, lipid metabolism and ROS signaling. Further investigations revealed that inhibition of DNA methyltransferases prevented aleurone PCD, suggesting that active DNA methylation plays a role in regulating aleurone PCD. GA or HAT inhibitor induced lipoxygenase gene expression, leading to lipid degradation, but this process was not affected by DNA methylation. However, DNA methylation inhibitor could regulate ROS-related gene expression and inhibit GA-induced production of hydrogen peroxide (H2O2). CONCLUSION Overall, linking of lipoxygenase, DNA methylation, and H2O2 may indicate that GA-induced higher HDAC activity in aleurones causes breakdown of lipids via regulating lipoxygenase gene expression, and increased DNA methylation positively mediates H2O2 production; thus, DNA methylation and lipid metabolism pathways may represent an important and complex signaling network in maize aleurone PCD.
Collapse
Affiliation(s)
- Yequn Wu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Jiaqi Hou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Ruifei Ren
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhenfei Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Mengxia Yue
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Le Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Haoli Hou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Xueke Zheng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
- College of Food, Xinyang Agriculture and Forestry University, Xinyang, 464000, China.
| | - Lijia Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
38
|
Kouroukli AG, Rajaram N, Bashtrykov P, Kretzmer H, Siebert R, Jeltsch A, Bens S. Targeting oncogenic TERT promoter variants by allele-specific epigenome editing. Clin Epigenetics 2023; 15:183. [PMID: 37993930 PMCID: PMC10666398 DOI: 10.1186/s13148-023-01599-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/10/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND Activation of dominant oncogenes by small or structural genomic alterations is a common driver mechanism in many cancers. Silencing of such dominantly activated oncogenic alleles, thus, is a promising strategy to treat cancer. Recently, allele-specific epigenome editing (ASEE) has been described as a means to reduce transcription of genes in an allele-specific manner. In cancer, specificity to an oncogenic allele can be reached by either targeting directly a pathogenic single-nucleotide variant or a polymorphic single-nucleotide variant linked to the oncogenic allele. To investigate the potential of ASEE in cancer, we here explored this approach by targeting variants at the TERT promoter region. The TERT promoter region has been described as one of the most frequently mutated non-coding cancer drivers. RESULTS Sequencing of the TERT promoter in cancer cell lines showed 53% (41/77) to contain at least one heterozygous sequence variant allowing allele distinction. We chose the hepatoblastoma cell line Hep-G2 and the lung cancer cell line A-549 for this proof-of-principle study, as they contained two different kinds of variants, namely the activating mutation C228T in the TERT core promoter and the common SNP rs2853669 in the THOR region, respectively. These variants were targeted in an allele-specific manner using sgRNA-guided dCas9-DNMT3A-3L complexes. In both cell lines, we successfully introduced DNA methylation specifically to the on-target allele of the TERT promoter with limited background methylation on the off-target allele or an off-target locus (VEGFA), respectively. We observed a maximum CpG methylation gain of 39% and 76% on the target allele when targeting the activating mutation and the common SNP, respectively. The epigenome editing translated into reduced TERT RNA expression in Hep-G2. CONCLUSIONS We applied an ASEE-mediated approach to silence TERT allele specifically. Our results show that the concept of dominant oncogene inactivation by allele-specific epigenome editing can be successfully translated into cancer models. This new strategy may have important advantages in comparison with existing therapeutic approaches, e.g., targeting telomerase, especially with regard to reducing adverse side effects.
Collapse
Affiliation(s)
- Alexandra G Kouroukli
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Nivethika Rajaram
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Pavel Bashtrykov
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Helene Kretzmer
- Computational Genomics, Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Albert Jeltsch
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Susanne Bens
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| |
Collapse
|
39
|
Landa I, Thornton CE, Xu B, Haase J, Krishnamoorthy GP, Hao J, Knauf JA, Herbert ZT, Martínez P, Blasco MA, Ghossein R, Fagin JA. Telomerase Upregulation Induces Progression of Mouse BrafV600E-Driven Thyroid Cancers and Triggers Nontelomeric Effects. Mol Cancer Res 2023; 21:1163-1175. [PMID: 37478162 PMCID: PMC11193891 DOI: 10.1158/1541-7786.mcr-23-0144] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/15/2023] [Accepted: 07/18/2023] [Indexed: 07/23/2023]
Abstract
Mutations in the promoter of the telomerase reverse transcriptase (TERT) gene are the paradigm of a cross-cancer alteration in a noncoding region. TERT promoter mutations (TPM) are biomarkers of poor prognosis in cancer, including thyroid tumors. TPMs enhance TERT transcription, which is otherwise silenced in adult tissues, thus reactivating a bona fide oncoprotein. To study TERT deregulation and its downstream consequences, we generated a Tert mutant promoter mouse model via CRISPR/Cas9 engineering of the murine equivalent locus (Tert-123C>T) and crossed it with thyroid-specific BrafV600E-mutant mice. We also employed an alternative model of Tert overexpression (K5-Tert). Whereas all BrafV600E animals developed well-differentiated papillary thyroid tumors, 29% and 36% of BrafV600E+Tert-123C>T and BrafV600E+K5-Tert mice progressed to poorly differentiated cancers at week 20, respectively. Tert-upregulated tumors showed increased mitosis and necrosis in areas of solid growth, and older animals displayed anaplastic-like features, that is, spindle cells and macrophage infiltration. Murine TPM increased Tert transcription in vitro and in vivo, but temporal and intratumoral heterogeneity was observed. RNA-sequencing of thyroid tumor cells showed that processes other than the canonical Tert-mediated telomere maintenance role operate in these specimens. Pathway analysis showed that MAPK and PI3K/AKT signaling, as well as processes not previously associated with this tumor etiology, involving cytokine, and chemokine signaling, were overactivated. These models constitute useful preclinical tools to understand the cell-autonomous and microenvironment-related consequences of Tert-mediated progression in advanced thyroid cancers and other aggressive tumors carrying TPMs. IMPLICATIONS Telomerase-driven cancer progression activates pathways that can be dissected and perhaps therapeutically exploited.
Collapse
Affiliation(s)
- Iñigo Landa
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Caitlin E.M. Thornton
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Bin Xu
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jacob Haase
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Gnana P. Krishnamoorthy
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jingzhu Hao
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | | | - Zachary T. Herbert
- Molecular Biology Core Facilities, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Paula Martínez
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid, Spain
| | - María A. Blasco
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid, Spain
| | - Ronald Ghossein
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - James A. Fagin
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
40
|
Chen B, Ding X, Wan A, Qi X, Lin X, Wang H, Mu W, Wang G, Zheng J. Comprehensive analysis of TLX2 in pan cancer as a prognostic and immunologic biomarker and validation in ovarian cancer. Sci Rep 2023; 13:16244. [PMID: 37758722 PMCID: PMC10533500 DOI: 10.1038/s41598-023-42171-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
T cell leukemia homeobox 2 (TLX2) plays an important role in some tumors. Bioinformatics and experimental validation represent a useful way to explore the mechanisms and functions of TLX2 gene in the cancer disease process from a pan cancer perspective. TLX2 was aberrantly expressed in pan cancer and cell lines and correlated with clinical stage. High TLX2 expression was significantly associated with poor overall survival in COAD, KIRC, OC, and UCS. The greatest frequency of TLX2 alterations in pan cancer was amplification. Alterations of NXF2B, MSLNL, PCGF1, INO80B-WBP1, LBX2-AS1, MRPL53, LBX2, TTC31, WDR54, and WBP1 co-occurred in the TLX2 alteration group. PFS was significantly shorter in the TLX2-altered group (n = 6) compared to the TLX2-unaltered group (n = 400). Methylation levels of TLX2 were high in 17 tumors. TLX2 expression was associated with MSI in seven tumors and TMB in five tumors. TLX2 expression was associated with immune infiltration and immune checkpoint genes. TLX2 may be associated with some pathways and chemoresistance. We constructed a possible competing endogenous RNA (ceRNA) network of LINC01010/miR-146a-5p/TLX2 in OC. TLX2 expression was significantly upregulated in ovarian cancer cell lines compared to ovarian epithelial cell lines. Aberrant expression of TLX2 in pan cancer may promote tumorigenesis and progression through different mechanisms. TLX2 may represent an important therapeutic target for human cancers.
Collapse
Affiliation(s)
- Buze Chen
- Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
- Cancer Institute, Xuzhou Medical University, No. 209 Tongshan Road, Yunlong District, Xuzhou, 221004, Jiangsu, China.
- Department of Gynecology, The Affiliated Hospital of Xuzhou Medical University, No. 99 West Huaihai Road, Quanshan District, Xuzhou, 221002, Jiangsu, China.
| | - Xiaojuan Ding
- Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Ailing Wan
- Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Xin Qi
- Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Xiaoman Lin
- Department of Gynecology, The Affiliated Hospital of Xuzhou Medical University, No. 99 West Huaihai Road, Quanshan District, Xuzhou, 221002, Jiangsu, China
| | - Haihong Wang
- Department of Gynecology, The Affiliated Hospital of Xuzhou Medical University, No. 99 West Huaihai Road, Quanshan District, Xuzhou, 221002, Jiangsu, China
| | - Wenyu Mu
- Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Gang Wang
- Cancer Institute, Xuzhou Medical University, No. 209 Tongshan Road, Yunlong District, Xuzhou, 221004, Jiangsu, China.
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, No. 99 West Huaihai Road, Quanshan District, Xuzhou, 221002, Jiangsu, China.
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| | - Junnian Zheng
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, No. 99 West Huaihai Road, Quanshan District, Xuzhou, 221002, Jiangsu, China.
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
41
|
Cho WC, Li W, Gu J, Wang WL, Ning J, Sfamenos S, Gill P, Nagarajan P, Curry JL, Lazar AJ, Prieto VG, Torres-Cabala CA, Aung PP. Telomerase reverse transcriptase immunohistochemical expression is sensitive but not specific for TERT gene amplification in acral melanoma. J Cutan Pathol 2023; 50:845-851. [PMID: 37400233 DOI: 10.1111/cup.14494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/05/2023]
Abstract
BACKGROUND TERT gene amplification (TGA) is a mechanism of telomerase reverse transcriptase (TERT) upregulation frequently utilized by acral melanomas (AMs). Currently, the utility of TERT immunohistochemistry (IHC) to predict TGA status in AMs is poorly documented. METHODS AMs (26 primary and 3 metastatic) and non-acral cutaneous melanomas (6 primary) were subjected to immunohistochemical analysis using anti-TERT antibody to demonstrate protein expression and fluorescence in situ hybridization (FISH) to assess genomic copy number alteration. The relationship between TERT immunoreactivity and TGA confirmed by FISH was assessed using logistic regression. RESULTS TERT expression was seen in 50% (13/26) of primary and 100% (3/3) of metastatic AMs and 50% (3/6) of primary non-acral cutaneous melanomas. TGA was found in 15% (4/26) and 67% (2/3) of primary and metastatic AMs and 17% (1/6) of non-acral cutaneous melanomas. The intensity of TERT immunoreactivity correlated with TGA (p = 0.04) and a higher TERT copy number-to-control ratio in AMs, with a correlation coefficient of 0.41 (p = 0.03). The sensitivity and specificity of TERT immunoreactivity for predicting TGA in AMs were 100% and 57%, with corresponding positive and negative predictive values of 38% and 100%, respectively. CONCLUSIONS The clinical utility of TERT IHC to predict TGA status in AMs appears to be limited given its low specificity and positive predictive value.
Collapse
Affiliation(s)
- Woo Cheal Cho
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Wen Li
- Division of Clinical and Translational Sciences, Department of Internal Medicine, The University of Texas McGovern Medical School at Houston, Houston, Texas, USA
- Biostatistics/Epidemiology/Research Design (BERD) Component, Center for Clinical and Translational Sciences (CCTS), The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Jun Gu
- Cytogenetics Training Laboratory, School of Health Professions, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Wei-Lien Wang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jing Ning
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Steven Sfamenos
- Cytogenetics Training Laboratory, School of Health Professions, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Pavandeep Gill
- Department of Pathology, Royal Jubilee Hospital, Victoria, British Columbia, Canada
| | - Priyadharsini Nagarajan
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jonathan L Curry
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Alexander J Lazar
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Victor G Prieto
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Carlos A Torres-Cabala
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Phyu P Aung
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
42
|
Fagin JA, Krishnamoorthy GP, Landa I. Pathogenesis of cancers derived from thyroid follicular cells. Nat Rev Cancer 2023; 23:631-650. [PMID: 37438605 PMCID: PMC10763075 DOI: 10.1038/s41568-023-00598-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/08/2023] [Indexed: 07/14/2023]
Abstract
The genomic simplicity of differentiated cancers derived from thyroid follicular cells offers unique insights into how oncogenic drivers impact tumour phenotype. Essentially, the main oncoproteins in thyroid cancer activate nodes in the receptor tyrosine kinase-RAS-BRAF pathway, which constitutively induces MAPK signalling to varying degrees consistent with their specific biochemical mechanisms of action. The magnitude of the flux through the MAPK signalling pathway determines key elements of thyroid cancer biology, including differentiation state, invasive properties and the cellular composition of the tumour microenvironment. Progression of disease results from genomic lesions that drive immortalization, disrupt chromatin accessibility and cause cell cycle checkpoint dysfunction, in conjunction with a tumour microenvironment characterized by progressive immunosuppression. This Review charts the genomic trajectories of these common endocrine tumours, while connecting them to the biological states that they confer.
Collapse
Affiliation(s)
- James A Fagin
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Gnana P Krishnamoorthy
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Iñigo Landa
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
43
|
Yang R, Han Y, Guan X, Hong Y, Meng J, Ding S, Long Q, Yi W. Regulation and clinical potential of telomerase reverse transcriptase (TERT/hTERT) in breast cancer. Cell Commun Signal 2023; 21:218. [PMID: 37612721 PMCID: PMC10463831 DOI: 10.1186/s12964-023-01244-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/23/2023] [Indexed: 08/25/2023] Open
Abstract
Telomerase reverse transcriptase (TERT/hTERT) serves as the pivotal catalytic subunit of telomerase, a crucial enzyme responsible for telomere maintenance and human genome stability. The high activation of hTERT, observed in over 90% of tumors, plays a significant role in tumor initiation and progression. An in-depth exploration of hTERT activation mechanisms in cancer holds promise for advancing our understanding of the disease and developing more effective treatment strategies. In breast cancer, the expression of hTERT is regulated by epigenetic, transcriptional, post-translational modification mechanisms and DNA variation. Besides its canonical function in telomere maintenance, hTERT exerts non-canonical roles that contribute to disease progression through telomerase-independent mechanisms. This comprehensive review summarizes the regulatory mechanisms governing hTERT in breast cancer and elucidates the functional implications of its activation. Given the overexpression of hTERT in most breast cancer cells, the detection of hTERT and its associated molecules are potential for enhancing early screening and prognostic evaluation of breast cancer. Although still in its early stages, therapeutic approaches targeting hTERT and its regulatory molecules show promise as viable strategies for breast cancer treatment. These methods are also discussed in this paper. Video Abstract.
Collapse
Affiliation(s)
- Ruozhu Yang
- Department of General Surgery, the Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, China
| | - Yi Han
- Department of General Surgery, the Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, China
| | - Xinyu Guan
- Department of General Surgery, the Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, China
| | - Yue Hong
- Department of General Surgery, the Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, China
| | - Jiahao Meng
- Department of General Surgery, the Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, China
| | - Shirong Ding
- Department of Oncology, the Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, China.
| | - Qian Long
- Department of General Surgery, the Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, China.
| | - Wenjun Yi
- Department of General Surgery, the Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, China.
| |
Collapse
|
44
|
Karaviti E, Kontogiannis A, Anastopoulos A, Kotteas E, Gomatou G. An overview of the role of telomeres and telomerase in pre‑neoplastic lesions (Review). Mol Clin Oncol 2023; 19:61. [PMID: 37424625 PMCID: PMC10326563 DOI: 10.3892/mco.2023.2657] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/14/2023] [Indexed: 07/11/2023] Open
Abstract
Telomeres are tandem repeats of DNA sequences protecting the end of linear chromosomes. Replicative senescence due to telomere attrition is considered a tumor-preventing mechanism in differentiated somatic cells. However, telomere shortening is associated with genome instability and several disease entities. During carcinogenesis, the development of a telomere maintenance mechanism, predominately through the activation of the telomerase enzyme, represents a hallmark of cancer, since it enables cancer cells to avert senescence and divide indefinitely. Although research of the involvement of telomeres and telomerase in various malignant neoplasms has gained a large amount of interest, the timing and relevance of their role in pre-neoplastic lesions remain to be determined. The present narrative review aims to summarize the evidence regarding the role of telomeres and telomerase in pre-neoplasia across different types of tissues.
Collapse
Affiliation(s)
- Eleftheria Karaviti
- Oncology Unit, Third Department of Medicine, ‘Sotiria’ General Hospital of Diseases of The Chest, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Athanasios Kontogiannis
- Oncology Unit, Third Department of Medicine, ‘Sotiria’ General Hospital of Diseases of The Chest, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Aristotelis Anastopoulos
- Oncology Unit, Third Department of Medicine, ‘Sotiria’ General Hospital of Diseases of The Chest, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Elias Kotteas
- Oncology Unit, Third Department of Medicine, ‘Sotiria’ General Hospital of Diseases of The Chest, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Georgia Gomatou
- Oncology Unit, Third Department of Medicine, ‘Sotiria’ General Hospital of Diseases of The Chest, National and Kapodistrian University of Athens, Athens 11527, Greece
| |
Collapse
|
45
|
Blanco-García L, Ruano Y, Blanco Martínez-Illescas R, Cubo R, Jiménez Sánchez P, Sánchez-Arévalo Lobo VJ, Riveiro Falkenbach E, Ortiz Romero P, Garrido MC, Rodríguez Peralto JL. pTERT C250T mutation: A potential biomarker of poor prognosis in metastatic melanoma. Heliyon 2023; 9:e18953. [PMID: 37609429 PMCID: PMC10440525 DOI: 10.1016/j.heliyon.2023.e18953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/24/2023] Open
Abstract
Melanoma is the most aggressive form of skin cancer and the leading cause of death from cutaneous tumors. Several studies have associated alterations in the TERT promoter region (pTERT) with gene overexpression, aggressiveness and poor prognosis of the disease. The aim of this study was to clarify the role of pTERT molecular status in paired samples of primary melanoma and metastasis using tissue and plasma to establish a correlation with disease progression and survival. A total of 88 FFPE tissue samples from 53 patients with advanced melanoma were analyzed. Of these, 35 had paired samples. We also examined cfDNA samples from plasma of 25 patients. We detected a good correlation between primary tumors and metastases in pTERT mutation and methylation status. We were also able to identify pTERT mutations in plasma samples that correlated with mutational status in tissue samples. Interestingly, the C250T mutation was associated with worse survival and higher TERT mRNA expression, compared to the other most common mutation: C228T. In addition, hyper-methylation of the promoter region seems to be related to the progression of pTERT wild type (WT) patients. These results suggest that TERT gene alterations plays an important role during tumor progression, with the detection of the C250T mutation in tissue and plasma as a potential biomarker of poor prognosis in patients with advanced melanoma.
Collapse
Affiliation(s)
| | - Yolanda Ruano
- Research Institute 12 de Octubre Hospital, Madrid, Spain
| | - Raquel Blanco Martínez-Illescas
- Research Institute 12 de Octubre Hospital, Madrid, Spain
- Biosanitary Research Institute, Faculty of Experimental Sciences, Francisco de Vitoria University, Pozuelo de Alarcón, Madrid, Spain
| | - Rocío Cubo
- Research Institute 12 de Octubre Hospital, Madrid, Spain
| | - Paula Jiménez Sánchez
- Research Institute 12 de Octubre Hospital, Madrid, Spain
- Biosanitary Research Institute, Faculty of Experimental Sciences, Francisco de Vitoria University, Pozuelo de Alarcón, Madrid, Spain
| | - Víctor J. Sánchez-Arévalo Lobo
- Research Institute 12 de Octubre Hospital, Madrid, Spain
- Biosanitary Research Institute, Faculty of Experimental Sciences, Francisco de Vitoria University, Pozuelo de Alarcón, Madrid, Spain
| | | | - Pablo Ortiz Romero
- Department of Dermatology, 12 de Octubre University Hospital, Madrid, Spain
| | - María C. Garrido
- Department of Pathology, 12 de Octubre University Hospital, Madrid, Spain
- Complutense University of Madrid; Madrid, Spain
| | - José L. Rodríguez Peralto
- Department of Pathology, 12 de Octubre University Hospital, Madrid, Spain
- Complutense University of Madrid; Madrid, Spain
| |
Collapse
|
46
|
Lin F, Huang J, Zhu W, Jiang T, Guo J, Xia W, Chen M, Guo L, Deng W, Lin H. Prognostic value and immune landscapes of TERT promoter methylation in triple negative breast cancer. Front Immunol 2023; 14:1218987. [PMID: 37575241 PMCID: PMC10416624 DOI: 10.3389/fimmu.2023.1218987] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/14/2023] [Indexed: 08/15/2023] Open
Abstract
Background Treatment options for patients with triple-negative breast cancer (TNBC) remain limited to mainstay therapies owing to a lack of efficacious therapeutic targets. Accordingly, there is an urgent need to discover and identify novel molecular targets for the treatment and diagnosis of this disease. In this study, we analyzed the correlation of telomerase reverse transcriptase (TERT) methylation status with TERT expression, prognosis, and immune infiltration in TNBC and identified the role of TERT methylation in the regulation TNBC prognosis and immunotherapy. Methods Data relating to the transcriptome, clinicopathological characteristics and methylation of TNBC patients were obtained from The Cancer Genome Atlas (TCGA) database. TERT expression levels and differential methylation sites (DMSs) were detected. The correlations between TERT expression and DMSs were calculated. Kaplan-Meier curves was plotted to analyze the relationship between the survival of TNBC patients and the DMSs. The correlations of DMSs and TERT expression with several immunological characteristics of immune microenvironment (immune cell infiltration, immunomodulators, immune-related biological pathways, and immune checkpoints) were assessed. The results were validated using 40 TNBC patients from Sun Yat-sen University Cancer Center (SYSUCC). Results Six DMSs were identified. Among them, four sites (cg11625005, cg07380026, cg17166338, and cg26006951) were within the TERT promoter, in which two sites (cg07380026 and cg26006951) were significantly related to the prognosis of patients with TNBC. Further validation using 40 TNBC samples from SYSUCC showed that the high methylation of the cg26006951 CpG site was associated with poor survival prognosis (P=0.0022). TERT expression was significantly correlated with pathological N stage and clinical stage, and cg07380026 were significantly associated with pathological T and N stages in the TCGA cohort. Moreover, the methylation site cg26006951, cg07380026 and TERT expression were significantly correlated with immune cell infiltration, common immunomodulators, and the level of the immune checkpoint receptor lymphocyte activation gene 3 (LAG-3) in TNBC patients. Conclusion TERT promotertypermethylation plays an important role in TERT expression regulation and tumor microenvironment in TNBC. It is associated with overall survival and LAG-3 expression. TERT promoter hypermethylation may be a potential molecular biomarker for predicting response to the TERT inhibitors and immune checkpoint inhibitors in TNBC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ling Guo
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wuguo Deng
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Huanxin Lin
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
47
|
Gregório C, Thakur S, Camara Rivero R, Márcia Dos Santos Machado S, Cuenin C, Carreira C, White V, Cree IA, Vukojevic K, Glavina Durdov M, Bersch Osvaldt A, Ashton-Prolla P, Herceg Z, Talukdar FR. Telomere length assessment and molecular characterization of TERT gene promoter in periampullary carcinomas. Gene 2023; 873:147460. [PMID: 37150235 DOI: 10.1016/j.gene.2023.147460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/14/2023] [Accepted: 05/01/2023] [Indexed: 05/09/2023]
Abstract
Genetic and epigenetic alterations of the telomere maintenance machinery like telomere length and telomerase reverse transcriptase (encoded by TERT gene) are reported in several human malignancies. However, there is limited knowledge on the status of the telomere machinery in periampullary carcinomas (PAC) which are rare and heterogeneous groups of cancers arising from different anatomic sites around the ampulla of Vater. In the current study, we investigated the relative telomere length (RTL) and the most frequent genetic and epigenetic alterations in the TERT promoter in PAC and compared it with tumor-adjacent nonpathological duodenum (NDu). We found shorter RTLs (1.27 vs 1.33, P = 0.01) and lower TERT protein expression (p = 0.04) in PAC tissues as compared to the NDu. Although we did not find any mutation at two reactivating hotspot mutation sites of the TERT promoter, we detected polymorphism in 45% (9/20) of the cases at rs2853669 (T > C). Also, we found a hypermethylated region in the TERT promoter of PACs consisting of four CpGs (cg10896616 with Δβ 7%; cg02545192 with Δβ 9%; cg03323598 with Δβ 19%; and cg07285213 with Δβ 15%). In conclusion, we identified shorter telomeres with DNA hypermethylation in the TERT promoter region and lower TERT protein expression in PAC tissues. These results could be used further to investigate molecular pathology and develop theranostics for PAC.
Collapse
Affiliation(s)
- Cleandra Gregório
- Departamento de Genética, Programa de Pós-graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; Laboratório de Medicina Genômica, Centro de Pesquisa Experimental - Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Shefali Thakur
- International Agency for Research on Cancer, Lyon, France; Faculty of Science, Charles University, Prague, Czech Republic
| | - Raquel Camara Rivero
- Departamento de Patologia, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; Serviço de Patologia- Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Simone Márcia Dos Santos Machado
- Grupo de Vias Biliares e Pâncreas - Cirurgia do Aparelho Digestivo, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Cyrille Cuenin
- International Agency for Research on Cancer, Lyon, France
| | | | - Valerie White
- International Agency for Research on Cancer, Lyon, France
| | - Ian A Cree
- International Agency for Research on Cancer, Lyon, France
| | - Katarina Vukojevic
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, Split, Croatia
| | | | - Alessandro Bersch Osvaldt
- Serviço de Patologia- Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil; Programa de Pós-graduação em Medicina: Ciências Cirúrgicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Patricia Ashton-Prolla
- Departamento de Genética, Programa de Pós-graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; Laboratório de Medicina Genômica, Centro de Pesquisa Experimental - Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Rio Grande do Sul, Brazil; Serviço de Patologia- Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Zdenko Herceg
- International Agency for Research on Cancer, Lyon, France
| | | |
Collapse
|
48
|
Pan J, Li D, Fan X, Cheng J, Jin S, Chen P, Lin H, Li Y. Aberrant DNA Methylation Patterns of Deleted in Liver Cancer 1 Isoforms in Hepatocellular Carcinoma. DNA Cell Biol 2023; 42:140-150. [PMID: 36917700 DOI: 10.1089/dna.2022.0384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Hepatocellular carcinoma (HCC), a common primary liver cancer, is the third leading cause of death worldwide. DNA methylation changes are common in HCC and have been studied to be associated with hepatocarcinogenesis. In our study, we used the MassARRAY® EpiTYPER technology to investigate the methylation differences of deleted in liver cancer 1 (DLC1) (isoform 1 and 3) promoter between HCC tissues and corresponding adjacent noncancerous tissues and the association between methylation levels and clinicopathological features. In addition, the modified CRISPR-Cas9 system and the DNA methyltransferase inhibitor (DNMTi) were utilized to explore the functional correlation of epigenetic modifications and DLC1 gene regulation. The methylation levels of the DLC1 isoforms in HCC samples were found significantly lower than those in the adjacent noncancerous tissues (all p < 0.0001). Also, we found that the expression of DLC1 could be bidirectionally regulated by the modified CRISPR-Cas9 system and the DNMTi. Moreover, the hypomethylation of DLC1 in HCC samples was connected with the presence of satellite lesions (p = 0.0305) and incomplete tumor capsule (p = 0.0204). Receiver operator characteristic curve analysis demonstrated that the methylation levels of DLC1 could be applied to discriminate HCC patients (area under the curve = 0.728, p < 0.0001). The hypomethylation status was a key regulatory mechanism of DLC1 expression and might serve as a potential biomarker for HCC.
Collapse
Affiliation(s)
- Junhai Pan
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Duguang Li
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoxiao Fan
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, China
| | - Jiaxi Cheng
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shengxi Jin
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Peng Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hui Lin
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
- Zhejiang Engineering Research Center of Cognitive Healthcare, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou,China
| | - Yirun Li
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
49
|
Cheng L, Zhang S, Wang M, Lopez-Beltran A. Biological and clinical perspectives of TERT promoter mutation detection on bladder cancer diagnosis and management. Hum Pathol 2023; 133:56-75. [PMID: 35700749 DOI: 10.1016/j.humpath.2022.06.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/05/2022] [Indexed: 02/08/2023]
Abstract
The telomerase reverse transcriptase (TERT) promoter mutations are associated with increased TERT mRNA and TERT protein levels, telomerase activity, and shorter but stable telomere length. TERT promoter mutation is the most common mutation that occurs in approximately 60-80% of patients with bladder cancer. The TERT promoter mutations occur in a wide spectrum of urothelial lesions, including benign urothelial proliferation and tumor-like conditions, benign urothelial tumors, premalignant and putative precursor lesions, urothelial carcinoma and its variants, and nonurothelial malignancies. The prevalence and incidence of TERT promoter mutations in a total of 7259 cases from the urinary tract were systematically reviewed. Different platforms of TERT promoter mutation detection were presented. In this review, we also discussed the significance and clinical implications of TERT promoter mutation detection in urothelial tumorigenesis, surveillance and early detection, diagnosis, differential diagnosis, prognosis, prediction of treatment responses, and clinical outcome. Identification of TERT promoter mutations from urine or plasma cell-free DNA (liquid biopsy) will facilitate bladder cancer screening program and optimal clinical management. A better understanding of TERT promoter mutation and its pathway would open new therapeutic avenues for patients with bladder cancer.
Collapse
Affiliation(s)
- Liang Cheng
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA; Department of Pathology and Laboratory Medicine, Warren Alpert Medical School of Brown University and Lifespan Academic Medical Center, Providence, RI, 02903, USA.
| | - Shaobo Zhang
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Mingsheng Wang
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Antonio Lopez-Beltran
- Department of Morphological Sciences, University of Cordoba Medical School, Cordoba, E-14004, Spain
| |
Collapse
|
50
|
de Bardet JC, Cardentey CR, González BL, Patrone D, Mulet IL, Siniscalco D, Robinson-Agramonte MDLA. Cell Immortalization: In Vivo Molecular Bases and In Vitro Techniques for Obtention. BIOTECH 2023; 12:14. [PMID: 36810441 PMCID: PMC9944833 DOI: 10.3390/biotech12010014] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Somatic human cells can divide a finite number of times, a phenomenon known as the Hayflick limit. It is based on the progressive erosion of the telomeric ends each time the cell completes a replicative cycle. Given this problem, researchers need cell lines that do not enter the senescence phase after a certain number of divisions. In this way, more lasting studies can be carried out over time and avoid the tedious work involved in performing cell passes to fresh media. However, some cells have a high replicative potential, such as embryonic stem cells and cancer cells. To accomplish this, these cells express the enzyme telomerase or activate the mechanisms of alternative telomere elongation, which favors the maintenance of the length of their stable telomeres. Researchers have been able to develop cell immortalization technology by studying the cellular and molecular bases of both mechanisms and the genes involved in the control of the cell cycle. Through it, cells with infinite replicative capacity are obtained. To obtain them, viral oncogenes/oncoproteins, myc genes, ectopic expression of telomerase, and the manipulation of genes that regulate the cell cycle, such as p53 and Rb, have been used.
Collapse
Affiliation(s)
- Javier Curi de Bardet
- Department of Neurobiology, International Center for Neurological Restoration, Havana 11300, Cuba
| | | | - Belkis López González
- Department of Allergy, Calixto Garcia General University Hospital, Havana 10400, Cuba
| | - Deanira Patrone
- Department of Experimental Medicine, Division of Molecular Biology, Biotechnology and Histology, University of Campania, 80138 Naples, Italy
| | | | - Dario Siniscalco
- Department of Experimental Medicine, Division of Molecular Biology, Biotechnology and Histology, University of Campania, 80138 Naples, Italy
| | | |
Collapse
|