1
|
Xu Y, Wang X, Hu Z, Huang R, Yang G, Wang R, Yang S, Guo L, Song Q, Wei J, Zhang X. Advances in hematopoietic stem cell transplantation for autoimmune diseases. Heliyon 2024; 10:e39302. [PMID: 39492896 PMCID: PMC11530805 DOI: 10.1016/j.heliyon.2024.e39302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/14/2024] [Accepted: 10/10/2024] [Indexed: 11/05/2024] Open
Abstract
Autoimmune diseases (ADs) are a collection of immunological disorders in which the immune system responds to self-antigens by producing autoantibodies or self-sensitized cells. Current treatments are unable to cure ADs, and achieving long-term drug-free remission remains a challenging task. Hematopoietic stem cell transplantation (HSCT) stands out from other therapies by specifically targeting ADs that target various cell subpopulations, demonstrating notable therapeutic benefits and resulting in sustained drug-free remission. Since different ADs have distinct mechanisms of action, the comprehensive understanding of how HSCT works in treating ADs is crucial. This review provides a detailed overview of the latest research and clinical applications of HSCT in treating ADs, offering new insights for clinicians aiming to optimize its use for ADs management.
Collapse
Affiliation(s)
- Yuxi Xu
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Department of Hematology, Affiliated Hospital of North Sichuan Medical College, Sichuan, 637000, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Xiaoqi Wang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
| | - Ziyi Hu
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Department of Hematology, Affiliated Hospital of North Sichuan Medical College, Sichuan, 637000, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Ruihao Huang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
| | - Guancui Yang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
| | - Rui Wang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Shijie Yang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
| | - Liyan Guo
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
| | - Qingxiao Song
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Jin Wei
- Department of Hematology, Affiliated Hospital of North Sichuan Medical College, Sichuan, 637000, China
| | - Xi Zhang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
- Jinfeng Laboratory, Chongqing, 401329, China
| |
Collapse
|
2
|
Huang Y, Wu X, Tang S, Wu H, Nasri U, Qin Q, Song Q, Wang B, Tao H, Chong AS, Riggs AD, Zeng D. Donor programmed cell death 1 ligand 1 is required for organ transplant tolerance in major histocompatibility complex-mismatched mixed chimeras although programmed cell death 1 ligand 1 and major histocompatibility complex class II are not required for inducing chimerism. Am J Transplant 2023; 23:1116-1129. [PMID: 37105316 DOI: 10.1016/j.ajt.2023.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 04/19/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023]
Abstract
Induction of major histocompatibility complex (MHC) human leukocyte antigen (HLA)-mismatched mixed chimerism is a promising approach for organ transplantation tolerance; however, human leukocyte antigen-mismatched stable mixed chimerism has not been achieved in the clinic. Tolerogenic dendritic cell (DC) expression of MHC class II (MHC II) and programmed cell death 1 ligand 1 (PD-L1) is important for immune tolerance, but whether donor-MHC II or PD-L1 is required for the induction of stable MHC-mismatched mixed chimerism and transplant tolerance is unclear. Here, we show that a clinically applicable radiation-free regimen can establish stable MHC-mismatched mixed chimerism and organ transplant tolerance in murine models. Induction of MHC-mismatched mixed chimerism does not require donor cell expression of MHC II or PD-L1, but donor-type organ transplant tolerance in the mixed chimeras (MC) requires the donor hematopoietic cells and the organ transplants to express PD-L1. The PD-L1 expressed by donor hematopoietic cells and the programmed cell death 1 expressed by host cells augment host-type donor-reactive CD4+ and CD8+ T cell anergy/exhaustion and differentiation into peripheral regulatory T (pTreg) cells in association with the organ transplant tolerance in the MC. Conversely, host-type Treg cells augment the expansion of donor-type tolerogenic CD8+ DCs that express PD-L1. These results indicate that PD-L1 expressed by donor-type tolerogenic DCs and expansion of host-type pTreg cells in MHC-mismatched MCs play critical roles in mediating organ transplant tolerance.
Collapse
Affiliation(s)
- Yaxun Huang
- Department of Liver Transplantation, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA; Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA
| | - Xiwei Wu
- Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA
| | - Shanshan Tang
- Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA; Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA
| | - Huiqing Wu
- Department of Pathology, City of Hope National Medical Center, Duarte, California, USA
| | - Ubaydah Nasri
- Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA; Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA
| | - Qi Qin
- Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA; Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA; Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingxiao Song
- Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA; Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA
| | - Bixin Wang
- Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA; Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA; Fujian Medical University Center of Translational Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Hansen Tao
- Arthur Riggs Diabetes and Metabolism Research Institute, Summer Student Academy of City of Hope, Duarte, California, USA
| | - Anita S Chong
- The section of Transplantation, Department of Surgery, the University of Chicago, Chicago, Illinois, USA
| | - Arthur D Riggs
- Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA
| | - Defu Zeng
- Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA; Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA.
| |
Collapse
|
3
|
Wan X, Bao L, Ma G, Long T, Li H, Zhang Y, Jiang H. Tolerogenic dendritic cells alleviate collagen-induced arthritis by forming microchimerism and affecting the expression of immune checkpoint molecules. Eur J Immunol 2022; 52:1980-1992. [PMID: 36213961 DOI: 10.1002/eji.202250068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/06/2022] [Accepted: 10/05/2022] [Indexed: 12/13/2022]
Abstract
Tolerogenic dendritic cells (tolDCs) have the potential to treat rheumatoid arthritis (RA) by inducing immune tolerance. However, the mechanism of intervention needs further study. Here, we investigated whether tolDCs formed microchimerism and their effect on the expression of immune checkpoint molecules after infusion of tolDCs into rats with collagen-induced arthritis (CIA). TolDCs derived from male SD rats were labeled with fluorescence and infused into female CIA rats. The fluorescence signals as well as the sex-determining region of Y-chromosome (SRY) gene revealed that tolDCs formed microchimerism in the mesenteric lymph nodes and ankle joints. We further explored the effect of tolDCs on the expression of immune checkpoint molecules in mesenteric lymph nodes and ankle joints. For stimulatory immune checkpoint molecules, the expressions of CD86 and CD40 decreased in mesenteric lymph nodes, and the expressions of CD40, CD40L, CD28, CD80, and CD86 also decreased in rat ankle joints. In contrast, the inhibitory immune checkpoint molecule PDL1 increased in mesenteric lymph nodes, and PD1, PDL1, and CTLA4 increased in ankle joints. In conclusion, our results suggested that intervention of tolDCs in CIA is associated with the formation of microchimerism and the effect on immune checkpoints.
Collapse
Affiliation(s)
- Xiufang Wan
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, China
| | - Lunmin Bao
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, China.,Department of Laboratory Medicine, People' Hospital of Anshun City, Anshun, China
| | - Guilan Ma
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, China.,Department of Laboratory Medicine, Guiyang Second people's Hospital, Guiyang, China
| | - Tiaoyu Long
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, China
| | - Honghong Li
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, China
| | - Yundong Zhang
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, China.,Department of Laboratory Medicine, People' Hospital of Anshun City, Anshun, China
| | - Hongmei Jiang
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, China
| |
Collapse
|
4
|
Song Q, Kong X, Martin PJ, Zeng D. Murine Models Provide New Insights Into Pathogenesis of Chronic Graft- Versus-Host Disease in Humans. Front Immunol 2021; 12:700857. [PMID: 34539630 PMCID: PMC8446193 DOI: 10.3389/fimmu.2021.700857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/13/2021] [Indexed: 11/17/2022] Open
Abstract
Allogeneic hematopoietic cell transplantation (allo-HCT) is a curative therapy for hematologic malignancies, but its success is complicated by graft-versus-host disease (GVHD). GVHD can be divided into acute and chronic types. Acute GVHD represents an acute alloimmune inflammatory response initiated by donor T cells that recognize recipient alloantigens. Chronic GVHD has a more complex pathophysiology involving donor-derived T cells that recognize recipient-specific antigens, donor-specific antigens, and antigens shared by the recipient and donor. Antibodies produced by donor B cells contribute to the pathogenesis of chronic GVHD but not acute GVHD. Acute GVHD can often be effectively controlled by treatment with corticosteroids or other immunosuppressant for a period of weeks, but successful control of chronic GVHD requires much longer treatment. Therefore, chronic GVHD remains the major cause of long-term morbidity and mortality after allo-HCT. Murine models of allo-HCT have made great contributions to our understanding pathogenesis of acute and chronic GVHD. In this review, we summarize new mechanistic findings from murine models of chronic GVHD, and we discuss the relevance of these insights to chronic GVHD pathogenesis in humans and their potential impact on clinical prevention and treatment.
Collapse
Affiliation(s)
- Qingxiao Song
- Riggs Institute, The Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States.,Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, CA, United States.,Fujian Medical University Center of Translational Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaohui Kong
- Riggs Institute, The Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States.,Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, CA, United States
| | - Paul J Martin
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA, United States.,Department of Medicine, University of Washington, Seattle, WA, United States
| | - Defu Zeng
- Riggs Institute, The Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States.,Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, CA, United States
| |
Collapse
|
5
|
Tang S, Zhang M, Zeng S, Huang Y, Qin M, Nasri U, Santamaria P, Riggs AD, Jin L, Zeng D. Reversal of autoimmunity by mixed chimerism enables reactivation of β cells and transdifferentiation of α cells in diabetic NOD mice. Proc Natl Acad Sci U S A 2020; 117:31219-31230. [PMID: 33229527 PMCID: PMC7733788 DOI: 10.1073/pnas.2012389117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Type 1 diabetes (T1D) results from the autoimmune destruction of β cells, so cure of firmly established T1D requires both reversal of autoimmunity and restoration of β cells. It is known that β cell regeneration in nonautoimmune diabetic mice can come from differentiation of progenitors and/or transdifferentiation of α cells. However, the source of β cell regeneration in autoimmune nonobese diabetic (NOD) mice remains unclear. Here, we show that, after reversal of autoimmunity by induction of haploidentical mixed chimerism, administration of gastrin plus epidermal growth factor augments β cell regeneration and normalizes blood glucose in the firmly established diabetic NOD mice. Using transgenic NOD mice with inducible lineage-tracing markers for insulin-producing β cells, Sox9+ ductal progenitors, Nestin+ mesenchymal stem cells, and glucagon-producing α cells, we have found that both reactivation of dysfunctional low-level insulin expression (insulinlo) β cells and neogenesis contribute to the regeneration, with the latter predominantly coming from transdifferentiation of α cells. These results indicate that, after reversal of autoimmunity, reactivation of β cells and transdifferentiation of α cells can provide sufficient new functional β cells to reach euglycemia in firmly established T1D.
Collapse
Affiliation(s)
- Shanshan Tang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 210009 Nanjing, China
- Diabetes and Metabolism Research Institute, The Beckman Research Institute of City of Hope, Duarte, CA 91010
- Hematologic Malignancies and Stem Cell Transplantation Institute, The Beckman Research Institute of City of Hope, Duarte, CA 91010
| | - Mingfeng Zhang
- Diabetes and Metabolism Research Institute, The Beckman Research Institute of City of Hope, Duarte, CA 91010
- Hematologic Malignancies and Stem Cell Transplantation Institute, The Beckman Research Institute of City of Hope, Duarte, CA 91010
| | - Samuel Zeng
- Diabetes and Metabolism Research Institute, The Beckman Research Institute of City of Hope, Duarte, CA 91010
- Hematologic Malignancies and Stem Cell Transplantation Institute, The Beckman Research Institute of City of Hope, Duarte, CA 91010
- Department of Microbiology, Immunology, & Molecular Genetics, University of California, Los Angeles, CA 90095
| | - Yaxun Huang
- Diabetes and Metabolism Research Institute, The Beckman Research Institute of City of Hope, Duarte, CA 91010
- Hematologic Malignancies and Stem Cell Transplantation Institute, The Beckman Research Institute of City of Hope, Duarte, CA 91010
- Department of Organ Transplantation, Second Xiangya Hospital, Central South University, 410011 Changsha, China
| | - Melissa Qin
- Diabetes and Metabolism Research Institute, Summer Student Academy of City of Hope, Duarte, CA 91010
| | - Ubaydah Nasri
- Diabetes and Metabolism Research Institute, The Beckman Research Institute of City of Hope, Duarte, CA 91010
- Hematologic Malignancies and Stem Cell Transplantation Institute, The Beckman Research Institute of City of Hope, Duarte, CA 91010
| | - Pere Santamaria
- Julia McFarlane Diabetes Research Center, Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB T2N 4N1, Canada
- Pathogenesis and Treatment of Autoimmunity Laboratory, Institut D'Investigacions Biomèdiques August Pi i Sunyer, 08036 Barcelona, Spain
| | - Arthur D Riggs
- Diabetes and Metabolism Research Institute, The Beckman Research Institute of City of Hope, Duarte, CA 91010;
| | - Liang Jin
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 210009 Nanjing, China;
| | - Defu Zeng
- Diabetes and Metabolism Research Institute, The Beckman Research Institute of City of Hope, Duarte, CA 91010;
- Hematologic Malignancies and Stem Cell Transplantation Institute, The Beckman Research Institute of City of Hope, Duarte, CA 91010
| |
Collapse
|