1
|
Montgomery MT, Ortigoza M, Loomis C, Weiser JN. Neuraminidase-mediated enhancement of Streptococcus pneumoniae colonization is associated with altered mucus characteristics and distribution. mBio 2025; 16:e0257924. [PMID: 39660923 PMCID: PMC11708046 DOI: 10.1128/mbio.02579-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/18/2024] [Indexed: 12/12/2024] Open
Abstract
Upon entry into the upper respiratory tract (URT), Streptococcus pneumoniae (Spn) upregulates neuraminidases (NA) that cleave sialic acid (SA) from host glycans. Because sialylation is thought to contribute to the physical properties that determine mucus function, we posited that Spn directly alters host mucus through NA activity. By directly imaging the colonized URT, we demonstrated NA-mediated alterations to the characteristics and distribution of mucus along the respiratory epithelium, where colonizing bacteria are found. Mucus exposed to NA showed increased localization within goblet cells and lining the glycocalyx. By contrast, NA-naïve mucus was more likely to be observed sloughing away from the epithelial surface. We also visualized Spn in the URT and observed that NA promoted efficient bacterial localization to the firm mucus layer overlying the glycocalyx, whereas NA-deficient Spn was associated more with loose mucus. By facilitating tighter association with the glycocalyx, NA promoted increased Spn colonization density. The magnitude of the NA-mediated effect on colonization was widened during late colonization by increased evasion of host-mediated clearance mechanisms. Thus, Spn-encoded NAs directly modify the host environment by desialylating mucus, which allows close interaction with mucus at the epithelium, and this is associated with enhanced bacterial colonization. IMPORTANCE Although severe illness and death caused by Spn result from secondary invasive diseases including pneumonia, sepsis, and meningitis, stable colonization of the upper respiratory tract (URT) is a prerequisite to invasive disease. Therefore, understanding host-Spn dynamics during asymptomatic colonization of the URT is warranted with respect to the pathogenesis of Spn disease. In this study, we found that Spn NA activity directly alters mucus characteristics that result in increased density and duration of URT colonization. Therefore, targeting Spn NA activity during URT colonization may be a viable strategy to mitigate Spn infection.
Collapse
Affiliation(s)
- Matthew T. Montgomery
- Department of Microbiology, New York University School of Medicine, New York, New York, USA
| | - Mila Ortigoza
- Department of Microbiology, New York University School of Medicine, New York, New York, USA
- Department of Medicine, Division of Infectious Diseases, New York University School of Medicine, New York, New York, USA
| | - Cynthia Loomis
- Department of Pathology, New York University School of Medicine, New York, New York, USA
| | - Jeffrey N. Weiser
- Department of Microbiology, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
2
|
Graham AL, Regoes RR. Dose-dependent interaction of parasites with tiers of host defense predicts "wormholes" that prolong infection at intermediate inoculum sizes. PLoS Comput Biol 2024; 20:e1012652. [PMID: 39642189 DOI: 10.1371/journal.pcbi.1012652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 12/18/2024] [Accepted: 11/17/2024] [Indexed: 12/08/2024] Open
Abstract
Immune responses are induced by parasite exposure and can in turn reduce parasite burden. Despite such apparently simple rules of engagement, key drivers of within-host dynamics, including dose-dependence of defense and infection duration, have proven difficult to predict. Here, we model how varied inoculating doses interact with multi-tiered host defenses at a site of inoculation, by confronting barrier, innate, and adaptive tiers with replicating and non-replicating parasites across multiple orders of magnitude of dose. We find that, in general, intermediate parasite doses generate infections of longest duration because they are sufficient in number to breach barrier defenses, but insufficient to strongly induce subsequent tiers of defense. These doses reveal "wormholes" in defense from which parasites might profit: Deviation from the hypothesis of independent action, which postulates that each parasite has an independent probability of establishing infection, may therefore be widespread. Interestingly, our model predicts local maxima of duration at two doses-one for each tier transition. While some empirical evidence is consistent with nonlinear dose-dependencies, testing the predicted dynamics will require finer-scale dose variation than experiments usually incorporate. Our results help explain varied infection establishment and duration among differentially-exposed hosts and elucidate evolutionary pressures that shape both virulence and defense.
Collapse
Affiliation(s)
- Andrea L Graham
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
- Institute of Integrative Biology, ETH Zürich, Zurich, Switzerland
- Santa Fe Institute, Santa Fe, New Mexico, United States of America
| | - Roland R Regoes
- Institute of Integrative Biology, ETH Zürich, Zurich, Switzerland
| |
Collapse
|
3
|
Hua K, Liu D, Xu Q, Peng Y, Sun Y, He R, Luo R, Jin H. The role of hormones in the regulation of lactogenic immunity in porcine and bovine species. Domest Anim Endocrinol 2024; 88:106851. [PMID: 38733944 DOI: 10.1016/j.domaniend.2024.106851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 05/13/2024]
Abstract
Colostrum and milk offer a complete diet and vital immune protection for newborn mammals with developing immune systems. High immunoglobulin levels in colostrum serve as the primary antibody source for newborn piglets and calves. Subsequent milk feeding support continued local antibody protection against enteric pathogens, as well as maturation of the developing immune system and provide nutrients for newborn growth. Mammals have evolved hormonal strategies that modulate the levels of immunoglobulins in colostrum and milk to facilitate effective lactational immunity. In addition, hormones regulate the gut-mammary gland-secretory immunoglobulin A (sIgA) axis in pregnant mammals, controlling the levels of sIgA in milk, which serves as the primary source of IgA for piglets and helps them resist pathogens such as PEDV and TGEV. In the present study, we review the existing studies on the interactions between hormones and the gut-mammary-sIgA axis/lactogenic immunity in mammals and explore the potential mechanisms of hormonal regulation that have not been studied in detail, to draw attention to the role of hormones in influencing the immune response of pregnant and lactating mammals and their offspring, and highlight the effect of hormones in regulating sIgA-mediated anti-infection processes in colostrum and milk. Discussion of the relationship between hormones and lactogenic immunity may lead to a better way of improving lactogenic immunity by determining a better injection time and developing new vaccines.
Collapse
Affiliation(s)
- Kexin Hua
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, PR China
| | - Dan Liu
- China Institute of Veterinary Drug Control, Beijing 100081, PR China
| | - Qianshuai Xu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, PR China
| | - Yuna Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, PR China
| | - Yu Sun
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, PR China
| | - Rongrong He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, PR China
| | - Rui Luo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, PR China
| | - Hui Jin
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, PR China.
| |
Collapse
|
4
|
Dishaw LJ, Litman GW, Liberti A. Tethering of soluble immune effectors to mucin and chitin reflects a convergent and dynamic role in gut immunity. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230078. [PMID: 38497268 PMCID: PMC10945408 DOI: 10.1098/rstb.2023.0078] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/04/2023] [Indexed: 03/19/2024] Open
Abstract
The immune system employs soluble effectors to shape luminal spaces. Antibodies are soluble molecules that effect immunological responses, including neutralization, opsonization, antibody-dependent cytotoxicity and complement activation. These molecules are comprised of immunoglobulin (Ig) domains. The N-terminal Ig domains recognize antigen, and the C-terminal domains facilitate their elimination through phagocytosis (opsonization). A less-recognized function mediated by the C-terminal Ig domains of the IgG class of antibodies (Fc region) involves the formation of multiple low-affinity bonds with the mucus matrix. This association anchors the antibody molecule to the matrix to entrap potential pathogens. Even though invertebrates are not known to have antibodies, protochordates have a class of secreted molecules containing Ig domains that can bind bacteria and potentially serve a similar purpose. The VCBPs (V region-containing chitin-binding proteins) possess a C-terminal chitin-binding domain that helps tether them to chitin-rich mucus gels, mimicking the IgG-mediated Fc trapping of microbes in mucus. The broad functional similarity of these structurally divergent, Ig-containing, secreted effectors makes a case for a unique form of convergent evolution within chordates. This opinion essay highlights emerging evidence that divergent secreted immune effectors with Ig-like domains evolved to manage immune recognition at mucosal surfaces in strikingly similar ways. This article is part of the theme issue 'Sculpting the microbiome: how host factors determine and respond to microbial colonization'.
Collapse
Affiliation(s)
- L. J. Dishaw
- Morsani College of Medicine, Department of Pediatrics, University of South Florida, Children's Research Institute, St. Petersburg, FL 33701, USA
| | - G. W. Litman
- Morsani College of Medicine, Department of Pediatrics, University of South Florida, Children's Research Institute, St. Petersburg, FL 33701, USA
| | - A. Liberti
- Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, 80122 Naples, Italy
| |
Collapse
|
5
|
Paucar Iza YA, Brown CC. Early life imprinting of intestinal immune tolerance and tissue homeostasis. Immunol Rev 2024; 323:303-315. [PMID: 38501766 PMCID: PMC11102293 DOI: 10.1111/imr.13321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 03/02/2024] [Indexed: 03/20/2024]
Abstract
Besides its canonical role in protecting the host from pathogens, the immune system plays an arguably equally important role in maintaining tissue homeostasis. Within barrier tissues that interface with the external microenvironment, induction of immune tolerance to innocuous antigens, such as commensal, dietary, and environmental antigens, is key to establishing immune homeostasis. The early postnatal period represents a critical window of opportunity in which parallel development of the tissue, immune cells, and microbiota allows for reciprocal regulation that shapes the long-term immunological tone of the tissue and subsequent risk of immune-mediated diseases. During early infancy, the immune system appears to sacrifice pro-inflammatory functions, prioritizing the establishment of tissue tolerance. In this review, we discuss mechanisms underlying early life windows for intestinal tolerance with a focus on newly identified RORγt+ antigen-presenting cells-Thetis cells-and highlight the role of the intestinal microenvironment in shaping intestinal immune system development and tolerance.
Collapse
Affiliation(s)
- Yoselin A. Paucar Iza
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine Graduate School of Medical Sciences, New York, New York, USA
- Immuno-Oncology, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Chrysothemis C. Brown
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine Graduate School of Medical Sciences, New York, New York, USA
- Immuno-Oncology, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
6
|
Tedjakusuma SN, Lester CA, Neuhaus ED, Dora EG, Gutierrez S, Braun MR, Tucker SN, Flitter BA. A Next-Generation Adenoviral Vaccine Elicits Mucosal and Systemic Immunogenicity and Reduces Viral Shedding after SARS-CoV-2 Challenge in Nonhuman Primates. Vaccines (Basel) 2024; 12:132. [PMID: 38400116 PMCID: PMC10893453 DOI: 10.3390/vaccines12020132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/20/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
As new SARS-CoV-2 variants continue to emerge and impact communities worldwide, next-generation vaccines that enhance protective mucosal immunity may have a significant impact on productive infection and transmission. We have developed recombinant non-replicating adenovirus serotype 5 (rAd5) vaccines delivered by mucosal administration that express both target antigen and a novel molecular adjuvant within the same cell. Here, we describe the immunogenicity of three unique SARS-CoV-2 rAd5 vaccine candidates and their efficacy following viral challenge in non-human primates (NHPs). Intranasal immunization with rAd5 vaccines expressing Wuhan, or Beta variant spike alone, or Wuhan spike and nucleocapsid elicited strong antigen-specific serum IgG and IgA with neutralizing activity against multiple variants of concern (VOC). Robust cross-reactive mucosal IgA was detected after a single administration of rAd5, which showed strong neutralizing activity against multiple VOC. Additionally, mucosal rAd5 vaccination increased spike-specific IFN-γ producing circulating T-cells. Upon Beta variant SARS-CoV-2 challenge, all the vaccinated NHPs exhibited significant reductions in viral load and infectious particle shedding in both the nasal passages and lower airways. These findings demonstrate that mucosal rAd5 immunization is highly immunogenic, confers protective cross-reactive antibody responses in the circulation and mucosa, and reduces viral load and shedding after SARS-CoV-2 challenge.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Becca A. Flitter
- Vaxart, Inc., South San Francisco, CA 94080, USA; (S.N.T.); (C.A.L.); (E.D.N.); (E.G.D.); (S.G.); (M.R.B.); (S.N.T.)
| |
Collapse
|
7
|
Sereme Y, Toumi E, Saifi E, Faury H, Skurnik D. Maternal immune factors involved in the prevention or facilitation of neonatal bacterial infections. Cell Immunol 2024; 395-396:104796. [PMID: 38104514 DOI: 10.1016/j.cellimm.2023.104796] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023]
Abstract
Newborns, whether born prematurely or at term, have a fully formed but naive immune system that must adapt to the extra-uterine environment to prevent infections. Maternal immunity, transmitted through the placenta and breast milk, protects newborns against infections, primarily via immunoglobulins (IgG and IgA) and certain maternal immune cells also known as microchimeric cells. Recently, it also appeared that the maternal gut microbiota played a vital role in neonatal immune maturation via microbial compounds impacting immune development and the establishment of immune tolerance. In this context, maternal vaccination is a powerful tool to enhance even more maternal and neonatal health. It involves the transfer of vaccine-induced antibodies to protect both mother and child from infectious diseases. In this work we review the state of the art on maternal immune factors involved in the prevention of neonatal bacterial infections, with particular emphasis on the role of maternal vaccination in protecting neonates against bacterial disease.
Collapse
Affiliation(s)
- Youssouf Sereme
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades, F-75015 Paris, France
| | - Eya Toumi
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades, F-75015 Paris, France
| | - Estelle Saifi
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades, F-75015 Paris, France
| | - Helène Faury
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades, F-75015 Paris, France; Department of Microbiology, Necker Hospital, University de Paris, Paris, France
| | - David Skurnik
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades, F-75015 Paris, France; Department of Microbiology, Necker Hospital, University de Paris, Paris, France; FHU PREMA, Paris, France.
| |
Collapse
|
8
|
Zhu J, Abruzzo AR, Wu C, Bee GCW, Pironti A, Putzel G, Aggarwal SD, Eichner H, Weiser JN. Effects of Capsular Polysaccharide amount on Pneumococcal-Host interactions. PLoS Pathog 2023; 19:e1011509. [PMID: 37540710 PMCID: PMC10431664 DOI: 10.1371/journal.ppat.1011509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 08/16/2023] [Accepted: 06/24/2023] [Indexed: 08/06/2023] Open
Abstract
Among the many oral streptococci, Streptococcus pneumoniae (Spn) stands out for the capacity of encapsulated strains to cause invasive infection. Spread beyond upper airways, however, is a biological dead end for the organism, raising the question of the benefits of expending energy to coat its surface in a thick layer of capsular polysaccharide (CPS). In this study, we compare mutants of two serotypes expressing different amounts of CPS and test these in murine models of colonization, invasion infection and transmission. Our analysis of the effect of CPS amount shows that Spn expresses a capsule of sufficient thickness to shield its surface from the deposition of complement and binding of antibody to underlying epitopes. While effective shielding is permissive for invasive infection, its primary contribution to the organism appears to be in the dynamics of colonization. A thicker capsule increases bacterial retention in the nasopharynx, the first event in colonization, and also impedes IL-17-dependent clearance during late colonization. Enhanced colonization is associated with increased opportunity for host-to-host transmission. Additionally, we document substantial differences in CPS amount among clinical isolates of three common serotypes. Together, our findings show that CPS amount is highly variable among Spn and could be an independent determinant affecting host interactions.
Collapse
Affiliation(s)
- Jiaqi Zhu
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, United States of America
| | - Annie R. Abruzzo
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, United States of America
| | - Cindy Wu
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, United States of America
| | - Gavyn Chern Wei Bee
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, United States of America
| | - Alejandro Pironti
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, United States of America
- Microbial Computational Genomic Core Lab, Department of Microbiology, New York University Grossman School of Medicine, New York, New York, United States of America
| | - Gregory Putzel
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, United States of America
- Microbial Computational Genomic Core Lab, Department of Microbiology, New York University Grossman School of Medicine, New York, New York, United States of America
| | - Surya D. Aggarwal
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, United States of America
| | - Hannes Eichner
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, United States of America
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, and Clinical Microbiology, Bioclinicum, Karolinska University Hospital Solna, Solna, Sweden
| | - Jeffrey N. Weiser
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, United States of America
| |
Collapse
|
9
|
Zafar MA, Costa-Terryl A, Young TM. The Two-Component System YesMN Promotes Pneumococcal Host-to-Host Transmission and Regulates Genes Involved in Zinc Homeostasis. Infect Immun 2023; 91:e0037522. [PMID: 36537790 PMCID: PMC9872629 DOI: 10.1128/iai.00375-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/27/2022] [Indexed: 01/25/2023] Open
Abstract
The ability to sense and respond rapidly to the dynamic environment of the upper respiratory tract (URT) makes Streptococcus pneumoniae (Spn) a highly successful human pathogen. Two-component systems (TCSs) of Spn sense and respond to multiple signals it encounters allowing Spn to adapt and thrive in various host sites. Spn TCS have been implicated in their ability to promote pneumococcal colonization of the URT and virulence. As the disease state can be a dead-end for a pathogen, we considered whether TCS would contribute to pneumococcal transmission. Herein, we determined the role of YesMN, an understudied TCS of Spn, and observe that YesMN contributes toward pneumococcal shedding and transmission but is not essential for colonization. The YesMN regulon includes genes involved in zinc homeostasis and glycan metabolism, which are upregulated during reduced zinc availability in a YesMN-dependent fashion. Thus, we identified the YesMN regulon and a potential molecular signal it senses that lead to the activation of genes involved in zinc homeostasis and glycan metabolism. Furthermore, in contrast to Spn monoinfection, we demonstrate that YesMN is critical for high pneumococcal density in the URT during influenza A virus (IAV) coinfection. We attribute reduced colonization of the yesMN mutant possibly due to increased association with and clearance by the mucus covering the URT epithelial surface. Thus, our results highlight the dynamic interactions that occur between Spn and IAV in the URT, and the role that TCSs play in modulation of these interactions.
Collapse
Affiliation(s)
- M. Ammar Zafar
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Alicia Costa-Terryl
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Taylor M. Young
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
10
|
Davis EC, Castagna VP, Sela DA, Hillard MA, Lindberg S, Mantis NJ, Seppo AE, Järvinen KM. Gut microbiome and breast-feeding: Implications for early immune development. J Allergy Clin Immunol 2022; 150:523-534. [PMID: 36075638 PMCID: PMC9463492 DOI: 10.1016/j.jaci.2022.07.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022]
Abstract
Establishment of the gut microbiome during early life is a complex process with lasting implications for an individual's health. Several factors influence microbial assembly; however, breast-feeding is recognized as one of the most influential drivers of gut microbiome composition during infancy, with potential implications for function. Differences in gut microbial communities between breast-fed and formula-fed infants have been consistently observed and are hypothesized to partially mediate the relationships between breast-feeding and decreased risk for numerous communicable and noncommunicable diseases in early life. Despite decades of research on the gut microbiome of breast-fed infants, there are large scientific gaps in understanding how human milk has evolved to support microbial and immune development. This review will summarize the evidence on how breast-feeding broadly affects the composition and function of the early-life gut microbiome and discuss mechanisms by which specific human milk components shape intestinal bacterial colonization, succession, and function.
Collapse
Affiliation(s)
- Erin C Davis
- Division of Allergy and Immunology, Center for Food Allergy, Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Golisano Children's Hospital, Rochester, NY
| | | | - David A Sela
- Department of Food Science, University of Massachusetts Amherst, Amherst, Mass; Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, Mass; Organismic and Evolutionary Biology Graduate Program, University of Massachusetts Amherst, Amherst, Mass
| | - Margaret A Hillard
- Department of Food Science, University of Massachusetts Amherst, Amherst, Mass; Organismic and Evolutionary Biology Graduate Program, University of Massachusetts Amherst, Amherst, Mass
| | - Samantha Lindberg
- Department of Biomedical Sciences, University of Albany, Rensselaer, NY
| | - Nicholas J Mantis
- Division of Infectious Diseases, New York State Department of Health, Albany, NY
| | - Antti E Seppo
- Division of Allergy and Immunology, Center for Food Allergy, Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Golisano Children's Hospital, Rochester, NY
| | - Kirsi M Järvinen
- Division of Allergy and Immunology, Center for Food Allergy, Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Golisano Children's Hospital, Rochester, NY; Division of Allergy, Immunology, and Rheumatology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY; Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY.
| |
Collapse
|
11
|
Kremer PHC, Ferwerda B, Bootsma HJ, Rots NY, Wijmenga-Monsuur AJ, Sanders EAM, Trzciński K, Wyllie AL, Turner P, van der Ende A, Brouwer MC, Bentley SD, van de Beek D, Lees JA. Pneumococcal genetic variability in age-dependent bacterial carriage. eLife 2022; 11:e69244. [PMID: 35881438 PMCID: PMC9395192 DOI: 10.7554/elife.69244] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/03/2022] [Indexed: 11/13/2022] Open
Abstract
The characteristics of pneumococcal carriage vary between infants and adults. Host immune factors have been shown to contribute to these age-specific differences, but the role of pathogen sequence variation is currently less well-known. Identification of age-associated pathogen genetic factors could leadto improved vaccine formulations. We therefore performed genome sequencing in a large carriage cohort of children and adults and combined this with data from an existing age-stratified carriage study. We compiled a dictionary of pathogen genetic variation, including serotype, strain, sequence elements, single-nucleotide polymorphisms (SNPs), and clusters of orthologous genes (COGs) for each cohort - all of which were used in a genome-wide association with host age. Age-dependent colonization showed weak evidence of being heritable in the first cohort (h2 = 0.10, 95% CI 0.00-0.69) and stronger evidence in the second cohort (h2 = 0.56, 95% CI 0.23-0.87). We found that serotypes and genetic background (strain) explained a proportion of the heritability in the first cohort (h2serotype = 0.07, 95% CI 0.04-0.14 and h2GPSC = 0.06, 95% CI 0.03-0.13) and the second cohort (h2serotype = 0.11, 95% CI 0.05-0.21 and h2GPSC = 0.20, 95% CI 0.12-0.31). In a meta-analysis of these cohorts, we found one candidate association (p=1.2 × 10-9) upstream of an accessory Sec-dependent serine-rich glycoprotein adhesin. Overall, while we did find a small effect of pathogen genome variation on pneumococcal carriage between child and adult hosts, this was variable between populations and does not appear to be caused by strong effects of individual genes. This supports proposals for adaptive future vaccination strategies that are primarily targeted at dominant circulating serotypes and tailored to the composition of the pathogen populations.
Collapse
Affiliation(s)
- Philip HC Kremer
- Department of Neurology, Amsterdam UMC, University of AmsterdamMeibergdreefNetherlands
| | - Bart Ferwerda
- Department of Neurology, Amsterdam UMC, University of AmsterdamMeibergdreefNetherlands
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, University of AmsterdamAmsterdamNetherlands
| | - Hester J Bootsma
- Centre for Infectious Disease Control, National Institute for Public Health and the EnvironmentBilthovenNetherlands
| | - Nienke Y Rots
- Centre for Infectious Disease Control, National Institute for Public Health and the EnvironmentBilthovenNetherlands
| | - Alienke J Wijmenga-Monsuur
- Centre for Infectious Disease Control, National Institute for Public Health and the EnvironmentBilthovenNetherlands
| | - Elisabeth AM Sanders
- Centre for Infectious Disease Control, National Institute for Public Health and the EnvironmentBilthovenNetherlands
- Department of Pediatric Immunology and Infectious D, Wilhelmina Children's HospitalUtrechtNetherlands
| | - Krzysztof Trzciński
- Department of Pediatric Immunology and Infectious D, Wilhelmina Children's HospitalUtrechtNetherlands
| | - Anne L Wyllie
- Department of Pediatric Immunology and Infectious D, Wilhelmina Children's HospitalUtrechtNetherlands
- Epidemiology of Microbial Diseases, Yale School of Public HealthNew HavenUnited States
| | - Paul Turner
- Cambodia Oxford Medical Research Unit, Angkor Hospital for ChildrenSiem ReapCambodia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - Arie van der Ende
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMCAmsterdamNetherlands
- The Netherlands Reference Laboratory for Bacterial MeningitisAmsterdamNetherlands
| | - Matthijs C Brouwer
- Department of Neurology, Amsterdam UMC, University of AmsterdamMeibergdreefNetherlands
| | - Stephen D Bentley
- Parasites and Microbes, Wellcome Sanger InstituteCambridgeUnited Kingdom
| | - Diederik van de Beek
- Department of Neurology, Amsterdam UMC, University of AmsterdamMeibergdreefNetherlands
| | - John A Lees
- European Molecular Biology Laboratory–European Bioinformatics InstituteCambridgeUnited Kingdom
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College LondonLondonUnited Kingdom
| |
Collapse
|
12
|
Juncker HG, Mulleners SJ, Ruhé EJ, Coenen ER, Bakker S, van Doesburg M, Harinck JE, Rood RD, Bouhuijs JH, Oomen M, de Groot PCJ, Pajkrt PD, Korosi A, van Goudoever PJB, van Gils MJ, van Keulen BJ. Comparing the human milk antibody response after vaccination with four COVID-19 vaccines: A prospective, longitudinal cohort study in the Netherlands. EClinicalMedicine 2022; 47:101393. [PMID: 35465077 PMCID: PMC9013951 DOI: 10.1016/j.eclinm.2022.101393] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/22/2022] [Accepted: 03/28/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Vaccination of lactating women against COVID-19 may protect not only themselves but also their breastfed infant through human milk. Therefore, it is important to gain insight into the human milk antibody response after immunization with the various vaccines that are currently widely used. The aim of this study is to determine and compare the antibody response in human milk following vaccination with mRNA- and vector-based vaccines up to over two months post-vaccination. METHODS This prospective cohort study was conducted in the Netherlands between January 06, 2021 and July 31, 2021. Participants were recruited through social media. Human milk samples were collected longitudinally during a period of 70 days from women receiving one of the four different severe acute respiratory coronavirus 2 (SARS-CoV-2) vaccines: Pfizer-BioNTech (BNT162b2), Moderna (mRNA-1273), Oxford/AstraZeneca (AZD1222) and Johnson&Johnson (Ad26.COV2.S). SARS-CoV-2-specific antibodies were measured using an enzyme-linked immunosorbent assay. The area under the curve (AUC) of the Immunoglobulins A (IgA) and G (IgG) antibody response was determined over 15 and 70 days following the first vaccination and compared between the different vaccines. FINDINGS This study enrolled 134 vaccinated lactating women of whom 97 participated the entire study period. In total, 1887 human milk samples were provided. The human milk antibody response differed between SARS-CoV-2 vaccines over the study period. The mean AUC of SARS-CoV-2-specific IgA, but not IgG, in human milk over 15 days was higher after vaccination with an mRNA-based vaccine than a vector-based vaccine (AUC with respect to ground [AUCg] ± the standard error of the mean [SEM] for IgA was 6·09 ± 0·89 in the BNT162b2 group, 7·48 ± 1·03 in the mRNA-1273 group, 4·17 ± 0·73 in the AZD1222 group, and 5·71 ± 0·70 in the Ad26.COV2.S group). Over a period of 70 days, the mean AUCg of both IgA and IgG was higher after vaccination with an mRNA-based vaccine than a vector-based vaccine (AUCg ± SEM for IgA was 38·77 ± 6·51 in the BNT162b2 group, 50·13 ± 7·41 in the mRNA-1273 group, 24·12 ± 5·47 in the AZD1222 group, and 28·15 ± 6·69 in the Ad26.COV2.S group; AUCg ± SEM for IgG was 40·43 ± 2·67 in the BNT162b2 group, 37·01 ± 2·38 in the mRNA-1273 group, 16·04 ± 5·09 in the AZD1222 group, and 10·44 ± 2·50 in the Ad26.COV2.S group). INTERPRETATION Overall, maternal vaccination during lactation with an mRNA-based vaccine resulted in higher SARS-CoV-2 antibody responses in human milk compared to vector-based vaccines. Therefore, vaccination with mRNA-based vaccines, preferably with the mRNA-1273 vaccine, might not only provide better immunological protection for the mother but also for her breastfed infant. FUNDING Stichting Steun Emma Kinderziekenhuis and the Amsterdam Infection and Immunity Institute (grant 24175).
Collapse
Affiliation(s)
- Hannah G. Juncker
- Amsterdam UMC, Vrije Universiteit, University of Amsterdam, Emma Children's Hospital, Amsterdam Reproduction & Development Research Institute, Department of Pediatrics, Amsterdam, the Netherlands
- Swammerdam Institute for Life Sciences - Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| | - Sien J. Mulleners
- Amsterdam UMC, Vrije Universiteit, University of Amsterdam, Emma Children's Hospital, Amsterdam Reproduction & Development Research Institute, Department of Pediatrics, Amsterdam, the Netherlands
| | - Eliza J.M. Ruhé
- Amsterdam UMC, Vrije Universiteit, University of Amsterdam, Emma Children's Hospital, Amsterdam Reproduction & Development Research Institute, Department of Pediatrics, Amsterdam, the Netherlands
| | - Esmée R.M. Coenen
- Amsterdam UMC, Vrije Universiteit, University of Amsterdam, Emma Children's Hospital, Amsterdam Reproduction & Development Research Institute, Department of Pediatrics, Amsterdam, the Netherlands
| | - Sjors Bakker
- Amsterdam UMC, Vrije Universiteit, University of Amsterdam, Emma Children's Hospital, Amsterdam Reproduction & Development Research Institute, Department of Pediatrics, Amsterdam, the Netherlands
| | - Maritt van Doesburg
- Amsterdam UMC, Vrije Universiteit, University of Amsterdam, Emma Children's Hospital, Amsterdam Reproduction & Development Research Institute, Department of Pediatrics, Amsterdam, the Netherlands
| | - Jolinda E. Harinck
- Amsterdam UMC, Vrije Universiteit, University of Amsterdam, Emma Children's Hospital, Amsterdam Reproduction & Development Research Institute, Department of Pediatrics, Amsterdam, the Netherlands
| | - Romee D. Rood
- Amsterdam UMC, Vrije Universiteit, University of Amsterdam, Emma Children's Hospital, Amsterdam Reproduction & Development Research Institute, Department of Pediatrics, Amsterdam, the Netherlands
| | - Joey H. Bouhuijs
- Amsterdam UMC, University of Amsterdam, Amsterdam Infection and Immunity Institute, Department of Medical Microbiology and Infection Prevention, Amsterdam, the Netherlands
| | - Melissa Oomen
- Amsterdam UMC, University of Amsterdam, Amsterdam Infection and Immunity Institute, Department of Medical Microbiology and Infection Prevention, Amsterdam, the Netherlands
| | - Prof. Christianne J.M. de Groot
- Amsterdam UMC, Vrije Universiteit, Amsterdam Reproduction & Development Research Institute, Department of Obstetrics and Gynaecology, Amsterdam, the Netherlands
| | - Prof. Dasja Pajkrt
- Amsterdam UMC, Vrije Universiteit, University of Amsterdam, Emma Children's Hospital, Amsterdam Reproduction & Development Research Institute, Department of Pediatrics, Amsterdam, the Netherlands
| | - Aniko Korosi
- Swammerdam Institute for Life Sciences - Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| | - Prof. Johannes B. van Goudoever
- Amsterdam UMC, Vrije Universiteit, University of Amsterdam, Emma Children's Hospital, Amsterdam Reproduction & Development Research Institute, Department of Pediatrics, Amsterdam, the Netherlands
- Corresponding author at: Hans van Goudoever, Emma Children's Hospital - Amsterdam UMC, Meibergdreef 9, 1000 DE Amsterdam, The Netherlands. tel +31-20-5668885.
| | - Marit J. van Gils
- Amsterdam UMC, University of Amsterdam, Amsterdam Infection and Immunity Institute, Department of Medical Microbiology and Infection Prevention, Amsterdam, the Netherlands
| | - Britt J. van Keulen
- Amsterdam UMC, Vrije Universiteit, University of Amsterdam, Emma Children's Hospital, Amsterdam Reproduction & Development Research Institute, Department of Pediatrics, Amsterdam, the Netherlands
| |
Collapse
|
13
|
Richards A, Baranova D, Mantis NJ. The prospect of orally administered monoclonal secretory IgA (SIgA) antibodies to prevent enteric bacterial infections. Hum Vaccin Immunother 2022; 18:1964317. [PMID: 34491878 PMCID: PMC9103515 DOI: 10.1080/21645515.2021.1964317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/08/2021] [Accepted: 07/30/2021] [Indexed: 12/20/2022] Open
Abstract
Eliminating diarrheal diseases as a leading cause of childhood morbidity and mortality in low- and middle-income countries (LMICs) will require multiple intervention strategies. In this review, we spotlight a series of preclinical studies investigating the potential of orally administered monoclonal secretory IgA (SIgA) antibodies (MAbs) to reduce disease associated with three enteric bacterial pathogens: Campylobacter jejuni, enterotoxigenic Escherichia coli (ETEC), and invasive Salmonella enterica serovar Typhimurium. IgA MAbs targeting bacterial surface antigens (flagella, adhesins, and lipopolysaccharide) were generated from mice, humanized mice, and human tonsillar B cells. Recombinant SIgA1 and/or SIgA2 derivates of those MAbs were purified from supernatants following transient transfection of 293 cells with plasmids encoding antibody heavy and light chains, J-chain, and secretory component (SC). When administered to mice by gavage immediately prior to (or admixed with) the bacterial challenge, SIgA MAbs reduced infection C. jejuni, ETEC, and S. Typhimurium infections. Fv-matched IgG1 MAbs by comparison were largely ineffective against C. jejuni and S. Typhimurium under the same conditions, although they were partially effective against ETEC. While these findings highlight future applications of orally administered SIgA, the studies also underscored the fundamental challenges associated with using MAbs as prophylactic tools against enteric bacterial diseases.
Collapse
Affiliation(s)
- Angelene Richards
- Department of Biomedical Sciences, University at Albany School, Albany, NY, USA
| | - Danielle Baranova
- Department of Biomedical Sciences, University at Albany School, Albany, NY, USA
| | - Nicholas J. Mantis
- Department of Biomedical Sciences, University at Albany School, Albany, NY, USA
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| |
Collapse
|
14
|
Goncalves P, Doisne JM, Eri T, Charbit B, Bondet V, Posseme C, Llibre A, Casrouge A, Lenoir C, Neven B, Duffy D, Fischer A, Di Santo JP. Defects in mucosal immunity and nasopharyngeal dysbiosis in HSC-transplanted SCID patients with IL2RG/JAK3 deficiency. Blood 2022; 139:2585-2600. [PMID: 35157765 PMCID: PMC11022929 DOI: 10.1182/blood.2021014654] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/31/2022] [Indexed: 11/20/2022] Open
Abstract
Both innate and adaptive lymphocytes have critical roles in mucosal defense that contain commensal microbial communities and protect against pathogen invasion. Here we characterize mucosal immunity in patients with severe combined immunodeficiency (SCID) receiving hematopoietic stem cell transplantation (HSCT) with or without myeloablation. We confirmed that pretransplant conditioning had an impact on innate (natural killer and innate lymphoid cells) and adaptive (B and T cells) lymphocyte reconstitution in these patients with SCID and now show that this further extends to generation of T helper 2 and type 2 cytotoxic T cells. Using an integrated approach to assess nasopharyngeal immunity, we identified a local mucosal defect in type 2 cytokines, mucus production, and a selective local immunoglobulin A (IgA) deficiency in HSCT-treated SCID patients with genetic defects in IL2RG/GC or JAK3. These patients have a reduction in IgA-coated nasopharyngeal bacteria and exhibit microbial dysbiosis with increased pathobiont carriage. Interestingly, intravenous immunoglobulin replacement therapy can partially normalize nasopharyngeal immunoglobulin profiles and restore microbial communities in GC/JAK3 patients. Together, our results suggest a potential nonredundant role for type 2 immunity and/or of local IgA antibody production in the maintenance of nasopharyngeal microbial homeostasis and mucosal barrier function.
Collapse
Affiliation(s)
- Pedro Goncalves
- Institut Pasteur, Université de Paris Cité, Inserm U1223, Innate Immunity Unit, Paris, France
| | - Jean-Marc Doisne
- Institut Pasteur, Université de Paris Cité, Inserm U1223, Innate Immunity Unit, Paris, France
| | - Toshiki Eri
- Institut Pasteur, Université de Paris Cité, Inserm U1223, Innate Immunity Unit, Paris, France
| | - Bruno Charbit
- Institut Pasteur, Université de Paris Cité, Center for Translational Science, Paris, France
| | - Vincent Bondet
- Institut Pasteur, Université de Paris Cité, Translational Immunology Unit, Paris, France
| | - Celine Posseme
- Institut Pasteur, Université de Paris Cité, Translational Immunology Unit, Paris, France
| | - Alba Llibre
- Institut Pasteur, Université de Paris Cité, Translational Immunology Unit, Paris, France
| | - Armanda Casrouge
- Institut Pasteur, Université de Paris Cité, Inserm U1223, Innate Immunity Unit, Paris, France
| | - Christelle Lenoir
- Inserm Unité Mixte de Recherche 1163, Paris, France
- Imagine Institut, Université de Paris Descartes Sorbonne Paris Cité, Paris, France
| | - Bénédicte Neven
- Inserm Unité Mixte de Recherche 1163, Paris, France
- Department of Pediatric Immunology, Hematology and Rheumatology, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Darragh Duffy
- Institut Pasteur, Université de Paris Cité, Translational Immunology Unit, Paris, France
| | - Alain Fischer
- Inserm Unité Mixte de Recherche 1163, Paris, France
- Collège de France, Paris, France
| | - James P. Di Santo
- Institut Pasteur, Université de Paris Cité, Inserm U1223, Innate Immunity Unit, Paris, France
| | - The Milieu Intérieur Consortium
- Institut Pasteur, Université de Paris Cité, Inserm U1223, Innate Immunity Unit, Paris, France
- Institut Pasteur, Université de Paris Cité, Center for Translational Science, Paris, France
- Institut Pasteur, Université de Paris Cité, Translational Immunology Unit, Paris, France
- Inserm Unité Mixte de Recherche 1163, Paris, France
- Imagine Institut, Université de Paris Descartes Sorbonne Paris Cité, Paris, France
- Department of Pediatric Immunology, Hematology and Rheumatology, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
- Collège de France, Paris, France
| |
Collapse
|
15
|
Sánchez Montalvo A, Gohy S, Rombaux P, Pilette C, Hox V. The Role of IgA in Chronic Upper Airway Disease: Friend or Foe? FRONTIERS IN ALLERGY 2022; 3:852546. [PMID: 35386640 PMCID: PMC8974816 DOI: 10.3389/falgy.2022.852546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/10/2022] [Indexed: 01/28/2023] Open
Abstract
Chronic upper airway inflammation is amongst the most prevalent chronic disease entities in the Western world with prevalence around 30% (rhinitis) and 11% (rhinosinusitis). Chronic rhinitis and rhinosinusitis may severely impair the quality of life, leading to a significant socio-economic burden. It becomes more and more clear that the respiratory mucosa which forms a physiological as well as chemical barrier for inhaled particles, plays a key role in maintaining homeostasis and driving disease. In a healthy state, the mucosal immune system provides protection against pathogens as well as maintains a tolerance toward non-harmful commensal microbes and benign environmental substances such as allergens. One of the most important players of the mucosal immune system is immunoglobulin (Ig) A, which is well-studied in gut research where it has emerged as a key factor in creating tolerance to potential food allergens and maintaining a healthy microbiome. Although, it is very likely that IgA plays a similar role at the level of the respiratory epithelium, very little research has been performed on the role of this protein in the airways, especially in chronic upper airway diseases. This review summarizes what is known about IgA in upper airway homeostasis, as well as in rhinitis and rhinosinusitis, including current and possible new treatments that may interfere with the IgA system. By doing so, we identify unmet needs in exploring the different roles of IgA in the upper airways required to find new biomarkers or therapeutic options for treating chronic rhinitis and rhinosinusitis.
Collapse
Affiliation(s)
- Alba Sánchez Montalvo
- Pole of Pneumology, ENT and Dermatology, Institute of Experimental and Clinical Research, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
- Allergy and Clinical Immunology Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Sophie Gohy
- Pole of Pneumology, ENT and Dermatology, Institute of Experimental and Clinical Research, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
- Department of Pulmonology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
- Cystic Fibrosis Reference Center, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Philippe Rombaux
- Department of Otorhinolaryngology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Charles Pilette
- Pole of Pneumology, ENT and Dermatology, Institute of Experimental and Clinical Research, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
- Department of Pulmonology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Valérie Hox
- Pole of Pneumology, ENT and Dermatology, Institute of Experimental and Clinical Research, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
- Department of Otorhinolaryngology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
- *Correspondence: Valérie Hox
| |
Collapse
|
16
|
Aoki Y, Ikeda T, Tani N, Watanabe M, Ishikawa T. Evaluation of the Relationships between Intestinal Regional Lymph Nodes and Immune Responses in Viral Infections in Children. Int J Mol Sci 2021; 23:ijms23010318. [PMID: 35008744 PMCID: PMC8745466 DOI: 10.3390/ijms23010318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/20/2021] [Accepted: 12/23/2021] [Indexed: 11/16/2022] Open
Abstract
Viral infections increase the risk of developing allergies in childhood, and disruption of mucosal homeostasis is presumed to be involved. However, no study has reported a role for viral infections in such disruption. In this study, we clarified the mechanism of immunoglobulin A (IgA) overproduction in viral infections. Autopsies were performed on 33 pediatric cases, IgA and interferon (IFN)β levels were measured, and histopathological and immunohistochemical examinations were conducted. Furthermore, we cultured human cells and measured IFNβ and IgA levels to examine the effect of viral infections on IgA production. Blood IgA levels in viral infections were higher than in bacterial infections. Moreover, IFNβ levels in most viral cases were below the detection limit. Cell culture revealed increased IgA in gastrointestinal lymph nodes, especially in Peyer’s patches, due to enhanced IFNβ after viral stimulation. Conversely, respiratory regional lymph nodes showed enhanced IgA with no marked change in IFNβ. Overproduction of IgA, identified as an aberration of the immune system and resulting from excessive viral infection-induced IFNβ was observed in the intestinal regional lymph nodes, particularly in Peyer’s patches. Further, increased IgA without elevated IFNβ in the respiratory system suggested the possibility of a different mechanism from the gastrointestinal system.
Collapse
Affiliation(s)
- Yayoi Aoki
- Department of Legal Medicine, Osaka City University Medical School, Osaka 545-8585, Japan; (T.I.); (N.T.); (M.W.); (T.I.)
- Correspondence: ; Tel.: +81-6-6645-3767
| | - Tomoya Ikeda
- Department of Legal Medicine, Osaka City University Medical School, Osaka 545-8585, Japan; (T.I.); (N.T.); (M.W.); (T.I.)
- Forensic Autopsy Section, Medico-Legal Consultation and Postmortem Investigation Support Center (MLCPI-SC), Osaka 545-8585, Japan
| | - Naoto Tani
- Department of Legal Medicine, Osaka City University Medical School, Osaka 545-8585, Japan; (T.I.); (N.T.); (M.W.); (T.I.)
- Forensic Autopsy Section, Medico-Legal Consultation and Postmortem Investigation Support Center (MLCPI-SC), Osaka 545-8585, Japan
| | - Miho Watanabe
- Department of Legal Medicine, Osaka City University Medical School, Osaka 545-8585, Japan; (T.I.); (N.T.); (M.W.); (T.I.)
- Laboratory of Clinical Regenerative Medicine, Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Health and Medical Science Innovation Laboratory 403, Tsukuba City 305-8575, Japan
| | - Takaki Ishikawa
- Department of Legal Medicine, Osaka City University Medical School, Osaka 545-8585, Japan; (T.I.); (N.T.); (M.W.); (T.I.)
- Forensic Autopsy Section, Medico-Legal Consultation and Postmortem Investigation Support Center (MLCPI-SC), Osaka 545-8585, Japan
| |
Collapse
|
17
|
Abstract
Mycoplasmas are small, genome-reduced bacteria. They are obligate parasites that can be found in a wide range of host species, including the majority of livestock animals and humans. Colonization of the host can result in a wide spectrum of outcomes. In many cases, these successful parasites are considered commensal, as they are found in the microbiota of asymptomatic carriers. Conversely, mycoplasmas can also be pathogenic, as they are associated with a range of both acute and chronic inflammatory diseases which are problematic in veterinary and human medicine. The chronicity of mycoplasma infections and the ability of these bacteria to infect even recently vaccinated individuals clearly indicate that they are able to successfully evade their host’s humoral immune response. Over the years, multiple strategies of immune evasion have been identified in mycoplasmas, with a number of them aimed at generating important antigenic diversity. More recently, mycoplasma-specific anti-immunoglobulin strategies have also been characterized. Through the expression of the immunoglobulin-binding proteins protein M or mycoplasma immunoglobulin binding (MIB), mycoplasmas have the ability to target the host’s antibodies and to prevent them from interacting with their cognate antigens. In this review, we discuss how these discoveries shed new light on the relationship between mycoplasmas and their host’s immune system. We also propose that these strategies should be taken into consideration for future studies, as they are key to our understanding of mycoplasma diseases' chronic and inflammatory nature and are probably a contributing factor to reduce vaccine efficacy.
Collapse
|
18
|
Muruganandah V, Kupz A. Immune responses to bacterial lung infections and their implications for vaccination. Int Immunol 2021; 34:231-248. [PMID: 34850883 DOI: 10.1093/intimm/dxab109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 11/28/2021] [Indexed: 11/14/2022] Open
Abstract
The pulmonary immune system plays a vital role in protecting the delicate structures of gaseous exchange against invasion from bacterial pathogens. With antimicrobial resistance becoming an increasing concern, finding novel strategies to develop vaccines against bacterial lung diseases remains a top priority. In order to do so, a continued expansion of our understanding of the pulmonary immune response is warranted. Whilst some aspects are well characterised, emerging paradigms such as the importance of innate cells and inducible immune structures in mediating protection provide avenues of potential to rethink our approach to vaccine development. In this review, we aim to provide a broad overview of both the innate and adaptive immune mechanisms in place to protect the pulmonary tissue from invading bacterial organisms. We use specific examples from several infection models and human studies to depict the varying functions of the pulmonary immune system that may be manipulated in future vaccine development. Particular emphasis has been placed on emerging themes that are less reviewed and underappreciated in vaccine development studies.
Collapse
Affiliation(s)
- Visai Muruganandah
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia
| | - Andreas Kupz
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia
| |
Collapse
|
19
|
Pullen KM, Atyeo C, Collier ARY, Gray KJ, Belfort MB, Lauffenburger DA, Edlow AG, Alter G. Selective functional antibody transfer into the breastmilk after SARS-CoV-2 infection. Cell Rep 2021; 37:109959. [PMID: 34739850 PMCID: PMC8531199 DOI: 10.1016/j.celrep.2021.109959] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/16/2021] [Accepted: 10/18/2021] [Indexed: 12/24/2022] Open
Abstract
Antibody transfer via breastmilk represents an evolutionary strategy to boost immunity in early life. Although severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific antibodies have been observed in the breastmilk, the functional quality of these antibodies remains unclear. Here, we apply systems serology to characterize SARS-CoV-2-specific antibodies in maternal serum and breastmilk to compare the functional characteristics of antibodies in these fluids. Distinct SARS-CoV-2-specific antibody responses are observed in the serum and breastmilk of lactating individuals previously infected with SARS-CoV-2, with a more dominant transfer of immunoglobulin A (IgA) and IgM into breastmilk. Although IgGs are present in breastmilk, they are functionally attenuated. We observe preferential transfer of antibodies capable of eliciting neutrophil phagocytosis and neutralization compared to other functions, pointing to selective transfer of certain functional antibodies to breastmilk. These data highlight the preferential transfer of SARS-CoV-2-specific IgA and IgM to breastmilk, accompanied by select IgG subpopulations, positioned to create a non-pathologic but protective barrier against coronavirus disease 2019 (COVID-19).
Collapse
Affiliation(s)
- Krista M Pullen
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Caroline Atyeo
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; PhD Program in Virology, Division of Medical Sciences, Harvard University, Boston, MA 02115, USA
| | - Ai-Ris Y Collier
- Department of Obstetrics, Gynecology and Reproductive Biology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Kathryn J Gray
- Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mandy B Belfort
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Douglas A Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Andrea G Edlow
- Department of Obstetrics, Gynecology and Reproductive Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA 02114, USA.
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA.
| |
Collapse
|
20
|
Harrow GL, Lees JA, Hanage WP, Lipsitch M, Corander J, Colijn C, Croucher NJ. Negative frequency-dependent selection and asymmetrical transformation stabilise multi-strain bacterial population structures. THE ISME JOURNAL 2021; 15:1523-1538. [PMID: 33408365 PMCID: PMC8115253 DOI: 10.1038/s41396-020-00867-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 02/06/2023]
Abstract
Streptococcus pneumoniae can be divided into many strains, each a distinct set of isolates sharing similar core and accessory genomes, which co-circulate within the same hosts. Previous analyses suggested the short-term vaccine-associated dynamics of S. pneumoniae strains may be mediated through multi-locus negative frequency-dependent selection (NFDS), which maintains accessory loci at equilibrium frequencies. Long-term simulations demonstrated NFDS stabilised clonally-evolving multi-strain populations through preventing the loss of variation through drift, based on polymorphism frequencies, pairwise genetic distances and phylogenies. However, allowing symmetrical recombination between isolates evolving under multi-locus NFDS generated unstructured populations of diverse genotypes. Replication of the observed data improved when multi-locus NFDS was combined with recombination that was instead asymmetrical, favouring deletion of accessory loci over insertion. This combination separated populations into strains through outbreeding depression, resulting from recombinants with reduced accessory genomes having lower fitness than their parental genotypes. Although simplistic modelling of recombination likely limited these simulations' ability to maintain some properties of genomic data as accurately as those lacking recombination, the combination of asymmetrical recombination and multi-locus NFDS could restore multi-strain population structures from randomised initial populations. As many bacteria inhibit insertions into their chromosomes, this combination may commonly underlie the co-existence of strains within a niche.
Collapse
Affiliation(s)
- Gabrielle L Harrow
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, Norfolk Place, London, W2 1PG, UK
| | - John A Lees
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, Norfolk Place, London, W2 1PG, UK
| | - William P Hanage
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, 02115, USA
| | - Marc Lipsitch
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, 02115, USA
| | - Jukka Corander
- Department of Biostatistics, University of Oslo, Oslo, Norway
- Helsinki Institute of Information Technology, Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
- Parasites & Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Caroline Colijn
- Parasites & Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
- Department of Mathematics, Simon Fraser University, Burnaby, BC, Canada
| | - Nicholas J Croucher
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, Norfolk Place, London, W2 1PG, UK.
| |
Collapse
|
21
|
Kauffman RC, Adekunle O, Yu H, Cho A, Nyhoff LE, Kelly M, Harris JB, Bhuiyan TR, Qadri F, Calderwood SB, Charles RC, Ryan ET, Kong J, Wrammert J. Impact of Immunoglobulin Isotype and Epitope on the Functional Properties of Vibrio cholerae O-Specific Polysaccharide-Specific Monoclonal Antibodies. mBio 2021; 12:e03679-20. [PMID: 33879588 PMCID: PMC8092325 DOI: 10.1128/mbio.03679-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/15/2021] [Indexed: 01/15/2023] Open
Abstract
Vibrio cholerae causes the severe diarrheal disease cholera. Clinical disease and current oral cholera vaccines generate antibody responses associated with protection. Immunity is thought to be largely mediated by lipopolysaccharide (LPS)-specific antibodies, primarily targeting the O-antigen. However, the properties and protective mechanism of functionally relevant antibodies have not been well defined. We previously reported on the early B cell response to cholera in a cohort of Bangladeshi patients, from which we characterized a panel of human monoclonal antibodies (MAbs) isolated from acutely induced plasmablasts. All antibodies in that previous study were expressed in an IgG1 backbone irrespective of their original isotype. To clearly determine the impact of affinity, immunoglobulin isotype and subclass on the functional properties of these MAbs, we re-engineered a subset of low- and high-affinity antibodies in different isotype and subclass immunoglobulin backbones and characterized the impact of these changes on binding, vibriocidal, agglutination, and motility inhibition activity. While the high-affinity antibodies bound similarly to O-antigen, irrespective of isotype, the low-affinity antibodies displayed significant avidity differences. Interestingly, despite exhibiting lower binding properties, variants derived from the low-affinity MAbs had comparable agglutination and motility inhibition properties to the potently binding antibodies, suggesting that how the MAb binds to the O-antigen may be critical to function. In addition, not only pentameric IgM and dimeric IgA, but also monomeric IgA, was remarkably more potent than their IgG counterparts at inhibiting motility. Finally, analyzing highly purified F(ab) versions of these antibodies, we show that LPS cross-linking is essential for motility inhibition.IMPORTANCE Immunity to the severe diarrheal disease cholera is largely mediated by lipopolysaccharide (LPS)-specific antibodies. However, the properties and protective mechanisms of functionally relevant antibodies have not been well defined. Here, we have engineered low and high-affinity LPS-specific antibodies in different immunoglobulin backbones in order to assess the impact of affinity, immunoglobulin isotype, and subclass on binding, vibriocidal, agglutination, and motility inhibition functional properties. Importantly, we found that affinity did not directly dictate functional potency since variants derived from the low-affinity MAbs had comparable agglutination and motility inhibition properties to the potently binding antibodies. This suggests that how the antibody binds sterically may be critical to function. In addition, not only pentameric IgM and dimeric IgA, but also monomeric IgA, was remarkably more potent than their IgG counterparts at inhibiting motility. Finally, analyzing highly purified F(ab) versions of these antibodies, we show that LPS cross-linking is essential for motility inhibition.
Collapse
Affiliation(s)
- Robert C Kauffman
- Division of Infectious Disease, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Oluwaseyi Adekunle
- Division of Infectious Disease, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Hanyi Yu
- Department of Computer Science, Emory University, Atlanta, Georgia, USA
| | - Alice Cho
- Division of Infectious Disease, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Lindsay E Nyhoff
- Division of Infectious Disease, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Meagan Kelly
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jason B Harris
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Taufiqur Rahman Bhuiyan
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Firdausi Qadri
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Stephen B Calderwood
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Richelle C Charles
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Edward T Ryan
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Jun Kong
- Department of Computer Science, Emory University, Atlanta, Georgia, USA
- Department of Mathematics and Statistics, Georgia State University, Atlanta, Georgia, USA
| | - Jens Wrammert
- Division of Infectious Disease, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
22
|
Hammond AJ, Binsker U, Aggarwal SD, Ortigoza MB, Loomis C, Weiser JN. Neuraminidase B controls neuraminidase A-dependent mucus production and evasion. PLoS Pathog 2021; 17:e1009158. [PMID: 33819312 PMCID: PMC8049478 DOI: 10.1371/journal.ppat.1009158] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 04/15/2021] [Accepted: 03/01/2021] [Indexed: 11/20/2022] Open
Abstract
Binding of Streptococcus pneumoniae (Spn) to nasal mucus leads to entrapment and clearance via mucociliary activity during colonization. To identify Spn factors allowing for evasion of mucus binding, we used a solid-phase adherence assay with immobilized mucus of human and murine origin. Spn bound large mucus particles through interactions with carbohydrate moieties. Mutants lacking neuraminidase A (nanA) or neuraminidase B (nanB) showed increased mucus binding that correlated with diminished removal of terminal sialic acid residues on bound mucus. The non-additive activity of the two enzymes raised the question why Spn expresses two neuraminidases and suggested they function in the same pathway. Transcriptional analysis demonstrated expression of nanA depends on the enzymatic function of NanB. As transcription of nanA is increased in the presence of sialic acid, our findings suggest that sialic acid liberated from host glycoconjugates by the secreted enzyme NanB induces the expression of the cell-associated enzyme NanA. The absence of detectable mucus desialylation in the nanA mutant, in which NanB is still expressed, suggests that NanA is responsible for the bulk of the modification of host glycoconjugates. Thus, our studies describe a functional role for NanB in sialic acid sensing in the host. The contribution of the neuraminidases in vivo was then assessed in a murine model of colonization. Although mucus-binding mutants showed an early advantage, this was only observed in a competitive infection, suggesting a complex role of neuraminidases. Histologic examination of the upper respiratory tract demonstrated that Spn stimulates mucus production in a neuraminidase-dependent manner. Thus, an increase production of mucus containing secretions appears to be balanced, in vivo, by decreased mucus binding. We postulate that through the combined activity of its neuraminidases, Spn evades mucus binding and mucociliary clearance, which is needed to counter neuraminidase-mediated stimulation of mucus secretions.
Collapse
Affiliation(s)
- Alexandria J. Hammond
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Ulrike Binsker
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Surya D. Aggarwal
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Mila Brum Ortigoza
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
- Department of Medicine, Division of Infectious Diseases, New York University School of Medicine, New York, New York, United States of America
| | - Cynthia Loomis
- Department of Pathology, New York University School of Medicine, New York, New York, United States of America
| | - Jeffrey N. Weiser
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| |
Collapse
|
23
|
Atyeo C, Alter G. The multifaceted roles of breast milk antibodies. Cell 2021; 184:1486-1499. [PMID: 33740451 DOI: 10.1016/j.cell.2021.02.031] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/07/2021] [Accepted: 02/12/2021] [Indexed: 12/20/2022]
Abstract
Neonates are born with an immature immune system and rely on the transfer of immunity from their mothers. Maternal antibodies are transferred via the placenta and breast milk. Although the role of placentally transferred immunoglobulin G (IgG) is established, less is known about the selection of antibodies transferred via breast milk and the mechanisms by which they provide protection against neonatal disease. Evidence suggests that breast milk antibodies play multifaceted roles, preventing infection and supporting the selection of commensals and tolerizing immunity during infancy. Here, we discuss emerging data related to the importance of breast milk antibodies in neonatal immunity and development.
Collapse
Affiliation(s)
- Caroline Atyeo
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; PhD Program in Virology, Division of Medical Sciences, Harvard University, Boston, MA, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA.
| |
Collapse
|
24
|
Ness S, Hilleringmann M. Streptococcus pneumoniae Type 1 Pilus - A Multifunctional Tool for Optimized Host Interaction. Front Microbiol 2021; 12:615924. [PMID: 33633703 PMCID: PMC7899983 DOI: 10.3389/fmicb.2021.615924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 01/20/2021] [Indexed: 11/13/2022] Open
Abstract
Streptococcus pneumoniae represents a major Gram-positive human pathogen causing bacterial pneumonia, otitis media, meningitis, and other invasive diseases. Several pneumococcal isolates show increasing resistance rates against antibacterial agents. A variety of virulence factors promote pneumococcal pathogenicity with varying importance in different stages of host infection. Virulence related hair-like structures ("pili") are complex, surface located protein arrays supporting proper host interaction. In the last two decades different types of pneumococcal pili have been identified: pilus-1 (P1) and pilus-2 (P2) are formed by the catalytic activity of sortases that covalently assemble secreted polypeptide pilin subunits in a defined order and finally anchor the resulting pilus in the peptidoglycan. Within the long pilus fiber the presence of intramolecular isopeptide bonds confer high stability to the sequentially arranged individual pilins. This mini review will focus on S. pneumoniae TIGR4 P1 molecular architecture, the subunits it builds and provides insights into P1 sortase-mediated assembly. The complex P1 architecture (anchor-/backbone-/tip-subunits) allows the specific interaction with various target structures facilitating different steps of colonization, invasion and spreading within the host. Optimized pilin subunit confirmation supports P1 function under physiological conditions. Finally, aspects of P1- host interplay are summarized, including recent insights into P1 mechanobiology, which have important implications for P1 mediated pathogenesis.
Collapse
Affiliation(s)
| | - Markus Hilleringmann
- FG Protein Biochemistry & Cellular Microbiology, Department of Applied Sciences and Mechatronics, Munich University of Applied Sciences, Munich, Germany
| |
Collapse
|