1
|
Sharma D, Lau E, Qin Y, Jee K, Rodrigues M, Guo C, Dinabandhu A, McIntyre E, Salman S, Hwang Y, Moshiri A, Semenza GL, Montaner S, Sodhi A. VEGF inhibition increases expression of HIF-regulated angiogenic genes by the RPE limiting the response of wet AMD eyes to aflibercept. Proc Natl Acad Sci U S A 2024; 121:e2322759121. [PMID: 39499641 PMCID: PMC11573522 DOI: 10.1073/pnas.2322759121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 09/17/2024] [Indexed: 11/07/2024] Open
Abstract
Neovascular age-related macular degeneration (nvAMD) is the leading cause of severe vision loss in the elderly in the developed world. While the introduction of therapies targeting vascular endothelial growth factor (VEGF) has provided the first opportunity to significantly improve vision in patients with nvAMD, many patients respond inadequately to current anti-VEGF therapies. It was recently demonstrated that expression of a second angiogenic mediator, angiopoietin-like 4 (ANGPTL4), synergizes with VEGF to promote choroidal neovascularization (CNV) in mice and correlates with reduced response to anti-VEGF therapy in patients with nvAMD. Here, we report that expression of ANGPTL4 in patients with nvAMD increases following treatment with anti-VEGF therapy and that this increase is dependent on accumulation of hypoxia-inducible factor (HIF)-1α in response to inhibition of VEGF/KDR signaling in the retinal pigment epithelium (RPE). We therefore explored HIF-1 inhibition with 32-134D, a recently developed pharmacologic HIF-inhibitor, for the treatment of nvAMD. 32-134D prevented the expression of both VEGF and ANGPTL4 and was at least as effective as aflibercept in treating CNV in mice. Moreover, by preventing the increase in HIF-1α accumulation in the RPE in response to anti-VEGF therapy, combining 32-134D with aflibercept was more effective than either drug alone for the treatment of CNV. Collectively, these results help explain why many patients with nvAMD respond inadequately to anti-VEGF therapy and suggest that the HIF inhibitor 32-134D will be an effective drug-alone or in combination with current anti-VEGF therapies-for the treatment of patients with this blinding disease.
Collapse
Affiliation(s)
- Deepti Sharma
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Evan Lau
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Yu Qin
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Eye Hospital of China Medical University, Key Lens Research Laboratory of Liaoning Province, Shenyang 110005, China
| | - Kathleen Jee
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Murilo Rodrigues
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Chuanyu Guo
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Aumreetam Dinabandhu
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Oncology and Diagnostic Sciences, School of Dentistry, Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201
| | - Emma McIntyre
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Shaima Salman
- Armstrong Oxygen Biology Research Center, Vascular Program, Institute for Cell Engineering, Department of Vascular Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Radiation, Oncology Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Yousang Hwang
- Armstrong Oxygen Biology Research Center, Vascular Program, Institute for Cell Engineering, Department of Vascular Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Radiation, Oncology Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Ala Moshiri
- Department of Ophthalmology and Vision Science, School of Medicine, University of California at Davis, Sacramento, CA 95817
| | - Gregg L Semenza
- Armstrong Oxygen Biology Research Center, Vascular Program, Institute for Cell Engineering, Department of Vascular Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Radiation, Oncology Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Silvia Montaner
- Department of Oncology and Diagnostic Sciences, School of Dentistry, Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201
| | - Akrit Sodhi
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| |
Collapse
|
2
|
Wolf J, Chemudupati T, Kumar A, Franco JA, Montague AA, Lin CC, Lee WS, Fisher AC, Goldberg JL, Mruthyunjaya P, Chang RT, Mahajan VB. Using Electronic Health Record Data to Determine the Safety of Aqueous Humor Liquid Biopsies for Molecular Analyses. OPHTHALMOLOGY SCIENCE 2024; 4:100517. [PMID: 38881613 PMCID: PMC11179400 DOI: 10.1016/j.xops.2024.100517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/20/2024] [Accepted: 03/13/2024] [Indexed: 06/18/2024]
Abstract
Purpose Knowing the surgical safety of anterior chamber liquid biopsies will support the increased use of proteomics and other molecular analyses to better understand disease mechanisms and therapeutic responses in patients and clinical trials. Manual review of operative notes from different surgeons and procedures in electronic health records (EHRs) is cumbersome, but free-text software tools could facilitate efficient searches. Design Retrospective case series. Participants A total of 1418 aqueous humor liquid biopsies from patients undergoing intraocular surgery. Methods Free-text EHR searches were performed using the Stanford Research Repository cohort discovery tool to identify complications associated with anterior chamber paracentesis and subsequent endophthalmitis. Complications of the surgery unrelated to the biopsy were not reviewed. Main Outcome Measures Biopsy-associated intraoperative complications and endophthalmitis. Results A total of 1418 aqueous humor liquid biopsies were performed by 17 experienced surgeons. EHR free-text searches were 100% error-free for surgical complications, >99% for endophthalmitis (<1% false positive), and >93.6% for anesthesia type, requiring manual review for only a limited number of cases. More than 85% of cases were performed under local anesthesia without ocular muscle akinesia. Although the most common indication was cataract (50.1%), other diagnoses included glaucoma, diabetic retinopathy, uveitis, age-related macular degeneration, endophthalmitis, retinitis pigmentosa, and uveal melanoma. A 50- to 100-μL sample was collected in all cases using either a 30-gauge needle or a blunt cannula via a paracentesis. The median follow-up was >7 months. There was only one minor complication (0.07%) identified: a case of a small tear in Descemet membrane without long-term sequelae. No other complications occurred, including other corneal injuries, lens or iris trauma, hyphema, or suprachoroidal hemorrhage. There was no case of postoperative endophthalmitis. Conclusions Anterior chamber liquid biopsy during intraocular surgery is a safe procedure and may be considered for large-scale collection of aqueous humor samples for molecular analyses. Free-text EHR searches are an efficient approach to reviewing intraoperative procedures. Financial Disclosures Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Julian Wolf
- Department of Ophthalmology, Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, California
- Molecular Surgery Laboratory, Stanford University, Palo Alto, California
- Faculty of Medicine, Eye Center, Medical Center, University of Freiburg, Freiburg, Germany
| | - Teja Chemudupati
- Department of Ophthalmology, Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, California
- Molecular Surgery Laboratory, Stanford University, Palo Alto, California
| | - Aarushi Kumar
- Department of Ophthalmology, Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, California
- Molecular Surgery Laboratory, Stanford University, Palo Alto, California
| | - Joel A Franco
- Department of Ophthalmology, Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, California
- Molecular Surgery Laboratory, Stanford University, Palo Alto, California
| | - Artis A Montague
- Molecular Surgery Laboratory, Stanford University, Palo Alto, California
| | - Charles C Lin
- Molecular Surgery Laboratory, Stanford University, Palo Alto, California
| | - Wen-Shin Lee
- Molecular Surgery Laboratory, Stanford University, Palo Alto, California
| | - A Caroline Fisher
- Molecular Surgery Laboratory, Stanford University, Palo Alto, California
| | - Jeffrey L Goldberg
- Molecular Surgery Laboratory, Stanford University, Palo Alto, California
| | - Prithvi Mruthyunjaya
- Molecular Surgery Laboratory, Stanford University, Palo Alto, California
- Department of Radiation Oncology, Stanford University, Palo Alto, California
| | - Robert T Chang
- Molecular Surgery Laboratory, Stanford University, Palo Alto, California
| | - Vinit B Mahajan
- Department of Ophthalmology, Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, California
- Molecular Surgery Laboratory, Stanford University, Palo Alto, California
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California
| |
Collapse
|
3
|
Kızılay ME, Şengün GD, Esen F, Durmuş E, Oğuz H, Aykut V. Factors affecting prognosis and need for anti-vascular endothelial growth factor injections in wet age-related macular degeneration. Int Ophthalmol 2024; 44:312. [PMID: 38963653 DOI: 10.1007/s10792-024-03243-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
PURPOSE To understand factors affecting visual prognosis and the number of intravitreal antivascular endothelial growth factor (anti-VEGF) injections needed to stabilize wet age-related macular degeneration (AMD). METHODS In this retrospective cohort, 119 treatment-naïve wet AMD patients were followed for two years. In patients with bilateral disease, the eye with worse best-corrected visual acuity (BCVA) or that received more intravitreal injections was recruited as the study eye. In all visits, BCVA was recorded, ophthalmological examination was performed including macular optical coherence tomography imaging. Twenty health status/lifestyle questions were asked to the patients via phone as potential risk factors. All patients received 3 loading doses of intravitreal bevacizumab injections and received repeat injections of aflibercept or ranibizumab when the eye had a new, active neovascular lesion. RESULTS Patients who took regular micronutrition had similar visual outcome and injection numbers compared to the ones who did not. Patients with bilateral disease needed less intravitreal injections compared to unilateral AMD patients (p = 0.016) and women on hormone replacement therapy (HRT) required less injections compared to the women who were not (p = 0.024). Female patients had a mean gain of 2.7 letters while male patients lost 3.8 letters (p = 0.038). Wet AMD started at an earlier age in smokers (p = 0.002). Patients with a better education level presented earlier with better BCVA (p = 0.037). CONCLUSION HRT and anti-VEGF injections to the fellow eye improved the prognosis of wet AMD, while male patients had slightly worse prognosis. Estrogen's protective effects and potential contribution in wet AMD needs further attention. Retrospectively registered: 2020/0622.
Collapse
Affiliation(s)
- Muhammet Emin Kızılay
- Department of Ophthalmology, Faculty of Medicine, Istanbul Medeniyet University, Kadikoy, Istanbul, Turkey
| | - Gözde Derin Şengün
- Department of Ophthalmology, Faculty of Medicine, Istanbul Medeniyet University, Kadikoy, Istanbul, Turkey
| | - Fehim Esen
- Department of Ophthalmology, Faculty of Medicine, Istanbul Medeniyet University, Kadikoy, Istanbul, Turkey
| | - Ebubekir Durmuş
- Department of Ophthalmology, Faculty of Medicine, Istanbul Medeniyet University, Kadikoy, Istanbul, Turkey
| | - Halit Oğuz
- Department of Ophthalmology, Faculty of Medicine, Istanbul Medeniyet University, Kadikoy, Istanbul, Turkey
| | - Veysel Aykut
- Department of Ophthalmology, Faculty of Medicine, Istanbul Medeniyet University, Kadikoy, Istanbul, Turkey.
- Department of Ophthalmology, Goztepe Prof. Dr. Suleyman Yalçin City Hospital, Istanbul Medeniyet University, Kadikoy, Istanbul, Turkey.
| |
Collapse
|
4
|
Chen X, Qin X, Bai W, Ren J, Yu Y, Nie H, Li X, Liu Z, Huang J, Li J, Yao J, Jiang Q. Kavain Alleviates Choroidal Neovascularization Via Decreasing the Activity of the HIF-1α/VEGF-A/VEGFR2 Signaling Pathway and Inhibiting Inflammation. Adv Pharm Bull 2024; 14:469-482. [PMID: 39206403 PMCID: PMC11347728 DOI: 10.34172/apb.2024.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/07/2024] [Accepted: 03/03/2024] [Indexed: 09/04/2024] Open
Abstract
Purpose Neovascular age-related macular degeneration (nAMD) is a prevalent cause of blindness in the elderly. Standard treatment includes anti-vascular endothelial growth factor (anti-VEGF) drugs, such as aflibercept. However, anti-VEGF drugs may have limited efficacy and cause drug resistance. This study explores whether Kavain, an anti-inflammatory molecule from Piper methysticum, can treat choroidal neovascularization (CNV). Methods Various experiments were conducted to assess the Kavain's toxicity. The impact of Kavain on in vitro cultured endothelial cells was examined through 5-ethynyl-20-deoxyuridine (EdU) assays, transwell migration assays, and tube formation assays. The therapeutic effects of Kavain on CNV were investigated using a laser-induced CNV mice model. To elucidate the mechanism of Kavain, network pharmacology analysis, molecular docking, and western blots were performed. Results Kavain exhibited no apparent toxicity both in vitro and in vivo. Kavain significantly decreased endothelial cell viability, proliferation, migration, and tube formation ability in a dose-dependent manner compared to the hypoxia groups (P<0.05). Kavain alleviated CNV in the laser-induced CNV mouse model compared to the control groups (P<0.05). These effects were statistically significantly enhanced in the Kavain plus aflibercept groups (P<0.05). Following Kavain administration, the expression levels of various inflammatory factors were markedly reduced in retinal pigment epithelium (RPE)/choroid complexes (P<0.05). Mechanistically, Kavain decreased the activity of the hypoxia-inducible factor 1α (HIF-1α)/VEGF-A/ VEGF receptor 2 (VEGFR2) signaling pathway. Conclusion Our study is the first to demonstrate Kavain's potential as a promising treatment for nAMD, owing to its dual effects of anti-inflammation and anti-angiogenesis.
Collapse
Affiliation(s)
- Xi Chen
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Department of Ophthalmology, Northern Jiangsu People’s Hospital, Yangzhou, 225001, China
| | - Xun Qin
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Wen Bai
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Junsong Ren
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yang Yu
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Huiling Nie
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xiumiao Li
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Zhangyu Liu
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jiayu Huang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Juxue Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Jin Yao
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Qin Jiang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
5
|
Winiarczyk M, Thiede B, Utheim TP, Kaarniranta K, Winiarczyk D, Michalak K, Mackiewicz J. Oxidative Stress, Persistent Inflammation and Blood Coagulation Alterations in Serum Proteome of Patients with Neovascular Age-Related Macular Degeneration. Life (Basel) 2024; 14:624. [PMID: 38792644 PMCID: PMC11122107 DOI: 10.3390/life14050624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/01/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Neovascular age-related macular degeneration (AMD) is a major cause of irreversible blindness in elderly populations in developed countries. AMD's etiopathology is multifactorial, with strong environmental and genetic components, but the exact molecular pathomechanisms underlying the disease are still unknown. In this study, we analyzed blood serum collected from 74 neovascular AMD patients and 58 healthy controls to identify proteins that may serve as potential biomarkers and expand our knowledge about the etiopathogenesis of the disease. The study revealed 17 differentially expressed proteins-11 up-regulated and 6 down-regulated-in neovascular AMD, which are involved in the biological processes previously linked with the disease-oxidative stress and persistent inflammation, impaired cellular transport, lipid metabolism and blood coagulation. In conclusion, the differences in the expressions of the proteins identified in this study may contribute to our understanding of the mechanisms underlying AMD and possibly serve in future as promising biomarkers.
Collapse
Affiliation(s)
- Mateusz Winiarczyk
- Department of Vitreoretinal Surgery, Medical University of Lublin, 20-079 Lublin, Poland;
| | - Bernd Thiede
- Department of Biosciences, University of Oslo, 0371 Oslo, Norway;
| | - Tor Paaske Utheim
- Department of Medical Biochemistry, Oslo University Hospital, 0372 Oslo, Norway;
- Department of Ophthalmology, Oslo University Hospital, 0450 Oslo, Norway
| | - Kai Kaarniranta
- Department of Ophthalmology, University of Eastern Finland, 70211 Kuopio, Finland;
- Department of Ophthalmology, Kuopio University Hospital, 70200 Kuopio, Finland
- Department of Molecular Genetics, University of Lodz, 90-136 Lodz, Poland
| | - Dagmara Winiarczyk
- Department and Clinic of Animal Internal Diseases, Faculty of Veterinary Medicine, University of Life Sciences, 20-612 Lublin, Poland;
| | - Katarzyna Michalak
- Department of Epizootiology and Clinic of Infectious Diseases, University of Life Sciences, 20-612 Lublin, Poland;
| | - Jerzy Mackiewicz
- Department of Vitreoretinal Surgery, Medical University of Lublin, 20-079 Lublin, Poland;
| |
Collapse
|
6
|
Wolf J, Franco JA, Yip R, Dabaja MZ, Velez G, Liu F, Bassuk AG, Mruthyunjaya P, Dufour A, Mahajan VB. Liquid Biopsy Proteomics in Ophthalmology. J Proteome Res 2024; 23:511-522. [PMID: 38171013 PMCID: PMC10845144 DOI: 10.1021/acs.jproteome.3c00756] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024]
Abstract
Minimally invasive liquid biopsies from the eye capture locally enriched fluids that contain thousands of proteins from highly specialized ocular cell types, presenting a promising alternative to solid tissue biopsies. The advantages of liquid biopsies include sampling the eye without causing irreversible functional damage, potentially better reflecting tissue heterogeneity, collecting samples in an outpatient setting, monitoring therapeutic response with sequential sampling, and even allowing examination of disease mechanisms at the cell level in living humans, an approach that we refer to as TEMPO (Tracing Expression of Multiple Protein Origins). Liquid biopsy proteomics has the potential to transform molecular diagnostics and prognostics and to assess disease mechanisms and personalized therapeutic strategies in individual patients. This review addresses opportunities, challenges, and future directions of high-resolution liquid biopsy proteomics in ophthalmology, with particular emphasis on the large-scale collection of high-quality samples, cutting edge proteomics technology, and artificial intelligence-supported data analysis.
Collapse
Affiliation(s)
- Julian Wolf
- Molecular
Surgery Laboratory, Stanford University, Palo Alto, California 94305, United States
- Department
of Ophthalmology, Byers Eye Institute, Stanford
University, Palo Alto, California 94303, United States
| | - Joel A. Franco
- Molecular
Surgery Laboratory, Stanford University, Palo Alto, California 94305, United States
- Department
of Ophthalmology, Byers Eye Institute, Stanford
University, Palo Alto, California 94303, United States
| | - Rui Yip
- Molecular
Surgery Laboratory, Stanford University, Palo Alto, California 94305, United States
- Department
of Ophthalmology, Byers Eye Institute, Stanford
University, Palo Alto, California 94303, United States
| | - Mohamed Ziad Dabaja
- Departments
of Physiology and Pharmacology & Biochemistry and Molecular Biology,
Cumming School of Medicine, University of
Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Gabriel Velez
- Molecular
Surgery Laboratory, Stanford University, Palo Alto, California 94305, United States
- Department
of Ophthalmology, Byers Eye Institute, Stanford
University, Palo Alto, California 94303, United States
| | - Fei Liu
- Department
of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Alexander G. Bassuk
- Department
of Pediatrics, University of Iowa, Iowa City, Iowa 52242, United States
| | - Prithvi Mruthyunjaya
- Department
of Ophthalmology, Byers Eye Institute, Stanford
University, Palo Alto, California 94303, United States
| | - Antoine Dufour
- Departments
of Physiology and Pharmacology & Biochemistry and Molecular Biology,
Cumming School of Medicine, University of
Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Vinit B. Mahajan
- Molecular
Surgery Laboratory, Stanford University, Palo Alto, California 94305, United States
- Department
of Ophthalmology, Byers Eye Institute, Stanford
University, Palo Alto, California 94303, United States
- Veterans
Affairs Palo Alto Health Care System, Palo Alto, California 94304, United States
| |
Collapse
|
7
|
Babapoor-Farrokhran S, Qin Y, Flores-Bellver M, Niu Y, Bhutto IA, Aparicio-Domingo S, Guo C, Rodrigues M, Domashevich T, Deshpande M, Megarity H, Chopde R, Eberhart CG, Canto-Soler V, Montaner S, Sodhi A. Pathologic vs. protective roles of hypoxia-inducible factor 1 in RPE and photoreceptors in wet vs. dry age-related macular degeneration. Proc Natl Acad Sci U S A 2023; 120:e2302845120. [PMID: 38055741 PMCID: PMC10723156 DOI: 10.1073/pnas.2302845120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 09/20/2023] [Indexed: 12/08/2023] Open
Abstract
It has previously been reported that antioxidant vitamins can help reduce the risk of vision loss associated with progression to advanced age-related macular degeneration (AMD), a leading cause of visual impairment among the elderly. Nonetheless, how oxidative stress contributes to the development of choroidal neovascularization (CNV) in some AMD patients and geographic atrophy (GA) in others is poorly understood. Here, we provide evidence demonstrating that oxidative stress cooperates with hypoxia to synergistically stimulate the accumulation of hypoxia-inducible factor (HIF)-1α in the retinal pigment epithelium (RPE), resulting in increased expression of the HIF-1-dependent angiogenic mediators that promote CNV. HIF-1 inhibition blocked the expression of these angiogenic mediators and prevented CNV development in an animal model of ocular oxidative stress, demonstrating the pathological role of HIF-1 in response to oxidative stress stimulation in neovascular AMD. While human-induced pluripotent stem cell (hiPSC)-derived RPE monolayers exposed to chemical oxidants resulted in disorganization and disruption of their normal architecture, RPE cells proved remarkably resistant to oxidative stress. Conversely, equivalent doses of chemical oxidants resulted in apoptosis of hiPSC-derived retinal photoreceptors. Pharmacologic inhibition of HIF-1 in the mouse retina enhanced-while HIF-1 augmentation reduced-photoreceptor apoptosis in two mouse models for oxidative stress, consistent with a protective role for HIF-1 in photoreceptors in patients with advanced dry AMD. Collectively, these results suggest that in patients with AMD, increased expression of HIF-1α in RPE exposed to oxidative stress promotes the development of CNV, but inadequate HIF-1α expression in photoreceptors contributes to the development of GA.
Collapse
Affiliation(s)
| | - Yu Qin
- Wilmer Eye Institute, Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, MD21287
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang110005, China
- Department of Ophthalmology, Eye Hospital of China Medical University, Shenyang110005, China
- Key Lens Research Laboratory of Liaoning Province, Shenyang110005, China
| | - Miguel Flores-Bellver
- CellSight Ocular Stem Cell and Regeneration Research Program, Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, University of Colorado School of Medicine, Aurora, CO80045
| | - Yueqi Niu
- Wilmer Eye Institute, Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, MD21287
| | - Imran A. Bhutto
- Wilmer Eye Institute, Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, MD21287
| | - Silvia Aparicio-Domingo
- CellSight Ocular Stem Cell and Regeneration Research Program, Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, University of Colorado School of Medicine, Aurora, CO80045
| | - Chuanyu Guo
- Wilmer Eye Institute, Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, MD21287
| | - Murilo Rodrigues
- Wilmer Eye Institute, Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, MD21287
| | - Timothy Domashevich
- CellSight Ocular Stem Cell and Regeneration Research Program, Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, University of Colorado School of Medicine, Aurora, CO80045
| | - Monika Deshpande
- Wilmer Eye Institute, Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, MD21287
| | - Haley Megarity
- Wilmer Eye Institute, Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, MD21287
| | - Rakesh Chopde
- Wilmer Eye Institute, Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, MD21287
| | - Charles G. Eberhart
- Wilmer Eye Institute, Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, MD21287
| | - Valeria Canto-Soler
- CellSight Ocular Stem Cell and Regeneration Research Program, Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, University of Colorado School of Medicine, Aurora, CO80045
| | - Silvia Montaner
- Department of Oncology and Diagnostic Sciences, Greenebaum Cancer Center, University of Maryland, Baltimore, MD21201
| | - Akrit Sodhi
- Wilmer Eye Institute, Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, MD21287
| |
Collapse
|
8
|
Cao X, Sanchez JC, Patel TP, Yang Z, Guo C, Malik D, Sopeyin A, Montaner S, Sodhi A. Aflibercept more effectively weans patients with neovascular age-related macular degeneration off therapy compared with bevacizumab. J Clin Invest 2023; 133:159125. [PMID: 36413411 PMCID: PMC9843049 DOI: 10.1172/jci159125] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUNDStudies assessing the efficacy of therapies for neovascular age-related macular degeneration (nvAMD) have demonstrated that aflibercept may have a longer treatment interval than its less-expensive alternative, bevacizumab. However, whether this benefit justifies the additional cost of aflibercept remains under debate. We have recently reported that a treat-and-extend-pause/monitor approach can be used to successfully wean 31% of patients with nvAMD off anti-VEGF therapy. Here, we examined whether the choice of therapy influences the outcomes of this approach.METHODSIn this retrospective analysis, 122 eyes of 106 patients with nvAMD underwent 3 consecutive monthly injections with either aflibercept (n = 70) or bevacizumab (n = 52), followed by a treat-and-extend protocol, in which the decision to extend the interval between treatments was based on visual acuity, clinical exam, and the presence or absence of fluid on optical coherence tomography. Eyes that remained stable 12 weeks from their prior treatment were given a 6-week trial of holding further treatment, followed by quarterly monitoring. Treatment was resumed for worsening vision, clinical exam, or optical coherence tomography findings.RESULTSAt the end of 1 year, eyes receiving bevacizumab had similar vision but required more injections (8.7 ± 0.3 treatments vs. 7.2 ± 0.3 treatments) compared with eyes receiving aflibercept. However, eyes treated with aflibercept were almost 3 times more likely to be weaned off treatment (43% vs. 15%) compared with eyes treated with bevacizumab at the end of 1 year.CONCLUSIONThese observations expose an advantage of aflibercept over bevacizumab and have important clinical implications for the selection of therapy for patients with nvAMD.FUNDINGThis work was supported by the National Eye Institute, NIH grants R01EY029750 and R01EY025705, Research to Prevent Blindness, the Alcon Young Investigator Award from the Alcon Research Institute, and the Branna and Irving Sisenwein Professorship in Ophthalmology.
Collapse
Affiliation(s)
- Xuan Cao
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jaron Castillo Sanchez
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tapan P. Patel
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Zhiyong Yang
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Chuanyu Guo
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Danyal Malik
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Anuoluwapo Sopeyin
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Silvia Montaner
- Department of Oncology and Diagnostic Sciences, School of Dentistry, Department of Pathology, School of Medicine, University of Maryland School of Dentistry, Baltimore, Maryland, USA; Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, Maryland, USA
| | - Akrit Sodhi
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
9
|
Recent Advances in Proteomics-Based Approaches to Studying Age-Related Macular Degeneration: A Systematic Review. Int J Mol Sci 2022; 23:ijms232314759. [PMID: 36499086 PMCID: PMC9735888 DOI: 10.3390/ijms232314759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Age-related macular degeneration (AMD) is a common ocular disease characterized by degeneration of the central area of the retina in the elderly population. Progression and response to treatment are influenced by genetic and non-genetic factors. Proteomics is a powerful tool to study, at the molecular level, the mechanisms underlying the progression of the disease, to identify new therapeutic targets and to establish biomarkers to monitor progression and treatment effectiveness. In this work, we systematically review the use of proteomics-based approaches for the study of the molecular mechanisms underlying the development of AMD, as well as the progression of the disease and on-treatment patient monitoring. The Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) reporting guidelines were followed. Proteomic approaches have identified key players in the onset of the disease, such as complement components and proteins involved in lipid metabolism and oxidative stress, but also in the progression to advanced stages, including factors related to extracellular matrix integrity and angiogenesis. Although anti-vascular endothelial growth factor (anti-VEGF)-based therapy has been crucial in the treatment of neovascular AMD, it is necessary to deepen our understanding of the underlying disease mechanisms to move forward to next-generation therapies for later-stage forms of this multifactorial disease.
Collapse
|
10
|
Choudhary M, Tayyari F, Handa JT, Malek G. Characterization and identification of measurable endpoints in a mouse model featuring age-related retinal pathologies: a platform to test therapies. J Transl Med 2022; 102:1132-1142. [PMID: 36775353 PMCID: PMC10041606 DOI: 10.1038/s41374-022-00795-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/13/2022] [Accepted: 04/18/2022] [Indexed: 11/09/2022] Open
Abstract
Apolipoprotein B100 (apoB100) is the structural protein of cholesterol carriers including low-density lipoproteins. It is a constituent of sub-retinal pigment epithelial (sub-RPE) deposits and pro-atherogenic plaques, hallmarks of early dry age-related macular degeneration (AMD), an ocular neurodegenerative blinding disease, and cardiovascular disease, respectively. Herein, we characterized the retinal pathology of transgenic mice expressing mouse apoB100 in order to catalog their functional and morphological ocular phenotypes as a function of age and establish measurable endpoints for their use as a mouse model to test potential therapies. ApoB100 mice were found to exhibit an age-related decline in retinal function, as measured by electroretinogram (ERG) recordings of their scotopic a-wave, scotopic b-wave; and c-wave amplitudes. ApoB100 mice also displayed a buildup of the cholesterol carrier, apolipoprotein E (apoE) within and below the supporting extracellular matrix, Bruch's membrane (BrM), along with BrM thickening, and accumulation of thin diffuse electron-dense sub-RPE deposits, the severity of which increased with age. Moreover, the combination of apoB100 and advanced age were found to be associated with RPE morphological changes and the presence of sub-retinal immune cells as visualized in RPE-choroid flatmounts. Finally, aged apoB100 mice showed higher levels of circulating and ocular pro-inflammatory cytokines, supporting a link between age and increased local and systemic inflammation. Collectively, the data support the use of aged apoB100 mice as a platform to evaluate potential therapies for retinal degeneration, specifically drugs intended to target removal of lipids from Bruch's membrane and/or alleviate ocular inflammation.
Collapse
Affiliation(s)
- Mayur Choudhary
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - Faryan Tayyari
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - James T Handa
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Goldis Malek
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA; Department of Pathology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
11
|
Qin Y, Dinabandhu A, Cao X, Sanchez JC, Jee K, Rodrigues M, Guo C, Zhang J, Vancel J, Menon D, Khan NS, Ma T, Tzeng SY, Daoud Y, Green JJ, Semenza GL, Montaner S, Sodhi A. ANGPTL4 influences the therapeutic response of patients with neovascular age-related macular degeneration by promoting choroidal neovascularization. JCI Insight 2022; 7:e157896. [PMID: 35653189 PMCID: PMC9310537 DOI: 10.1172/jci.insight.157896] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/18/2022] [Indexed: 01/14/2023] Open
Abstract
Most patients with neovascular age-related macular degeneration (nvAMD), the leading cause of severe vision loss in elderly US citizens, respond inadequately to current therapies targeting a single angiogenic mediator, vascular endothelial growth factor (VEGF). Here, we report that aqueous fluid levels of a second vasoactive mediator, angiopoietin-like 4 (ANGPTL4), can help predict the response of patients with nvAMD to anti-VEGF therapies. ANGPTL4 expression was higher in patients who required monthly treatment with anti-VEGF therapies compared with patients who could be effectively treated with less-frequent injections. We further demonstrate that ANGPTL4 acts synergistically with VEGF to promote the growth and leakage of choroidal neovascular (CNV) lesions in mice. Targeting ANGPTL4 expression was as effective as targeting VEGF expression for treating CNV in mice, while simultaneously targeting both was more effective than targeting either factor alone. To help translate these findings to patients, we used a soluble receptor that binds to both VEGF and ANGPTL4 and effectively inhibited the development of CNV lesions in mice. Our findings provide an assay that can help predict the response of patients with nvAMD to anti-VEGF monotherapy and suggest that therapies targeting both ANGPTL4 and VEGF will be a more effective approach for the treatment of this blinding disease.
Collapse
Affiliation(s)
- Yu Qin
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Ophthalmology, the Fourth Affiliated Hospital of China Medical University, Eye Hospital of China Medical University, Key Lens Research Laboratory of Liaoning Province, Shenyang, China
| | - Aumreetam Dinabandhu
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Oncology and Diagnostic Sciences, School of Dentistry, Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Maryland, USA
| | - Xuan Cao
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jaron Castillo Sanchez
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kathleen Jee
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Murilo Rodrigues
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Chuanyu Guo
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jing Zhang
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- State Key Laboratory of Ophthalmology, Clinical Research Center, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Jordan Vancel
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Deepak Menon
- Department of Oncology and Diagnostic Sciences, School of Dentistry, Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Maryland, USA
| | - Noore-Sabah Khan
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tao Ma
- Department of Oncology and Diagnostic Sciences, School of Dentistry, Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Maryland, USA
| | - Stephany Y. Tzeng
- Department of Biomedical Engineering, Institute for NanoBioTechnology, and
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yassine Daoud
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jordan J. Green
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Institute for NanoBioTechnology, and
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Gregg L. Semenza
- Department of Genetic Medicine
- Department of Pediatrics
- Department of Medicine
- Department of Oncology
- Department of Radiation Oncology, and
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Silvia Montaner
- Department of Oncology and Diagnostic Sciences, School of Dentistry, Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Maryland, USA
| | - Akrit Sodhi
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|