1
|
Vitantonio AT, Dimovasili C, Mortazavi F, Vaughan KL, Mattison JA, Rosene DL. Long-term calorie restriction reduces oxidative DNA damage to oligodendroglia and promotes homeostatic microglia in the aging monkey brain. Neurobiol Aging 2024; 141:1-13. [PMID: 38788462 DOI: 10.1016/j.neurobiolaging.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/29/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024]
Abstract
Calorie restriction (CR) is a robust intervention that can slow biological aging and extend lifespan. In the brain, terminally differentiated neurons and glia accumulate oxidative damage with age, reducing their optimal function. We investigated if CR could reduce oxidative DNA damage to white matter oligodendrocytes and microglia. This study utilized post-mortem brain tissue from rhesus monkeys that died after decades on a 30 % reduced calorie diet. We found that CR subjects had significantly fewer cells with oxidative damage within the corpus callosum and the cingulum bundle. Oligodendrocytes specifically showed the greatest response to CR with a robust reduction in DNA damage. Additionally, we observed alterations in microglia morphology with CR subjects having a higher proportion of ramified, homeostatic microglia and fewer pro-inflammatory, hypertrophic microglia relative to controls. Furthermore, we determined that the observed attenuation in damaged DNA occurs primarily within mitochondria. Overall, these data suggest that long-term CR can reduce oxidative DNA damage and offer a neuroprotective effect in a cell-type-specific manner in the aging monkey brain.
Collapse
Affiliation(s)
- Ana T Vitantonio
- Boston University Chobanian and Avedisian School of Medicine, Department of Pharmacology, Physiology, and Biophysics, 700 Albany St., Room 308, Boston, MA 02118, USA; Boston University Chobanian and Avedisian School of Medicine, Department of Anatomy & Neurobiology, 72 East Concord St, Room L1004, Boston, MA 02118, USA.
| | - Christina Dimovasili
- Boston University Chobanian and Avedisian School of Medicine, Department of Anatomy & Neurobiology, 72 East Concord St, Room L1004, Boston, MA 02118, USA
| | - Farzad Mortazavi
- Boston University Chobanian and Avedisian School of Medicine, Department of Anatomy & Neurobiology, 72 East Concord St, Room L1004, Boston, MA 02118, USA
| | - Kelli L Vaughan
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| | - Julie A Mattison
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| | - Douglas L Rosene
- Boston University Chobanian and Avedisian School of Medicine, Department of Anatomy & Neurobiology, 72 East Concord St, Room L1004, Boston, MA 02118, USA; Boston University, Center for Systems Neuroscience, 610 Commonwealth Ave., 7th Floor, Boston, MA 02215, USA
| |
Collapse
|
2
|
Duarte LF, Villalobos V, Farías MA, Rangel-Ramírez MA, González-Madrid E, Navarro AJ, Carbone-Schellman J, Domínguez A, Alvarez A, Riedel CA, Bueno SM, Kalergis AM, Cáceres M, González PA. Asymptomatic herpes simplex virus brain infection elicits cellular senescence phenotypes in the central nervous system of mice suffering multiple sclerosis-like disease. Commun Biol 2024; 7:811. [PMID: 38965360 PMCID: PMC11224417 DOI: 10.1038/s42003-024-06486-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/21/2024] [Indexed: 07/06/2024] Open
Abstract
Experimental autoimmune encephalomyelitis (EAE) is a demyelinating disease affecting the central nervous system (CNS) in animals that parallels several clinical and molecular traits of multiple sclerosis in humans. Herpes simplex virus type 1 (HSV-1) infection mainly causes cold sores and eye diseases, yet eventually, it can also reach the CNS, leading to acute encephalitis. Notably, a significant proportion of healthy individuals are likely to have asymptomatic HSV-1 brain infection with chronic brain inflammation due to persistent latent infection in neurons. Because cellular senescence is suggested as a potential factor contributing to the development of various neurodegenerative disorders, including multiple sclerosis, and viral infections may induce a premature senescence state in the CNS, potentially increasing susceptibility to such disorders, here we examine the presence of senescence-related markers in the brains and spinal cords of mice with asymptomatic HSV-1 brain infection, EAE, and both conditions. Across all scenarios, we find a significant increases of senescence biomarkers in the CNS with some differences depending on the analyzed group. Notably, some senescence biomarkers are exclusively observed in mice with the combined conditions. These results indicate that asymptomatic HSV-1 brain infection and EAE associate with a significant expression of senescence biomarkers in the CNS.
Collapse
MESH Headings
- Animals
- Cellular Senescence
- Mice
- Brain/virology
- Brain/pathology
- Brain/metabolism
- Multiple Sclerosis/virology
- Multiple Sclerosis/pathology
- Multiple Sclerosis/metabolism
- Herpesvirus 1, Human/physiology
- Herpesvirus 1, Human/pathogenicity
- Herpes Simplex/virology
- Herpes Simplex/pathology
- Female
- Mice, Inbred C57BL
- Encephalomyelitis, Autoimmune, Experimental/virology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Phenotype
- Central Nervous System/virology
- Central Nervous System/metabolism
- Central Nervous System/pathology
- Spinal Cord/virology
- Spinal Cord/metabolism
- Spinal Cord/pathology
- Biomarkers/metabolism
- Encephalitis, Herpes Simplex/virology
- Encephalitis, Herpes Simplex/pathology
- Encephalitis, Herpes Simplex/metabolism
Collapse
Affiliation(s)
- Luisa F Duarte
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Ciencias Biológicas, Facultad de Ciencias de La Vida, Universidad Andrés Bello, Santiago, Chile
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - Verónica Villalobos
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile
| | - Mónica A Farías
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ma Andreina Rangel-Ramírez
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Ciencias Biológicas, Facultad de Ciencias de La Vida, Universidad Andrés Bello, Santiago, Chile
| | - Enrique González-Madrid
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Ciencias Biológicas, Facultad de Ciencias de La Vida, Universidad Andrés Bello, Santiago, Chile
| | - Areli J Navarro
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Javier Carbone-Schellman
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Angélica Domínguez
- Departamento de Salud Pública, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alejandra Alvarez
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia A Riedel
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Ciencias Biológicas, Facultad de Ciencias de La Vida, Universidad Andrés Bello, Santiago, Chile
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mónica Cáceres
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile.
| | - Pablo A González
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
3
|
Yang JH, Miner AE, Fair A, Kinkel R, Graves JS. Senescence marker p16INK4a expression in patients with multiple sclerosis. Mult Scler Relat Disord 2024; 84:105498. [PMID: 38359693 DOI: 10.1016/j.msard.2024.105498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/18/2024] [Accepted: 02/10/2024] [Indexed: 02/17/2024]
Abstract
OBJECTIVES Telomere attrition is associated with disability accumulation and brain atrophy in multiple sclerosis (MS). Downstream of telomere attrition is cellular senescence. We sought to determine differences in the cellular senescence marker p16INK4a expression between MS and healthy control participants and the association of p16INK4a expression with MS disability and treatment exposure. METHODS Patients meeting diagnostic criteria for MS and healthy controls were recruited for a cross-sectional pilot study. RNA was extracted from peripheral blood mononuclear cells (PBMCs) and p16INK4a expression levels were measured using qRT PCR. Spearman correlation coefficients and regression models were applied to compare expression levels to chronological age, assess case control differences, and determine associations with clinical outcome measures. RESULTS Fifty-two participants with MS (67 % female, ages 25-70) and 38 healthy controls (66 % female, ages 23-65) were included. p16INK4a levels were not linearly correlated with chronological age in MS (rhos = -0.01, p = 0.94) or control participants (rhos = 0.02, p = 0.92). Higher median p16INK4a levels were observed in the >50-year age group for MS (0.25, IQR 0.14-0.35) vs. controls (0.12, IQR 0.05-0.15) and in this age group B cell depletion therapy was associated with lower expression levels. p16INK4a expression was not associated with any of the measured MS disability outcomes. DISCUSSION Caution is needed with using p16INK4a expression level from PBMCs as an aging biomarker in MS participants, given lack of correlation with chronological age or large associations with clinical outcomes.
Collapse
Affiliation(s)
- Jennifer H Yang
- Department of Neurosciences, University of California San Diego, San Diego, CA, USA; Rady Children's Hospital San Diego, San Diego, CA, USA.
| | - Annalise E Miner
- Department of Neurosciences, University of California San Diego, San Diego, CA, USA; Boston University, Boston, CA, USA
| | - Ashley Fair
- Department of Neurosciences, University of California San Diego, San Diego, CA, USA
| | - Revere Kinkel
- Department of Neurosciences, University of California San Diego, San Diego, CA, USA
| | - Jennifer S Graves
- Department of Neurosciences, University of California San Diego, San Diego, CA, USA; Rady Children's Hospital San Diego, San Diego, CA, USA
| |
Collapse
|
4
|
Rim C, You MJ, Nahm M, Kwon MS. Emerging role of senescent microglia in brain aging-related neurodegenerative diseases. Transl Neurodegener 2024; 13:10. [PMID: 38378788 PMCID: PMC10877780 DOI: 10.1186/s40035-024-00402-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/31/2024] [Indexed: 02/22/2024] Open
Abstract
Brain aging is a recognized risk factor for neurodegenerative diseases like Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis (ALS, Lou Gehrig's disease), but the intricate interplay between brain aging and the pathogenesis of these conditions remains inadequately understood. Cellular senescence is considered to contribute to cellular dysfunction and inflammaging. According to the threshold theory of senescent cell accumulation, the vulnerability to neurodegenerative diseases is associated with the rates of senescent cell generation and clearance within the brain. Given the role of microglia in eliminating senescent cells, the accumulation of senescent microglia may lead to the acceleration of brain aging, contributing to inflammaging and increased vulnerability to neurodegenerative diseases. In this review, we propose the idea that the senescence of microglia, which is notably vulnerable to aging, could potentially serve as a central catalyst in the progression of neurodegenerative diseases. The senescent microglia are emerging as a promising target for mitigating neurodegenerative diseases.
Collapse
Affiliation(s)
- Chan Rim
- Department of Pharmacology, Research Institute for Basic Medical Science, School of Medicine, CHA University, CHA Bio Complex, 335 Pangyo, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Min-Jung You
- Department of Pharmacology, Research Institute for Basic Medical Science, School of Medicine, CHA University, CHA Bio Complex, 335 Pangyo, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Minyeop Nahm
- Dementia Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Min-Soo Kwon
- Department of Pharmacology, Research Institute for Basic Medical Science, School of Medicine, CHA University, CHA Bio Complex, 335 Pangyo, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea.
- Brainimmunex Inc., 26 Yatap-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13522, Republic of Korea.
| |
Collapse
|
5
|
Melo Dos Santos LS, Trombetta-Lima M, Eggen B, Demaria M. Cellular senescence in brain aging and neurodegeneration. Ageing Res Rev 2024; 93:102141. [PMID: 38030088 DOI: 10.1016/j.arr.2023.102141] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/10/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023]
Abstract
Cellular senescence is a state of terminal cell cycle arrest associated with various macromolecular changes and a hypersecretory phenotype. In the brain, senescent cells naturally accumulate during aging and at sites of age-related pathologies. Here, we discuss the recent advances in understanding the accumulation of senescent cells in brain aging and disorders. Here we highlight the phenotypical heterogeneity of different senescent brain cell types, highlighting the potential importance of subtype-specific features for physiology and pathology. We provide a comprehensive overview of various senescent cell types in naturally occurring aging and the most common neurodegenerative disorders. Finally, we critically discuss the potential of adapting senotherapeutics to improve brain health and reduce pathological progression, addressing limitations and future directions for application and development.
Collapse
Affiliation(s)
- L S Melo Dos Santos
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen, Antonius Deusinglaan 1, 9715RA, Groningen, the Netherlands; School of Sciences, Health and Life, Pontifical Catholic University of Rio Grande do Sul, Ipiranga Avenue, 6681, 90619-900 Porto Alegre, Brazil
| | - M Trombetta-Lima
- Department of Biomedical Sciences of Cells and Systems, section Molecular Neurobiology, University Medical Center Groningen (UMCG), University of Groningen, Antonius Deusinglaan 1, 9715RA Groningen, the Netherlands; Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusiglaan 1, 9713AV Groningen, the Netherlands
| | - Bjl Eggen
- Department of Biomedical Sciences of Cells and Systems, section Molecular Neurobiology, University Medical Center Groningen (UMCG), University of Groningen, Antonius Deusinglaan 1, 9715RA Groningen, the Netherlands
| | - M Demaria
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen, Antonius Deusinglaan 1, 9715RA, Groningen, the Netherlands.
| |
Collapse
|
6
|
Tian Y, Milic J, Monasor LS, Chakraborty R, Wang S, Yuan Y, Asare Y, Behrends C, Tahirovic S, Bernhagen J. The COP9 signalosome reduces neuroinflammation and attenuates ischemic neuronal stress in organotypic brain slice culture model. Cell Mol Life Sci 2023; 80:262. [PMID: 37597109 PMCID: PMC10439869 DOI: 10.1007/s00018-023-04911-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/06/2023] [Accepted: 08/04/2023] [Indexed: 08/21/2023]
Abstract
The constitutive photomorphogenesis 9 (COP9) signalosome (CSN) is a deNEDDylase controlling ubiquitination activity of cullin-RING-E3 ligases (CRLs) and thus the levels of key cellular proteins. While the CSN and its catalytic subunit CSN5 have been extensively studied in cancer, its role in inflammatory and neurological diseases is less understood. Following verification that CSN5 is expressed in mouse and human brain, here we studied the role of the CSN in neuroinflammation and ischemic neuronal damage employing models of relevant brain-resident cell types, an ex vivo organotypic brain slice culture model, and the CRL NEDDylation state-modifying drugs MLN4924 and CSN5i-3, which mimic and inhibit, respectively, CSN5 deNEDDylase activity. Untargeted mass spectrometry-based proteomics revealed that MLN4924 and CSN5i-3 substantially alter the microglial proteome, including inflammation-related proteins. Applying these drugs and mimicking microglial and endothelial inflammation as well as ischemic neuronal stress by TNF and oxygen-glucose-deprivation/reoxygenation (OGD/RO) treatment, respectively, we could link CSN5/CSN-mediated cullin deNEDDylation to reduction of microglial inflammation, attenuated cerebral endothelial inflammation, improved barrier integrity, as well as protection from ischemic stress-induced neuronal cell death. Specifically, MLN4924 reduced phagocytic activity, motility, and inflammatory cytokine expression of microglial cells, and this was linked to inhibition of inflammation-induced NF-κB and Akt signaling. Inversely, Csn5 knockdown and CSN5i-3 increased NF-κB signaling. Moreover, MLN4924 abrogated TNF-induced NF-κB signaling in cerebral microvascular endothelial cells (hCMECs) and rescued hCMEC monolayers from OGD/RO-triggered barrier leakage, while CSN5i-3 exacerbated permeability. In an ex vivo organotypic brain slice model of ischemia/reperfusion stress, MLN4924 protected from neuronal death, while CSN5i-3 impaired neuronal survival. Neuronal damage was attributable to microglial activation and inflammatory cytokines, as indicated by microglial shape tracking and TNF-blocking experiments. Our results indicate a protective role of the CSN in neuroinflammation via brain-resident cell types involved in ischemic brain disease and implicate CSN activity-mimicking deNEDDylating drugs as potential therapeutics.
Collapse
Affiliation(s)
- Yuan Tian
- Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig-Maximilian-University (LMU) Munich, Feodor-Lynen-Straße 17, 81377, Munich, Germany
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Jelena Milic
- Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig-Maximilian-University (LMU) Munich, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | | | - Rahul Chakraborty
- Munich Cluster for Systems Neurology (SyNergy), Medical Faculty, LMU Munich, 81377, Munich, Germany
| | - Sijia Wang
- Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig-Maximilian-University (LMU) Munich, Feodor-Lynen-Straße 17, 81377, Munich, Germany
- Shenzhen People's Hospital, Shenzhen, Guangdong Province, China
| | - Yue Yuan
- Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig-Maximilian-University (LMU) Munich, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Yaw Asare
- Translational Stroke Research, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, LMU Munich, 81377, Munich, Germany
| | - Christian Behrends
- Munich Cluster for Systems Neurology (SyNergy), Medical Faculty, LMU Munich, 81377, Munich, Germany
| | - Sabina Tahirovic
- German Center for Neurodegenerative Diseases (DZNE), 81377, Munich, Germany
| | - Jürgen Bernhagen
- Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig-Maximilian-University (LMU) Munich, Feodor-Lynen-Straße 17, 81377, Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Medical Faculty, LMU Munich, 81377, Munich, Germany.
| |
Collapse
|
7
|
Yang Y, Song R, Gao Y, Yu H, Wang S. Regulatory mechanisms and therapeutic potential of JAB1 in neurological development and disorders. Mol Med 2023; 29:80. [PMID: 37365502 DOI: 10.1186/s10020-023-00675-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
c-Jun activation domain binding protein-1 (JAB1) is a multifunctional regulator that plays vital roles in diverse cellular processes. It regulates AP-1 transcriptional activity and also acts as the fifth component of the COP9 signalosome complex. While JAB1 is considered an oncoprotein that triggers tumor development, recent studies have shown that it also functions in neurological development and disorders. In this review, we summarize the general features of the JAB1 gene and protein, and present recent updates on the regulation of JAB1 expression. Moreover, we also highlight the functional roles and regulatory mechanisms of JAB1 in neurodevelopmental processes such as neuronal differentiation, synaptic morphogenesis, myelination, and hair cell development and in the pathogenesis of some neurological disorders such as Alzheimer's disease, multiple sclerosis, neuropathic pain, and peripheral nerve injury. Furthermore, current challenges and prospects are discussed, including updates on drug development targeting JAB1.
Collapse
Affiliation(s)
- Yu Yang
- Department of Psychiatry, Jining Medical University, Jianshe South Road No. 45, Jining, Shandong, China
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Jining Medical University, Jining, Shandong, China
| | - Ruying Song
- Department of Psychiatry, Jining Medical University, Jianshe South Road No. 45, Jining, Shandong, China
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Jining Medical University, Jining, Shandong, China
| | - Yiming Gao
- Department of Psychiatry, Jining Medical University, Jianshe South Road No. 45, Jining, Shandong, China
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Jining Medical University, Jining, Shandong, China
| | - Hao Yu
- Department of Psychiatry, Jining Medical University, Jianshe South Road No. 45, Jining, Shandong, China.
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Jining Medical University, Jining, Shandong, China.
| | - Shuai Wang
- Department of Psychiatry, Jining Medical University, Jianshe South Road No. 45, Jining, Shandong, China.
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Jining Medical University, Jining, Shandong, China.
| |
Collapse
|
8
|
Schlett JS, Mettang M, Skaf A, Schweizer P, Errerd A, Mulugeta EA, Hein TM, Tsesmelis K, Tsesmelis M, Büttner UFG, Wendt H, Abaei A, Rasche V, Prex V, Nespoli E, Alami NO, Tews D, Walther P, Yilmazer-Hanke D, Oswald F, Dimou L, Wirth T, Baumann B. NF-κB is a critical mediator of post-mitotic senescence in oligodendrocytes and subsequent white matter loss. Mol Neurodegener 2023; 18:24. [PMID: 37069623 PMCID: PMC10108549 DOI: 10.1186/s13024-023-00616-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 03/25/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND Inflammaging represents an accepted concept where the immune system shifts to a low-grade chronic pro-inflammatory state without overt infection upon aging. In the CNS, inflammaging is mainly driven by glia cells and associated with neurodegenerative processes. White matter degeneration (WMD), a well-known process in the aging brain, manifests in myelin loss finally resulting in motor, sensory and cognitive impairments. Oligodendrocytes (OL) are responsible for homeostasis and maintenance of the myelin sheaths, which is a complex and highly energy demanding process sensitizing these cells to metabolic, oxidative and other forms of stress. Yet, the immediate impact of chronic inflammatory stress like inflammaging on OL homeostasis, myelin maintenance and WMD remains open. METHODS To functionally analyze the role of IKK/NF-κB signaling in the regulation of myelin homeostasis and maintenance in the adult CNS, we established a conditional mouse model allowing NF-κB activation in mature myelinating oligodendrocytes. IKK2-CAPLP-CreERT2 mice were characterized by biochemical, immunohistochemical, ultrastructural and behavioral analyses. Transcriptome data from isolated, primary OLs and microglia cells were explored by in silico pathway analysis and validated by complementary molecular approaches. RESULTS Chronic NF-κB activation in mature OLs leads to aggravated neuroinflammatory conditions phenocopying brain inflammaging. As a consequence, IKK2-CAPLP-CreERT2 mice showed specific neurological deficits and impaired motoric learning. Upon aging, persistent NF-κB signaling promotes WMD in these mice as ultrastructural analysis revealed myelination deficits in the corpus callosum accompanied by impaired myelin protein expression. RNA-Seq analysis of primary oligodendrocytes and microglia cells uncovers gene expression signatures associated with activated stress responses and increased post mitotic cellular senescence (PoMiCS) which was confirmed by elevated senescence-associated β-galactosidase activity and SASP gene expression profile. We identified an elevated integrated stress response (ISR) characterized by phosphorylation of eIF2α as a relevant molecular mechanism which is able to affect translation of myelin proteins. CONCLUSIONS Our findings demonstrate an essential role of IKK/NF-κB signaling in mature, post-mitotic OLs in regulating stress-induced senescence in these cells. Moreover, our study identifies PoMICS as an important driving force of age-dependent WMD as well as of traumatic brain injury induced myelin defects.
Collapse
Affiliation(s)
- Judith Stefanie Schlett
- Institute of Physiological Chemistry, Ulm University, Albert- Einstein-Allee 11, 89081, Ulm, Germany
| | - Melanie Mettang
- Institute of Physiological Chemistry, Ulm University, Albert- Einstein-Allee 11, 89081, Ulm, Germany
| | - Aladdin Skaf
- Molecular and Translational Neuroscience, Department of Neurology, University Medical Center Ulm, 89081, Ulm, Germany
| | - Pavel Schweizer
- Institute of Physiological Chemistry, Ulm University, Albert- Einstein-Allee 11, 89081, Ulm, Germany
| | - Alina Errerd
- Institute of Physiological Chemistry, Ulm University, Albert- Einstein-Allee 11, 89081, Ulm, Germany
| | | | - Tabea Melissa Hein
- Institute of Physiological Chemistry, Ulm University, Albert- Einstein-Allee 11, 89081, Ulm, Germany
| | - Konstantinos Tsesmelis
- Institute of Physiological Chemistry, Ulm University, Albert- Einstein-Allee 11, 89081, Ulm, Germany
| | - Miltiadis Tsesmelis
- Institute of Physiological Chemistry, Ulm University, Albert- Einstein-Allee 11, 89081, Ulm, Germany
| | - Ulrike F G Büttner
- Institute of Physiological Chemistry, Ulm University, Albert- Einstein-Allee 11, 89081, Ulm, Germany
| | - Heinrich Wendt
- Institute of Physiological Chemistry, Ulm University, Albert- Einstein-Allee 11, 89081, Ulm, Germany
| | - Alireza Abaei
- Core Facility Small Animal Imaging (CF-SANI), Ulm University, 89081, Ulm, Germany
| | - Volker Rasche
- Core Facility Small Animal Imaging (CF-SANI), Ulm University, 89081, Ulm, Germany
| | - Vivien Prex
- Institute of Physiological Chemistry, Ulm University, Albert- Einstein-Allee 11, 89081, Ulm, Germany
| | - Ester Nespoli
- Molecular and Translational Neuroscience, Department of Neurology, University Medical Center Ulm, 89081, Ulm, Germany
| | - Najwa Ouali Alami
- Institute of Clinical Neuroanatomy, Ulm University, Helmholtzstraße 8/1, 89081, Ulm, Germany
| | - Daniel Tews
- Core Facility Extracellular Flux Analyzer, Ulm University Medical Center, 89081, Ulm, Germany
| | - Paul Walther
- Central Facility for Electron Microscopy, Ulm University, 89081, Ulm, Germany
| | - Deniz Yilmazer-Hanke
- Institute of Clinical Neuroanatomy, Ulm University, Helmholtzstraße 8/1, 89081, Ulm, Germany
| | - Franz Oswald
- Department of Internal Medicine I, Center for Internal Medicine, University Medical Center Ulm, 89081, Ulm, Germany
| | - Leda Dimou
- Molecular and Translational Neuroscience, Department of Neurology, University Medical Center Ulm, 89081, Ulm, Germany
| | - Thomas Wirth
- Institute of Physiological Chemistry, Ulm University, Albert- Einstein-Allee 11, 89081, Ulm, Germany
| | - Bernd Baumann
- Institute of Physiological Chemistry, Ulm University, Albert- Einstein-Allee 11, 89081, Ulm, Germany.
| |
Collapse
|
9
|
Simona MS, Alessandra V, Emanuela C, Elena T, Michela M, Fulvia G, Vincenzo S, Ilaria B, Federica M, Eloisa A, Massimo A, Maristella G. Evaluation of Oxidative Stress and Metabolic Profile in a Preclinical Kidney Transplantation Model According to Different Preservation Modalities. Int J Mol Sci 2023; 24:ijms24021029. [PMID: 36674540 PMCID: PMC9861050 DOI: 10.3390/ijms24021029] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/07/2023] Open
Abstract
This study addresses a joint nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR) spectroscopy approach to provide a platform for dynamic assessment of kidney viability and metabolism. On porcine kidney models, ROS production, oxidative damage kinetics, and metabolic changes occurring both during the period between organ retrieval and implantation and after kidney graft were examined. The 1H-NMR metabolic profile—valine, alanine, acetate, trimetylamine-N-oxide, glutathione, lactate, and the EPR oxidative stress—resulting from ischemia/reperfusion injury after preservation (8 h) by static cold storage (SCS) and ex vivo machine perfusion (HMP) methods were monitored. The functional recovery after transplantation (14 days) was evaluated by serum creatinine (SCr), oxidative stress (ROS), and damage (thiobarbituric-acid-reactive substances and protein carbonyl enzymatic) assessments. At 8 h of preservation storage, a significantly (p < 0.0001) higher ROS production was measured in the SCS vs. HMP group. Significantly higher concentration data (p < 0.05−0.0001) in HMP vs. SCS for all the monitored metabolites were found as well. The HMP group showed a better function recovery. The comparison of the areas under the SCr curves (AUC) returned a significantly smaller (−12.5 %) AUC in the HMP vs. SCS. EPR-ROS concentration (μmol·g−1) from bioptic kidney tissue samples were significantly lower in HMP vs. SCS. The same result was found for the NMR monitored metabolites: lactate: −59.76%, alanine: −43.17%; valine: −58.56%; and TMAO: −77.96%. No changes were observed in either group under light microscopy. In conclusion, a better and more rapid normalization of oxidative stress and functional recovery after transplantation were observed by HMP utilization.
Collapse
Affiliation(s)
- Mrakic-Sposta Simona
- Institute of Clinical Physiology, National Research Council (IFC-CNR), 20159 Milano, Italy
| | - Vezzoli Alessandra
- Institute of Clinical Physiology, National Research Council (IFC-CNR), 20159 Milano, Italy
- Correspondence: (V.A.); (G.M.)
| | - Cova Emanuela
- Department of Molecular Medicine, IRCCS Foundation Policlinico San Matteo, 27100 Pavia, Italy
| | - Ticcozzelli Elena
- Department of Surgery, IRCCS Foundation Policlinico San Matteo, 27100 Pavia, Italy
| | - Montorsi Michela
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Roma, Italy
| | - Greco Fulvia
- Institute of Chemical Sciences and Technologies “G. Natta”, National Research Council (SCITEC-CNR), 20133 Milan, Italy
| | - Sepe Vincenzo
- Department of Molecular Medicine, IRCCS Foundation Policlinico San Matteo, 27100 Pavia, Italy
| | - Benzoni Ilaria
- Department of Surgery, IRCCS Foundation Policlinico San Matteo, 27100 Pavia, Italy
| | - Meloni Federica
- Section of Pneumology, Department of Internal Medicine, University of Pavia, 27100 Pavia, Italy
| | - Arbustini Eloisa
- Centre for Inherited Cardiovascular Diseases, IRCCS Foundation Policlinico San Matteo, 27100 Pavia, Italy
| | - Abelli Massimo
- Department of Surgery, IRCCS Foundation Policlinico San Matteo, 27100 Pavia, Italy
| | - Gussoni Maristella
- Institute of Chemical Sciences and Technologies “G. Natta”, National Research Council (SCITEC-CNR), 20133 Milan, Italy
- Correspondence: (V.A.); (G.M.)
| |
Collapse
|
10
|
Wang L, Zeng X, Yang G, Liu G, Pan Y. Pan-cancer analyses of Jab1/COPS5 reveal oncogenic role and clinical outcome in human cancer. Heliyon 2022; 8:e12553. [PMID: 36643321 PMCID: PMC9834752 DOI: 10.1016/j.heliyon.2022.e12553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 11/30/2022] [Accepted: 12/15/2022] [Indexed: 12/25/2022] Open
Abstract
Jab1/COPS5 is associated with the progression of some cancers, however, its role in most cancers is still unclear.This study systematically explored the action and clinical application value of Jab1/COPS5 in different tumors based on large clinical data. We first identified by differential and survival analysis that Jab1/COPS5 was highly expressed as a high-risk gene in most cancers and was closely related to prognostic survival of patients based on the TCGA, GEO and CPTAC databases. Mutation analysis suggested that missense mutations were the main mutation type of Jab1. TMB and MSI were positively correlated with Jab1/COPS5 in most tumors, and patients with Jab1/COPS5 mutations had a poorer prognosis in prostate adenocarcinoma. By immune infiltration analysis, Jab1/COPS5 expression was positively correlated with the infiltration of CD8+ T cells in thymoma and uveal melanoma, and Jab1/COPS5 expression in testicular germ cell tumors was negatively correlated with the infiltration of cancer-associated fibroblasts. Correlation and enrichment analysis suggested that ARMC1, TCEB1 and UBE2V2 were positively correlated with Jab1/COPS5 expression and involved in multiple biological effects. In summary, this study systematically investigated the role of Jab1/COPS5 in different tumors, providing a theoretical basis for Jab1/COPS5 as a new biomarker in unresearched cancers and paving the way for targeted therapy and drug development.
Collapse
Affiliation(s)
- Liping Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Xiaojiao Zeng
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Gui Yang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Guohong Liu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China,Corresponding author.
| | - Yunbao Pan
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China,Corresponding author.
| |
Collapse
|
11
|
Cellular senescence in neuroinflammatory disease: new therapies for old cells? Trends Mol Med 2022; 28:850-863. [DOI: 10.1016/j.molmed.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 07/08/2022] [Accepted: 07/22/2022] [Indexed: 11/23/2022]
|
12
|
Malacrida S, De Lazzari F, Mrakic-Sposta S, Vezzoli A, Zordan MA, Bisaglia M, Menti GM, Meda N, Frighetto G, Bosco G, Dal Cappello T, Strapazzon G, Reggiani C, Gussoni M, Megighian A. Lifespan and ROS levels in different Drosophila melanogaster strains after 24 h hypoxia exposure. Biol Open 2022; 11:275522. [PMID: 35616023 PMCID: PMC9253781 DOI: 10.1242/bio.059386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/18/2022] [Indexed: 11/20/2022] Open
Abstract
During recent decades, model organisms such as Drosophila melanogaster have made it possible to study the effects of different environmental oxygen conditions on lifespan and oxidative stress. However, many studies have often yielded controversial results usually assigned to variations in Drosophila genetic background and differences in study design. In this study, we compared longevity and ROS levels in young, unmated males of three laboratory wild-type lines (Canton-S, Oregon-R and Berlin-K) and one mutant line (Sod1n1) as a positive control of redox imbalance, under both normoxic and hypoxic (2% oxygen for 24 h) conditions. Lifespan was used to detect the effects of hypoxic treatment and differences were analysed by means of Kaplan–Meier survival curves and log-rank tests. Electron paramagnetic resonance spectroscopy was used to measure ROS levels and analysis of variance was used to estimate the effects of hypoxic treatment and to assess ROS differences between strains. We observed that the genetic background is a relevant factor involved in D. melanogaster longevity and ROS levels. Indeed, as expected, in normoxia Sod1n1 are the shortest-lived, while the wild-type strains, despite a longer lifespan, show some differences, with the Canton-S line displaying the lowest mortality rate. After hypoxic stress these variances are amplified, with Berlin-K flies showing the highest mortality rate and most evident reduction of lifespan. Moreover, our analysis highlighted differential effects of hypoxia on redox balance/unbalance. Canton-S flies had the lowest increase of ROS level compared to all the other strains, confirming it to be the less sensitive to hypoxic stress. Sod1n1 flies displayed the highest ROS levels in normoxia and after hypoxia. These results should be used to further standardize future Drosophila research models designed to investigate genes and pathways that may be involved in lifespan and/or ROS, as well as comparative studies on specific mutant strains. Summary: In our study Drosophila melanogaster was used to evaluate the effects of different environmental oxygen conditions on survival and ROS levels in three wild-type and one mutant strain.
Collapse
Affiliation(s)
- Sandro Malacrida
- Institute of Mountain Emergency Medicine, Eurac Research, Via Ipazia 2, 39100 Bolzano, Italy
| | - Federica De Lazzari
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XY, UK.,Physiology, Genetics and Behaviour Unit, Department of Biology, University of Padova, 35131 Padova, Italy
| | - Simona Mrakic-Sposta
- Institute of Clinical Physiology, National Research Council (CNR), 20162 Milan, Italy
| | - Alessandra Vezzoli
- Institute of Clinical Physiology, National Research Council (CNR), 20162 Milan, Italy
| | - Mauro A Zordan
- Physiology, Genetics and Behaviour Unit, Department of Biology, University of Padova, 35131 Padova, Italy
| | - Marco Bisaglia
- Physiology, Genetics and Behaviour Unit, Department of Biology, University of Padova, 35131 Padova, Italy
| | - Giulio Maria Menti
- Department of Biomedical Sciences, University of Padova, via U. Bassi 58/B, 35131 Padova, Italy
| | - Nicola Meda
- Department of Biomedical Sciences, University of Padova, via U. Bassi 58/B, 35131 Padova, Italy
| | - Giovanni Frighetto
- Department of Integrative Biology and Physiology, University of California, 610 Charles Young Drive East, Los Angeles, CA 90095-7239, USA
| | - Gerardo Bosco
- Department of Biomedical Science, University of Padova, Via Marzolo 3, 35121 Padova, Italy
| | - Tomas Dal Cappello
- Institute of Mountain Emergency Medicine, Eurac Research, Via Ipazia 2, 39100 Bolzano, Italy
| | - Giacomo Strapazzon
- Institute of Mountain Emergency Medicine, Eurac Research, Via Ipazia 2, 39100 Bolzano, Italy
| | - Carlo Reggiani
- Department of Biomedical Science, University of Padova, Via Marzolo 3, 35121 Padova, Italy
| | - Maristella Gussoni
- Institute of Chemical Sciences and Technologies "G. Natta"-SCITEC, National Research Council, CNR-SCITEC, Via A. Corti 12, 20133 Milan, Italy
| | - Aram Megighian
- Department of Biology, University of Padova, via U. Bassi 58/B, 35131 Padova, Italy; Padova Neuroscience Center, University of Padova, via Orus 2/B, 35131 Padova, Italy
| |
Collapse
|