1
|
Li M, Li D, Wang HY, Zhang W, Zhuo Z, Guo H, Liu J, Zhuo Y, Tang J, He J, Miao L. Leptin decreases Th17/Treg ratio to facilitate neuroblastoma via inhibiting long-chain fatty acid catabolism in tumor cells. Oncoimmunology 2025; 14:2460281. [PMID: 39902867 PMCID: PMC11796542 DOI: 10.1080/2162402x.2025.2460281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/05/2025] [Accepted: 01/24/2025] [Indexed: 02/06/2025] Open
Abstract
The exploration of therapeutic targets in neuroblastoma (NB), which needs more attempts, can benefit patients with high-risk NB. Based on metabolomic and transcriptomic data in mediastinal NB tissues, we found that the content of long-chain acylcarnitine (LCAC) was increased and positively associated with leptin expression in advanced NB. Leptin over-expression forced naïve CD4+ T cells to differentiate into Treg cells instead of Th17 cells, which benefited from NB cell proliferation, migration, and drug resistance. Mechanically, leptin in NB cells blunted the activity of carnitine palmitoyltransferase 2 (CPT2), the key enzyme for LCAC catabolism, by inhibiting sirtuin 3-mediated CPT2 deacetylation, which depresses oxidative phosphorylation (OXPHOS) for energy supply and increases lactic acid (LA) production from glycolysis to modulate CD4+ T cell differentiation. These findings highlight that excess leptin contributes to lipid metabolism dysfunction in NB cells and subsequently misdirects CD4+ T cell differentiation in tumor micro-environment (TME), indicating that targeting leptin could be a therapeutic strategy for retarding NB progression.
Collapse
Affiliation(s)
- Meng Li
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Di Li
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Hai-Yun Wang
- Department of Pathology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, National Children’s Medical Center for South Central Region, Guangzhou, Guangdong, China
| | - Weixin Zhang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Zhenjian Zhuo
- Laboratory Animal Center, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Huiqin Guo
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Jiabin Liu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Yue Zhuo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jue Tang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Lei Miao
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Yi L, Shahatiaili A, Zhang L, He H, Chen L, Zhang Z, Gao F, Shao F, Gao Y, He J. USP13: A therapeutic target for combating tumorigenesis and antitumor therapy resistance. Int J Biol Macromol 2025; 304:140608. [PMID: 39900156 DOI: 10.1016/j.ijbiomac.2025.140608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/29/2025] [Accepted: 01/31/2025] [Indexed: 02/05/2025]
Abstract
Ubiquitin-specific peptidase 13 (USP13) has emerged as a key regulator of proteins critical to the hallmarks of cancer, playing an essential role in cellular regulation. This deubiquitinating enzyme, often overexpressed in malignancies, wields its molecular scissors precisely, snipping ubiquitin tags to rescue oncoproteins from degradation. Our review highlights the dual role of USP13 in cancer biology: while it predominantly fuels tumor growth and metastasis, USP13 occasionally functions as a tumor suppressor. USP13 is as a formidable factor in cancer therapy, fortifying tumors against an arsenal of treatments. It bolsters DNA repair mechanisms, ignites prosurvival autophagy, and even reprograms cell lineages to evade targeted therapies. However, USP13 is also a promising target in the treatment of cancer. We highlight burgeoning strategies to neutralize USP13, from small molecule inhibitors to innovative protein degraders, which may disarm cancer resistance mechanisms. We also offer suggestions for future USP13 research, emphasizing the need for structural insights and more potent inhibitors. This review highlights the critical role of USP13 in cancer and underscores its potential as a therapeutic target for advancing cancer treatment.
Collapse
Affiliation(s)
- Lina Yi
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China; Central Laboratory & Shenzhen Key Laboratory of Epigenetics and Precision Medicine for Cancers, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China; Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Akezhouli Shahatiaili
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lin Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Haihua He
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China; Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Leifeng Chen
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhen Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fushan Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fei Shao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Laboratory of Translational Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yibo Gao
- Central Laboratory & Shenzhen Key Laboratory of Epigenetics and Precision Medicine for Cancers, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China; Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Laboratory of Translational Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Institute of Cancer Research, Henan Academy of Innovations in Medical Science, Zhengzhou, China; Department of Gastroenterology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancers Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China.
| | - Jie He
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China; Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Laboratory of Translational Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Institute of Cancer Research, Henan Academy of Innovations in Medical Science, Zhengzhou, China.
| |
Collapse
|
3
|
Zhao L, Guo J, Xu S, Duan M, Liu B, Zhao H, Wang Y, Liu H, Yang Z, Yuan H, Jiang X, Jiang X. Abnormal changes in metabolites caused by m 6A methylation modification: The leading factors that induce the formation of immunosuppressive tumor microenvironment and their promising potential for clinical application. J Adv Res 2025; 70:159-186. [PMID: 38677545 DOI: 10.1016/j.jare.2024.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/14/2024] [Accepted: 04/14/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND N6-methyladenosine (m6A) RNA methylation modifications have been widely implicated in the metabolic reprogramming of various cell types within the tumor microenvironment (TME) and are essential for meeting the demands of cellular growth and maintaining tissue homeostasis, enabling cells to adapt to the specific conditions of the TME. An increasing number of research studies have focused on the role of m6A modifications in glucose, amino acid and lipid metabolism, revealing their capacity to induce aberrant changes in metabolite levels. These changes may in turn trigger oncogenic signaling pathways, leading to substantial alterations within the TME. Notably, certain metabolites, including lactate, succinate, fumarate, 2-hydroxyglutarate (2-HG), glutamate, glutamine, methionine, S-adenosylmethionine, fatty acids and cholesterol, exhibit pronounced deviations from normal levels. These deviations not only foster tumorigenesis, proliferation and angiogenesis but also give rise to an immunosuppressive TME, thereby facilitating immune evasion by the tumor. AIM OF REVIEW The primary objective of this review is to comprehensively discuss the regulatory role of m6A modifications in the aforementioned metabolites and their potential impact on the development of an immunosuppressive TME through metabolic alterations. KEY SCIENTIFIC CONCEPTS OF REVIEW This review aims to elaborate on the intricate networks governed by the m6A-metabolite-TME axis and underscores its pivotal role in tumor progression. Furthermore, we delve into the potential implications of the m6A-metabolite-TME axis for the development of novel and targeted therapeutic strategies in cancer research.
Collapse
Affiliation(s)
- Liang Zhao
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China; Department of Colorectal Anal Surgery, Shenyang Coloproctology Hospital, Shenyang 110002, China.
| | - Junchen Guo
- Department of Radiology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| | - Shasha Xu
- Department of Gastroendoscopy, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| | - Meiqi Duan
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| | - Baiming Liu
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| | - He Zhao
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| | - Yihan Wang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| | - Haiyang Liu
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| | - Zhi Yang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| | - Hexue Yuan
- Department of Colorectal Anal Surgery, Shenyang Coloproctology Hospital, Shenyang 110002, China.
| | - Xiaodi Jiang
- Department of Infectious Disease, Shengjing Hospital of China Medical University, Shenyang 110020, China.
| | - Xiaofeng Jiang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| |
Collapse
|
4
|
Ding X, Zhou Y, Qiu X, Xu X, Hu X, Qin J, Chen Y, Zhang M, Ke J, Liu Z, Zhou Y, Ding C, Shen N, Tian Z, Fu B, Wei H. RSAD2: A pathogenic interferon-stimulated gene at the maternal-fetal interface of patients with systemic lupus erythematosus. Cell Rep Med 2025; 6:101974. [PMID: 39983716 PMCID: PMC11970327 DOI: 10.1016/j.xcrm.2025.101974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 11/21/2024] [Accepted: 01/27/2025] [Indexed: 02/23/2025]
Abstract
Pregnancy disorders in patients with autoimmune diseases or viral infections are often associated with an excessive response of type I interferons. We identify radical S-adenosyl methionine domain containing 2 (RSAD2) as a pathogenic interferon-stimulated gene (ISG) associated with pregnancy complications in systemic lupus erythematosus (SLE). The increased expression of RSAD2 mainly occurs in macrophages and structural cell populations at the maternal-fetal interface of pregnant patients with SLE. The elevation of RSAD2 leads to the accumulation of diacylglycerol lipids in the placenta, impairing the necessary vascular development for the fetus. Depletion of Rsad2 in pregnant mice models exposed to type I interferon inducers significantly reduces lipid accumulation, vascular injury, and embryo development disorders. An RSAD2 inhibitor, L-chicoric acid (LCA), alleviates lipid accumulation and vascular damage, improving pregnancy outcomes in SLE-induced and spontaneous mouse models. This study proposes the potential of targeting RSAD2 to improve pregnancy outcomes in individuals with heightened type I interferon response.
Collapse
Affiliation(s)
- Xiaoyu Ding
- The National Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Yonggang Zhou
- The National Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Institute of Immunology, University of Science and Technology of China, Hefei, China; Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.
| | - Xiaofeng Qiu
- The National Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Xiuxiu Xu
- The National Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Xinyu Hu
- The National Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Jingkun Qin
- The National Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Yulan Chen
- Department of Rheumatology and Immunology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Min Zhang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jieqi Ke
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Zhenbang Liu
- The National Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Ying Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Chen Ding
- Institute of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Nan Shen
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
| | - Zhigang Tian
- The National Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Binqing Fu
- The National Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Institute of Immunology, University of Science and Technology of China, Hefei, China; Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.
| | - Haiming Wei
- The National Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Institute of Immunology, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
5
|
Majhi S, Roy P, Jo M, Liu J, Hurto R, Freddolino L, Marsh ENG. Viperin expression leads to downregulation of mitochondrial genes through misincorporation of ddhCTP by mitochondrial RNA polymerase. J Biol Chem 2025; 301:108359. [PMID: 40015636 DOI: 10.1016/j.jbc.2025.108359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/18/2025] [Accepted: 02/21/2025] [Indexed: 03/01/2025] Open
Abstract
Increasing lines of evidence link the expression of the interferon-stimulated gene RSAD2, encoding the antiviral enzyme, viperin, to autoimmune disease. Autoimmune diseases are characterized by chronic overproduction of cytokines such as interferons that upregulate the inflammatory response. Immune cells exposed to interferon selectively downregulate transcription of the mitochondrially encoded components of the oxidative phosphorylation system, which leads to mitochondria becoming dysfunctional and impairing their ability to produce ATP. But the mechanism by which downregulation occurs has remained unknown. Here we show that 3'-deoxy-3',4'-didehydrocytidine triphosphate (ddhCTP) which is synthesized by viperin suppresses mitochondrial transcription by causing premature chain termination when misincorporated by the mitochondrial RNA polymerase (POLRMT). We show that viperin expression in human cell lines downregulates mitochondrially encoded gene expression. A similar effect is observed across multiple cell lines when cells are exposed to ddhC, the precursor to ddhCTP. The pattern of gene downregulation fits well with a simple, quantitative model describing chain-termination. In vitro measurements with purified POLRMT demonstrate that ddhCTP competes effectively with CTP, leading to its misincorporation into RNA. These findings reveal a new molecular mechanism for mitochondrial transcriptional regulation that explains the reduction in mitochondrially-encoded transcript levels in response to chronic interferon stimulation, characteristic of inflammatory diseases.
Collapse
Affiliation(s)
- Srijoni Majhi
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Pronay Roy
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Minshik Jo
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Jiying Liu
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Rebecca Hurto
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Lydia Freddolino
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - E Neil G Marsh
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA; Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, USA.
| |
Collapse
|
6
|
Tasneem A, Singh M, Singh P, Dohare R. Multi-omics and in-silico approach reveals AURKA, AURKB, and RSAD2 as therapeutic biomarkers in OSCC progression. J Biomol Struct Dyn 2024:1-19. [PMID: 39639535 DOI: 10.1080/07391102.2024.2436556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/10/2024] [Indexed: 12/07/2024]
Abstract
Oral squamous cell carcinoma (OSCC), a prevalent form of head and neck cancer, poses a significant health challenge with limited improvements in patient outcomes over the years. Its development is influenced by a complex interplay of genetic alterations and environmental factors. While progress has been made in understanding the molecular mechanisms driving OSCC, pinpointing critical molecular markers and potential drug candidates has proven elusive. This study uniquely endeavors to conduct a meta-analysis to unveil therapeutic genes responsible for OSCC tumorigenesis. A multi-omics approach identified 951 differentially expressed genes (DEGs) associated with OSCC by analyzing microarray data from the NCBI GEO database. Weighted gene co-expression network analysis (WGCNA) detected a significant hub gene module comprising 805 genes, followed by the construction of protein-protein interaction network resulting in two small clusters of 7 gene-encoded proteins each. These clusters were filtered out based on top 10 significant pathways and gene ontology terms to identify six key target proteins with elevated expression levels, acting as potential therapeutic biomarkers for OSCC. Notably, RSAD2 emerged as a novel biomarker linked to OSCC progression. Furthermore, we identified potential inhibitors targeting AURKA, AURKB, and RSAD2 proteins and validated their interactions through molecular dynamics simulation studies. The simulations confirmed the stability of receptor-ligand complexes, suggesting ZINC03839281, ZINC04026167, and ZINC00718292 compounds hold promise as potential inhibitors for therapeutically targeting AURKA, AURKB, and RSAD2 as significant OSCC biomarkers. We recommend further comprehensive studies, including experimental and preclinical investigations, to validate the effectiveness of these lead compounds for OSCC treatment.
Collapse
Affiliation(s)
- Alvea Tasneem
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Manish Singh
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Prithvi Singh
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Ravins Dohare
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
7
|
Brattoli B, Mostafavi M, Lee T, Jung W, Ryu J, Park S, Park J, Pereira S, Shin S, Choi S, Kim H, Yoo D, Ali SM, Paeng K, Ock CY, Cho SI, Kim S. A universal immunohistochemistry analyzer for generalizing AI-driven assessment of immunohistochemistry across immunostains and cancer types. NPJ Precis Oncol 2024; 8:277. [PMID: 39627299 PMCID: PMC11615360 DOI: 10.1038/s41698-024-00770-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/22/2024] [Indexed: 12/06/2024] Open
Abstract
Immunohistochemistry (IHC) is the common companion diagnostics in targeted therapies. However, quantifying protein expressions in IHC images present a significant challenge, due to variability in manual scoring and inherent subjective interpretation. Deep learning (DL) offers a promising approach to address these issues, though current models require extensive training for each cancer and IHC type, limiting the practical application. We developed a Universal IHC (UIHC) analyzer, a DL-based tool that quantifies protein expression across different cancers and IHC types. This multi-cohort trained model outperformed conventional single-cohort models in analyzing unseen IHC images (Kappa score 0.578 vs. up to 0.509) and demonstrated consistent performance across varying positive staining cutoff values. In a discovery application, the UIHC model assigned higher tumor proportion scores to MET amplification cases, but not MET exon 14 splicing or other non-small cell lung cancer cases. This UIHC model represents a novel role for DL that further advances quantitative analysis of IHC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Sangjoon Choi
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hyojin Kim
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | | | | | | | | | | | - Seokhwi Kim
- Department of Pathology, Ajou University School of Medicine, Suwon, Republic of Korea.
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea.
| |
Collapse
|
8
|
Zankharia U, Yi Y, Lu F, Vladimirova O, Karisetty BC, Wikramasinghe J, Kossenkov A, Collman RG, Lieberman PM. HIV-induced RSAD2/Viperin supports sustained infection of monocyte-derived macrophages. J Virol 2024; 98:e0086324. [PMID: 39258908 PMCID: PMC11494996 DOI: 10.1128/jvi.00863-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/11/2024] [Indexed: 09/12/2024] Open
Abstract
HIV establishes long-term latent infection in memory CD4+ T cells and also establishes sustained long-term productive infection in macrophages, especially in the central nervous system (CNS). To better understand how HIV sustains infection in macrophages, we performed RNAseq analysis after infection of human monocyte-derived macrophages (MDMs) with the brain-derived HIV-1 strain YU2 and compared this with acute infection of CD4+ T cells. HIV infection in MDM and CD4+ T cells altered many gene transcripts, but with few overlaps between these different cell types. We found interferon pathways upregulated in both MDM and CD4+ T cells, but with different gene signatures. The interferon-stimulated gene RSAD2/Viperin was among the most upregulated genes following HIV infection in MDMs, but not in CD4+ T cells. RSAD2/Viperin was induced early after infection with various HIV strains, was sustained over time, and remained elevated in established MDM infection even if new rounds of infection were blocked by antiretroviral treatment. Immunofluorescence microscopy revealed that RSAD2/Viperin was induced in HIV-infected cells, as well as in some uninfected neighboring cells. Knockdown of RSAD2/Viperin following the establishment of infection in MDMs reduced the production of HIV transcripts and viral p24 antigen. This correlated with the reduction in the number of multinucleated giant cells, and changes in the HIV DNA and chromatin structure, including an increased DNA copy number and loss of nucleosomes and histone modifications at the long terminal repeat (LTR). RNAseq transcriptomic analysis of RSAD2/Viperin knockdown during HIV infection of MDMs revealed the activation of interferon alpha/beta and gamma pathways and the inactivation of Rho GTPase pathways. Taken together, these results suggest that RSAD2/Viperin supports the sustained infection in macrophages, potentially through mechanisms involving the alteration of the LTR chromatin structure and the interferon response. IMPORTANCE HIV infection of macrophages is a barrier to HIV cure and a source of neurocognitive pathology. We found that HIV induces RSAD2/Viperin during sustained infection of macrophages. While RSAD2/Viperin is an interferon-stimulated gene with known antiviral activity, we find RSAD2/Viperin promotes HIV infection in macrophages through multiple mechanisms, including interferon signaling. Therefore, RSAD2/Viperin may be a therapeutic target for the treatment of HIV-infected macrophages.
Collapse
Affiliation(s)
- Urvi Zankharia
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Yanjie Yi
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Fang Lu
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Olga Vladimirova
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Bhanu Chandra Karisetty
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Jayamanna Wikramasinghe
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Andrew Kossenkov
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Ronald G. Collman
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Paul M. Lieberman
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, Pennsylvania, USA
| |
Collapse
|
9
|
Singh MK, Han S, Kim S, Kang I. Targeting Lipid Metabolism in Cancer Stem Cells for Anticancer Treatment. Int J Mol Sci 2024; 25:11185. [PMID: 39456967 PMCID: PMC11508222 DOI: 10.3390/ijms252011185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Cancer stem cells (CSCs), or tumor-initiating cells (TICs), are small subpopulations (0.0001-0.1%) of cancer cells that are crucial for cancer relapse and therapy resistance. The elimination of each CSC is essential for achieving long-term remission. Metabolic reprogramming, particularly lipids, has a significant impact on drug efficacy by influencing drug diffusion, altering membrane permeability, modifying mitochondrial function, and adjusting the lipid composition within CSCs. These changes contribute to the development of chemoresistance in various cancers. The intricate relationship between lipid metabolism and drug resistance in CSCs is an emerging area of research, as different lipid species play essential roles in multiple stages of autophagy. However, the link between autophagy and lipid metabolism in the context of CSC regulation remains unclear. Understanding the interplay between autophagy and lipid reprogramming in CSCs could lead to the development of new approaches for enhancing therapies and reducing tumorigenicity in these cells. In this review, we explore the latest findings on lipid metabolism in CSCs, including the role of key regulatory enzymes, inhibitors, and the contribution of autophagy in maintaining lipid homeostasis. These recent findings may provide critical insights for identifying novel pharmacological targets for effective anticancer treatment.
Collapse
Affiliation(s)
- Manish Kumar Singh
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (S.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sunhee Han
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (S.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sungsoo Kim
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (S.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Insug Kang
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (S.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
10
|
Zhang F, Zhang Y, Zhou J, Cai Y, Li Z, Sun J, Xie Z, Hao G. Metabolic effects of quercetin on inflammatory and autoimmune responses in rheumatoid arthritis are mediated through the inhibition of JAK1/STAT3/HIF-1α signaling. Mol Med 2024; 30:170. [PMID: 39390367 PMCID: PMC11468292 DOI: 10.1186/s10020-024-00929-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/06/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Rheumatoid arthritis, a chronic autoimmune disease, is characterized by synovial hyperplasia and cartilage erosion. Here, we investigated the potential mechanism of action of quercetin, the main component of flavonoids, in treating rheumatoid arthritis. OBJECT To examine the anti-arthritic effects of quercetin and elucidate the specific mechanisms that differentiate its metabolic effects on autoimmune and inflammatory responses at the synovial cell level. METHODS We created a collagen-induced arthritis (CIA) model in Wistar rats, which were administered quercetin (50 or 100 mg/kg) continuously for four weeks via stomach perfusion. The arthritis score, histopathological staining, radiological assessment, and serum biochemical parameters were used to study the impact of quercetin on disease improvement. Additionally, immunofluorescence was employed to detect JAK1/STAT3/HIF-1α expression in rat joints. Moreover, the effects of quercetin (20, 40, and 80 µmol/L) on the properties and behavior of synovial fibroblasts were evaluated in an in vitro MH7A cell model using flow cytometry, CCK8, and transwell assays. Further, the mRNA expression levels of inflammatory cytokines IL1β, IL6, IL17, and TNFα were assessed by quantitative real-time PCR. Glucose, lactate, lactate dehydrogenase, pyruvate, pyruvate dehydrogenase, and adenosine triphosphate assay kits were employed to measure the metabolic effects of quercetin on synovial fibroblasts. Finally, immunoblotting was used to examine the impact of quercetin on the JAK1/STAT3/HIF-1α signaling pathway in synovial fibroblasts. RESULTS In vivo experiments confirmed the favorable effects of quercetin in CIA rats, including an improved arthritis score and reduced ankle bone destruction, in addition to a decrease in the pro-inflammatory cytokines IL-1β, IL-6, IL-17, and TNF-α in serum. Immunofluorescence verified that quercetin may ameliorate joint injury in rats with CIA by inhibiting JAK1/STAT3/HIF-1α signaling. Various in vitro experiments demonstrated that quercetin effectively inhibits IL-6-induced proliferation of MH7A cells and reduces their migratory and invasive behavior, while inducing apoptosis and reducing the expression of the pro-inflammatory cytokines IL1β, IL6, IL17, and TNFα at the mRNA level. Quercetin caused inhibition of glucose, lactate, lactate dehydrogenase, pyruvate, and adenosine triphosphate and increased pyruvate dehydrogenase expression in MH7A cells. It was further confirmed that quercetin may inhibit energy metabolism and inflammatory factor secretion in MH7A cells through JAK1/STAT3/HIF-1α signaling. CONCLUSIONS Quercetin's action on multiple target molecules and pathways makes it a promising treatment for cartilage injury in rheumatoid arthritis. By reducing joint inflammation, improving joint metabolic homeostasis, and decreasing immune system activation energy, quercetin inhibits the JAK1/STAT3/HIF-1α signaling pathway to improve disease status.
Collapse
Affiliation(s)
- FengQi Zhang
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Binwen Road 548, Binjiang District, Hangzhou, Zhejiang, 310053, China
| | - YiYang Zhang
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Binwen Road 548, Binjiang District, Hangzhou, Zhejiang, 310053, China
| | - JiaWang Zhou
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Binwen Road 548, Binjiang District, Hangzhou, Zhejiang, 310053, China
| | - Ying Cai
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Binwen Road 548, Binjiang District, Hangzhou, Zhejiang, 310053, China
| | - ZhiYu Li
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Zhejiang Chinese Medical University, Hangzhou, China
| | - Jing Sun
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - ZhiJun Xie
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Binwen Road 548, Binjiang District, Hangzhou, Zhejiang, 310053, China.
| | - GuiFeng Hao
- Center for General Practice Medicine, Department of Rheumatology and Immunology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China.
| |
Collapse
|
11
|
Jiang X, Sun S, Shi C, Liu K, Yang Y, Cao J, Gu J, Liu J. Rsad2 mediates Bisphenol A-induced actin cytoskeletal disruption in mouse spermatocytes. J Appl Toxicol 2024; 44:1478-1488. [PMID: 38828519 DOI: 10.1002/jat.4649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/03/2024] [Accepted: 05/17/2024] [Indexed: 06/05/2024]
Abstract
Bisphenol A (BPA) is widely exposed in populations worldwide and has negative effects on spermatogenesis both in animals and humans. The homeostasis of the actin cytoskeleton in the spermatogenic epithelium is crucial for spermatogenesis. Actin cytoskeleton destruction in the seminiferous epithelium is one of the important reasons for BPA-induced spermatogenesis disorder. However, the underlying molecular mechanisms remain largely unexplored. Herein, we explored the role and mechanism of Rsad2, an interferon-stimulated gene in BPA-induced actin cytoskeleton disorder in mouse GC-2 spermatocyte cell lines. After BPA exposure, the actin cytoskeleton was dramatically disrupted and the cell morphology was markedly altered accompanied by a significant increase in Rsad2 expression both in mRNA and protein levels in GC-2 cells. Furthermore, the phalloidin intensities and cell morphology were restored obviously when interfering with the expression of Rsad2 in BPA-treated GC-2 cells. In addition, we observed a significant decrease in intracellular ATP levels after BPA treatment, while the ATP level was obviously upregulated when knocking down the expression of Rsad2 in BPA-treated cells compared to cells treated with BPA alone. Moreover, Rsad2 relocated to mitochondria after BPA exposure in GC-2 cells. BPA promoted Rsad2 expression by activating type I IFN-signaling in GC-2 cells. In summary, Rsad2 mediated BPA-induced actin cytoskeletal disruption in GC-2 cells, which provided data to reveal the mechanism of BPA-induced male reproductive toxicity.
Collapse
Affiliation(s)
- Xiao Jiang
- State Key Lab of Trauma and Chemical Poisoning, Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing, China
| | - Shengqi Sun
- State Key Lab of Trauma and Chemical Poisoning, Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing, China
- Department of Occupational and Environmental Health, School of Public Health, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Chaofeng Shi
- State Key Lab of Trauma and Chemical Poisoning, Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing, China
| | - Kangle Liu
- State Key Lab of Trauma and Chemical Poisoning, Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing, China
| | - Yurui Yang
- State Key Lab of Trauma and Chemical Poisoning, Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing, China
| | - Jia Cao
- State Key Lab of Trauma and Chemical Poisoning, Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing, China
| | - Jing Gu
- State Key Lab of Trauma and Chemical Poisoning, Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing, China
| | - Jinyi Liu
- State Key Lab of Trauma and Chemical Poisoning, Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing, China
| |
Collapse
|
12
|
Chu X, Tian W, Ning J, Xiao G, Zhou Y, Wang Z, Zhai Z, Tanzhu G, Yang J, Zhou R. Cancer stem cells: advances in knowledge and implications for cancer therapy. Signal Transduct Target Ther 2024; 9:170. [PMID: 38965243 PMCID: PMC11224386 DOI: 10.1038/s41392-024-01851-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/27/2024] [Accepted: 04/28/2024] [Indexed: 07/06/2024] Open
Abstract
Cancer stem cells (CSCs), a small subset of cells in tumors that are characterized by self-renewal and continuous proliferation, lead to tumorigenesis, metastasis, and maintain tumor heterogeneity. Cancer continues to be a significant global disease burden. In the past, surgery, radiotherapy, and chemotherapy were the main cancer treatments. The technology of cancer treatments continues to develop and advance, and the emergence of targeted therapy, and immunotherapy provides more options for patients to a certain extent. However, the limitations of efficacy and treatment resistance are still inevitable. Our review begins with a brief introduction of the historical discoveries, original hypotheses, and pathways that regulate CSCs, such as WNT/β-Catenin, hedgehog, Notch, NF-κB, JAK/STAT, TGF-β, PI3K/AKT, PPAR pathway, and their crosstalk. We focus on the role of CSCs in various therapeutic outcomes and resistance, including how the treatments affect the content of CSCs and the alteration of related molecules, CSCs-mediated therapeutic resistance, and the clinical value of targeting CSCs in patients with refractory, progressed or advanced tumors. In summary, CSCs affect therapeutic efficacy, and the treatment method of targeting CSCs is still difficult to determine. Clarifying regulatory mechanisms and targeting biomarkers of CSCs is currently the mainstream idea.
Collapse
Affiliation(s)
- Xianjing Chu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Wentao Tian
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jiaoyang Ning
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Gang Xiao
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yunqi Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ziqi Wang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zhuofan Zhai
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Guilong Tanzhu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Jie Yang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Rongrong Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China.
| |
Collapse
|
13
|
Chen S, Ye J, Lin Y, Chen W, Huang S, Yang Q, Qian H, Gao S, Hua C. Crucial Roles of RSAD2/viperin in Immunomodulation, Mitochondrial Metabolism and Autoimmune Diseases. Inflammation 2024:10.1007/s10753-024-02076-5. [PMID: 38909344 DOI: 10.1007/s10753-024-02076-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/22/2024] [Accepted: 06/03/2024] [Indexed: 06/24/2024]
Abstract
Autoimmune diseases are typically characterized by aberrant activation of immune system that leads to excessive inflammatory reactions and tissue damage. Nevertheless, precise targeted and efficient therapies are limited. Thus, studies into novel therapeutic targets for the management of autoimmune diseases are urgently needed. Radical S-adenosyl methionine domain-containing 2 (RSAD2) is an interferon-stimulated gene (ISG) renowned for the antiviral properties of the protein it encodes, named viperin. An increasing number of studies have underscored the new roles of RSAD2/viperin in immunomodulation and mitochondrial metabolism. Previous studies have shown that there is a complex interplay between RSAD2/vipeirn and mitochondria and that binding of the iron-sulfur (Fe-S) cluster is necessary for the involvement of viperin in mitochondrial metabolism. Viperin influences the proliferation and development of immune cells as well as inflammation via different signaling pathways. However, the function of RSAD2/viperin varies in different studies and a comprehensive overview of this emerging theme is lacking. This review will describe the characteristics of RSAD2/viperin, decipher its function in immunometabolic processes, and clarify the crosstalk between RSAD2/viperin and mitochondria. Furthermore, we emphasize the crucial roles of RSAD2 in autoimmune diseases and its potential application value.
Collapse
Affiliation(s)
- Siyan Chen
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Jiani Ye
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Yinfang Lin
- School of the 1st Clinical Medical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Wenxiu Chen
- School of the 1st Clinical Medical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Shenghao Huang
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Qianru Yang
- School of the 1st Clinical Medical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Hengrong Qian
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Sheng Gao
- Laboratory Animal Center, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China.
| | - Chunyan Hua
- School of Basic Medical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China.
| |
Collapse
|
14
|
Liang Y, Liang Y, Wang Q, Li Q, Huang Y, Li R, Pan X, Lie L, Xu H, Han Z, Liu H, Wen Q, Zhou C, Ma L, Zhou X. Viperin inhibits interferon-γ production to promote Mycobacterium tuberculosis survival by disrupting TBK1-IKKε-IRF3-axis and JAK-STAT signaling. Inflamm Res 2024; 73:897-913. [PMID: 38625657 PMCID: PMC11106103 DOI: 10.1007/s00011-024-01873-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/27/2023] [Accepted: 03/13/2024] [Indexed: 04/17/2024] Open
Abstract
OBJECTIVES AND DESIGN As an interferon-inducible protein, Viperin has broad-spectrum antiviral effects and regulation of host immune responses. We aim to investigate how Viperin regulates interferon-γ (IFN-γ) production in macrophages to control Mycobacterium tuberculosis (Mtb) infection. METHODS We use Viperin deficient bone-marrow-derived macrophage (BMDM) to investigate the effects and machines of Viperin on Mtb infection. RESULTS Viperin inhibited IFN-γ production in macrophages and in the lung of mice to promote Mtb survival. Further insight into the mechanisms of Viperin-mediated regulation of IFN-γ production revealed the role of TANK-binding kinase 1 (TBK1), the TAK1-dependent inhibition of NF-kappa B kinase-epsilon (IKKε), and interferon regulatory factor 3 (IRF3). Inhibition of the TBK1-IKKε-IRF3 axis restored IFN-γ production reduced by Viperin knockout in BMDM and suppressed intracellular Mtb survival. Moreover, Viperin deficiency activated the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling pathway, which promoted IFN-γ production and inhibited Mtb infection in BMDM. Additionally, a combination of the anti-TB drug INH treatment in the absence of Viperin resulted in further IFN-γ production and anti-TB effect. CONCLUSIONS This study highlights the involvement of TBK1-IKKε-IRF3 axis and JAK-STAT signaling pathways in Viperin-suppressed IFN-γ production in Mtb infected macrophages, and identifies a novel mechanism of Viperin on negatively regulating host immune response to Mtb infection.
Collapse
Affiliation(s)
- Yao Liang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
- Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangzhou, China
| | - Yun Liang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
- Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangzhou, China
| | - Qi Wang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
- Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangzhou, China
| | - Qianna Li
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
- Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangzhou, China
| | - Yingqi Huang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
- Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangzhou, China
| | - Rong Li
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
- Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangzhou, China
| | - Xiaoxin Pan
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
- Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangzhou, China
| | - Linmiao Lie
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
- Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangzhou, China
| | - Hui Xu
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
- Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangzhou, China
| | - Zhenyu Han
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
- Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangzhou, China
| | - Honglin Liu
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
- Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangzhou, China
| | - Qian Wen
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
- Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangzhou, China
| | - Chaoying Zhou
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
- Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangzhou, China
| | - Li Ma
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China.
- Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangzhou, China.
| | - Xinying Zhou
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China.
- Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangzhou, China.
| |
Collapse
|
15
|
Butt DQ, Harun MH, Che Jalil NA, Shamsuddin SH, Jaafar S, Ahmad B. Protumorigenic Interferon-Stimulated Genes in Cancer: A Comprehensive Review. Cureus 2024; 16:e63216. [PMID: 39070493 PMCID: PMC11279184 DOI: 10.7759/cureus.63216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2024] [Indexed: 07/30/2024] Open
Abstract
Interferon-stimulated genes (ISGs), whose production is triggered by interferons, are known to defend the host from pathogenic and cancer-specific antigens, one of which is by inducing apoptosis in infected or mutated cells. It has been reported recently that specific ISGs aid cancer cells in evading immunosurveillance and inflammatory cells by inhibiting the apoptosis process. This report reviewed four apoptosis-regulating ISG proteins: interferon-stimulated gene 15 (ISG15), interferon alpha-inducible protein 27 (IFI27), interferon alpha-inducible protein 6 (IFI6), and radical S-adenosyl methionine domain containing 2 (RSAD2), demonstrating anti-apoptosis function, and considered them protumorigenic.
Collapse
Affiliation(s)
- Danial Qasim Butt
- Oral Medicine and Oral Pathology Unit, School of Dental Sciences, Universiti Sains Malaysia, Kubang Kerian, MYS
| | - Masitah Hayati Harun
- Oral Medicine and Oral Pathology Unit, School of Dental Sciences, Universiti Sains Malaysia, Kubang Kerian, MYS
| | - Nur Asyilla Che Jalil
- Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, MYS
| | | | - Saidi Jaafar
- Basic Sciences Unit, School of Dental Sciences, Universiti Sains Malaysia, Kubang Kerian, MYS
| | - Basaruddin Ahmad
- Biostatistics Unit, School of Dental Sciences, Universiti Sains Malaysia, Kubang Kerian, MYS
| |
Collapse
|
16
|
Bajinka O, Ouedraogo SY, Golubnitschaja O, Li N, Zhan X. Energy metabolism as the hub of advanced non-small cell lung cancer management: a comprehensive view in the framework of predictive, preventive, and personalized medicine. EPMA J 2024; 15:289-319. [PMID: 38841622 PMCID: PMC11147999 DOI: 10.1007/s13167-024-00357-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 03/20/2024] [Indexed: 06/07/2024]
Abstract
Energy metabolism is a hub of governing all processes at cellular and organismal levels such as, on one hand, reparable vs. irreparable cell damage, cell fate (proliferation, survival, apoptosis, malignant transformation etc.), and, on the other hand, carcinogenesis, tumor development, progression and metastazing versus anti-cancer protection and cure. The orchestrator is the mitochondria who produce, store and invest energy, conduct intracellular and systemically relevant signals decisive for internal and environmental stress adaptation, and coordinate corresponding processes at cellular and organismal levels. Consequently, the quality of mitochondrial health and homeostasis is a reliable target for health risk assessment at the stage of reversible damage to the health followed by cost-effective personalized protection against health-to-disease transition as well as for targeted protection against the disease progression (secondary care of cancer patients against growing primary tumors and metastatic disease). The energy reprogramming of non-small cell lung cancer (NSCLC) attracts particular attention as clinically relevant and instrumental for the paradigm change from reactive medical services to predictive, preventive and personalized medicine (3PM). This article provides a detailed overview towards mechanisms and biological pathways involving metabolic reprogramming (MR) with respect to inhibiting the synthesis of biomolecules and blocking common NSCLC metabolic pathways as anti-NSCLC therapeutic strategies. For instance, mitophagy recycles macromolecules to yield mitochondrial substrates for energy homeostasis and nucleotide synthesis. Histone modification and DNA methylation can predict the onset of diseases, and plasma C7 analysis is an efficient medical service potentially resulting in an optimized healthcare economy in corresponding areas. The MEMP scoring provides the guidance for immunotherapy, prognostic assessment, and anti-cancer drug development. Metabolite sensing mechanisms of nutrients and their derivatives are potential MR-related therapy in NSCLC. Moreover, miR-495-3p reprogramming of sphingolipid rheostat by targeting Sphk1, 22/FOXM1 axis regulation, and A2 receptor antagonist are highly promising therapy strategies. TFEB as a biomarker in predicting immune checkpoint blockade and redox-related lncRNA prognostic signature (redox-LPS) are considered reliable predictive approaches. Finally, exemplified in this article metabolic phenotyping is instrumental for innovative population screening, health risk assessment, predictive multi-level diagnostics, targeted prevention, and treatment algorithms tailored to personalized patient profiles-all are essential pillars in the paradigm change from reactive medical services to 3PM approach in overall management of lung cancers. This article highlights the 3PM relevant innovation focused on energy metabolism as the hub to advance NSCLC management benefiting vulnerable subpopulations, affected patients, and healthcare at large. Supplementary Information The online version contains supplementary material available at 10.1007/s13167-024-00357-5.
Collapse
Affiliation(s)
- Ousman Bajinka
- Medical Science and Technology Innovation Center, Shandong Provincial Key Medical and Health Laboratory of Ovarian Cancer Multiomics, & Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| | - Serge Yannick Ouedraogo
- Medical Science and Technology Innovation Center, Shandong Provincial Key Medical and Health Laboratory of Ovarian Cancer Multiomics, & Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| | - Olga Golubnitschaja
- Predictive, Preventive and Personalised (3P) Medicine, University Hospital Bonn, Venusberg Campus 1, Rheinische Friedrich-Wilhelms-University of Bonn, 53127 Bonn, Germany
| | - Na Li
- Medical Science and Technology Innovation Center, Shandong Provincial Key Medical and Health Laboratory of Ovarian Cancer Multiomics, & Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| | - Xianquan Zhan
- Medical Science and Technology Innovation Center, Shandong Provincial Key Medical and Health Laboratory of Ovarian Cancer Multiomics, & Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| |
Collapse
|
17
|
Kumar M, Sharma T, Patel K, Chinnapparaj S, Dixit R, Gendle C, Aggarwal A, Takkar A, Gupta T, Singla N, Pal A, Salunke P, Dhandapani S, Chabra R, Chatterjee A, Gowda H, Bhagat H. Molecular Basis of Cerebral Vasospasm: What Can We Learn from Transcriptome and Temporal Gene Expression Profiling in Intracranial Aneurysm? OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2024; 28:234-245. [PMID: 38717843 DOI: 10.1089/omi.2024.0070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Cerebral vasospasm (CV) is a significant complication following aneurysmal subarachnoid hemorrhage (aSAH), and lacks a comprehensive molecular understanding. Given the temporal trajectory of intracranial aneurysm (IA) formation, its rupture, and development of CV, altered gene expression might be a molecular substrate that runs through these clinical events, influencing both disease inception and progression. Utilizing RNA-Seq, we analyzed tissue samples from ruptured IAs with and without vasospasm to identify the dysregulated genes. In addition, temporal gene expression analysis was conducted. We identified seven dysregulated genes in patients with ruptured IA with vasospasm when compared with those without vasospasm. We found 192 common genes when the samples of each clinical subset of patients with IA, that is, unruptured aneurysm, ruptured aneurysm without vasospasm, and ruptured aneurysm with vasospasm, were compared with control samples. Among these common genes, TNFSF13B, PLAUR, OSM, and LAMB3 displayed temporal expression (progressive increase) with the pathological progression of disease that is formation of aneurysm, its rupture, and consequently the development of vasospasm. We validated the temporal gene expression pattern of OSM at both the transcript and protein levels and OSM emerges as a crucial gene implicated in the pathological progression of disease. In addition, RSAD2 and ATP1A2 appear to be pivotal genes for CV development. To the best of our knowledge, this is the first study to compare the transcriptome of aneurysmal tissue samples of aSAH patients with and without CV. The findings collectively provide new insights on the molecular basis of IA and CV and new leads for translational research.
Collapse
Affiliation(s)
- Munish Kumar
- Division of Neuro-anesthesia, Department of Anesthesia and Intensive Care, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Tanavi Sharma
- Division of Neuro-anesthesia, Department of Anesthesia and Intensive Care, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Krishna Patel
- Institute of Bioinformatics, International Tech Park, Bangalore, India
| | - Shobia Chinnapparaj
- Division of Neuro-anesthesia, Department of Anesthesia and Intensive Care, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ravi Dixit
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Chandrashekhar Gendle
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ashish Aggarwal
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Aastha Takkar
- Department of Neurology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Tulika Gupta
- Department of Anatomy, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Navneet Singla
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Arnab Pal
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Pravin Salunke
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sivashanmugam Dhandapani
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rajesh Chabra
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Aditi Chatterjee
- Institute of Bioinformatics, International Tech Park, Bangalore, India
| | - Harsha Gowda
- Institute of Bioinformatics, International Tech Park, Bangalore, India
| | - Hemant Bhagat
- Division of Neuro-anesthesia, Department of Anesthesia and Intensive Care, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
18
|
Zhang Y, Ji X, Wang Y. ENO2 promotes anoikis resistance in anaplastic thyroid cancer by maintaining redox homeostasis. Gland Surg 2024; 13:209-224. [PMID: 38455357 PMCID: PMC10915417 DOI: 10.21037/gs-24-44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 02/15/2024] [Indexed: 03/09/2024]
Abstract
Background Anoikis presents a significant barrier in the metastasis of cancer. As the most aggressive type of thyroid cancer, anaplastic thyroid cancer (ATC) exhibits a high risk of metastasis and is characterized by high mortality. Therefore, investigating the molecular mechanisms of anoikis resistance in ATC is important for devising therapeutic targets in clinical research. Methods Differentially Expressed Genes were screened in ATC cells under attached and detached culture conditions with RNA-seq. Investigate the impact of enolase 2 (ENO2) on apoptosis and spheroid formation by gain and loss of function. Changes of reactive oxygen species (ROS), glutathione (GSH) and nicotinamide adenine dinucleotide phosphate (NADPH) were detected to assess redox balance. The transcriptional regulatory role of signal transducer and activator of transcription 1 (STAT1) on ENO2 was validated through Dual-Luciferase Reporter Gene Assay. Explore the impact of ENO2 expression on the formation of lung metastases in nude mice. Results We found that the glycolysis process was activated in detached ATC cells. Several genes in the glycolysis process, particularly ENO2, a member of the enolase superfamily was upregulated in ATC cells cultured in suspension. The upregulation of ENO2 enabled the maintenance of redox balance by supplying GSH and NADPH, thereby preventing cells from undergoing anoikis. In terms of mechanism, the expression of STAT1 was enhanced in anoikis resistance cells, which in turn positively regulated the expression of ENO2. In vivo, ENO2-suppressed ATC cells resulted in a significantly lower rate of lung colonization compared to control ATC cells. Conclusions Stable expression of ENO2 and the maintenance of redox balance played a pivotal role in facilitating anoikis resistance of ATC.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaoyu Ji
- Department of Oncology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yu Wang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
19
|
Holicek P, Guilbaud E, Klapp V, Truxova I, Spisek R, Galluzzi L, Fucikova J. Type I interferon and cancer. Immunol Rev 2024; 321:115-127. [PMID: 37667466 DOI: 10.1111/imr.13272] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Type I interferon (IFN) is a class of proinflammatory cytokines with a dual role on malignant transformation, tumor progression, and response to therapy. On the one hand, robust, acute, and resolving type I IFN responses have been shown to mediate prominent anticancer effects, reflecting not only their direct cytostatic/cytotoxic activity on (at least some) malignant cells, but also their pronounced immunostimulatory functions. In line with this notion, type I IFN signaling has been implicated in the antineoplastic effects of various immunogenic therapeutics, including (but not limited to) immunogenic cell death (ICD)-inducing agents and immune checkpoint inhibitors (ICIs). On the other hand, weak, indolent, and non-resolving type I IFN responses have been demonstrated to support tumor progression and resistance to therapy, reflecting the ability of suboptimal type I IFN signaling to mediate cytoprotective activity, promote stemness, favor tolerance to chromosomal instability, and facilitate the establishment of an immunologically exhausted tumor microenvironment. Here, we review fundamental aspects of type I IFN signaling and their context-dependent impact on malignant transformation, tumor progression, and response to therapy.
Collapse
Affiliation(s)
- Peter Holicek
- Sotio Biotech, Prague, Czech Republic
- Department of Immunology, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Emma Guilbaud
- Department of Radiation Oncology, Weill Cornell Medical College, New York, New York, USA
| | - Vanessa Klapp
- Tumor Stroma Interactions, Department of Cancer Research, Luxembourg Institute of Health, Strassen, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | | | - Radek Spisek
- Sotio Biotech, Prague, Czech Republic
- Department of Immunology, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, New York, USA
- Sandra and Edward Meyer Cancer Center, New York, New York, USA
- Caryl and Israel Englander Institute for Precision Medicine, New York, New York, USA
| | - Jitka Fucikova
- Sotio Biotech, Prague, Czech Republic
- Department of Immunology, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| |
Collapse
|
20
|
Zhu KG, Yang J, Zhu Y, Zhu Q, Pan W, Deng S, He Y, Zuo D, Wang P, Han Y, Zhang HY. The microprotein encoded by exosomal lncAKR1C2 promotes gastric cancer lymph node metastasis by regulating fatty acid metabolism. Cell Death Dis 2023; 14:708. [PMID: 37903800 PMCID: PMC10616111 DOI: 10.1038/s41419-023-06220-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 11/01/2023]
Abstract
Lymph node metastasis (LNM) is the prominent route of gastric cancer dissemination, and usually leads to tumor progression and a dismal prognosis of gastric cancer. Although exosomal lncRNAs have been reported to be involved in tumor development, whether secreted lncRNAs can encode peptides in recipient cells remains unknown. Here, we identified an exosomal lncRNA (lncAKR1C2) that was clinically correlated with lymph node metastasis in gastric cancer in a VEGFC-independent manner. Exo-lncAKR1C2 secreted from gastric cancer cells was demonstrated to enhance tube formation and migration of lymphatic endothelial cells, and facilitate lymphangiogenesis and lymphatic metastasis in vivo. By comparing the metabolic characteristics of LN metastases and primary focuses, we found that LN metastases of gastric cancer displayed higher lipid metabolic activity. Moreover, exo-lncAKR1C2 encodes a microprotein (pep-AKR1C2) in lymphatic endothelial cells and promotes CPT1A expression by regulating YAP phosphorylation, leading to enhanced fatty acid oxidation (FAO) and ATP production. These findings highlight a novel mechanism of LNM and suggest that the microprotein encoded by exosomal lncAKR1C2 serves as a therapeutic target for advanced gastric cancer.
Collapse
Affiliation(s)
- Ke-Gan Zhu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University, Tianjin, 300060, China
| | - Jiayu Yang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University, Tianjin, 300060, China
| | - Yuehong Zhu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University, Tianjin, 300060, China
| | - Qihang Zhu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University, Tianjin, 300060, China
| | - Wen Pan
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University, Tianjin, 300060, China
| | - Siyu Deng
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Yi He
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University, Tianjin, 300060, China
| | - Duo Zuo
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University, Tianjin, 300060, China
| | - Peiyun Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University, Tianjin, 300060, China
| | - Yueting Han
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University, Tianjin, 300060, China
| | - Hai-Yang Zhang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University, Tianjin, 300060, China.
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
21
|
Nghi HT, Shahmohammadi S, Ebrahimi KH. Ancient complexes of iron and sulfur modulate oncogenes and oncometabolism. Curr Opin Chem Biol 2023; 76:102338. [PMID: 37295349 DOI: 10.1016/j.cbpa.2023.102338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 06/12/2023]
Abstract
Inorganic complexes of iron and sulfur, that is, iron-sulfur [FeS] clusters, have played a fundamental role in life on Earth since the prebiotic period. These clusters were involved in elementary reactions leading to the emergence of life and, since then, gained function in processes, such as respiration, replication, transcription, and the immune response. We discuss how three [FeS] proteins involved in the innate immune response play a role in oncogene expression/function and oncometabolism. Our analysis highlights the importance of future research into understanding the [FeS] clusters' roles in cancer progression and proliferation. The outcomes of these studies will help identify new targets and develop new anticancer therapeutics.
Collapse
Affiliation(s)
- Hoang Thao Nghi
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Sayeh Shahmohammadi
- Institute of Pharmaceutical Chemistry, Interdisciplinary Excellence Center and Stereochemistry Research Group, Eötvös Loránd Research Network, Faculty of Pharmacy, University of Szeged, H-6720, Szeged, Hungary
| | - Kourosh H Ebrahimi
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Sciences, King's College London, London, United Kingdom.
| |
Collapse
|
22
|
Weinstein AG, Godet I, Gilkes DM. The rise of viperin: the emerging role of viperin in cancer progression. J Clin Invest 2022; 132:165907. [PMID: 36519538 PMCID: PMC9753986 DOI: 10.1172/jci165907] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Viperin, an IFN-regulated gene product, is known to inhibit fatty acid β-oxidation in the mitochondria, which enhances glycolysis and lipogenesis during viral infections. Yet, its role in altering the phenotype of cancer cells has not been established. In this issue of the JCI, Choi, Kim, and co-authors report on a role of viperin in regulating metabolic alterations in cancer cells. The authors showed a correlation between clinical outcomes and viperin expression levels in multiple cancer tissues and proposed that viperin expression was upregulated in the tumor microenvironment via the JAK/STAT and PI3K/AKT/mTOR/HIF-1α pathways. Functionally, viperin increased lipogenesis and glycolysis in cancer cells by inhibiting fatty acid β-oxidation. Viperin expression also enhanced cancer stem cell properties, ultimately promoting tumor initiation in murine models. This study proposes a protumorigenic role for viperin and identifies HIF-1α as a transcription factor that increases viperin expression under serum starvation and hypoxia.
Collapse
Affiliation(s)
- Alyssa G. Weinstein
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center and,Biochemistry and Molecular Biology Program, The Johns Hopkins University School of Public Health, Baltimore, Maryland, USA
| | - Inês Godet
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center and,Department of Chemical and Biomolecular Engineering and,Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Daniele M. Gilkes
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center and,Department of Chemical and Biomolecular Engineering and,Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, Maryland, USA.,Cellular and Molecular Medicine Program, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|