1
|
Bernardini C, Mantia DL, Salaroli R, Ventrella D, Elmi A, Zannoni A, Forni M. Isolation of Vascular Wall Mesenchymal Stem Cells from the Thoracic Aorta of Adult Göttingen Minipigs: A New Protocol for the Simultaneous Endothelial Cell Collection. Animals (Basel) 2023; 13:2601. [PMID: 37627392 PMCID: PMC10451532 DOI: 10.3390/ani13162601] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Two main classes of perivascular multipotent populations have been described: the microvascular pericytes and the vascular wall mesenchymal stem cells (VW-MSCs). VW-MSCs are isolated from large vessels in many species and they participate in vascular remodeling together with other cellular components such as endothelial cells. Considering that the Göttingen Minipigs are widely used in Europe as a translational model in the field of cardiovascular diseases, the aim of the present research was to isolate VW-MSCs from the adult aorta of Göttingen Minipigs while preserving and also collecting endothelial cells. The results obtained in the present research demonstrated that this new protocol allows us to obtain a pure population of VW-MSCs and endothelial cells. VW-MSCs from Göttingen Minipigs responded fully to the MSC minima international criteria, being positive to CD105, CD90, and CD44 and negative to CD45 and CD34. Moreover, VW-MSCs presented a differentiative potential towards osteogenic, chondrogenic, and adipogenic lineages. Overall, the present protocol, preserving the viability and phenotypic features of the two isolated populations, opens future possibilities of using minipig VW-MSCs and endothelial cells in in vitro vascular remodeling studies.
Collapse
Affiliation(s)
- Chiara Bernardini
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy; (C.B.); (R.S.); (D.V.); (A.E.); (A.Z.)
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research (CIRI-SDV), Alma Mater Studiorum—University of Bologna, 40126 Bologna, Italy;
| | - Debora La Mantia
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy; (C.B.); (R.S.); (D.V.); (A.E.); (A.Z.)
| | - Roberta Salaroli
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy; (C.B.); (R.S.); (D.V.); (A.E.); (A.Z.)
| | - Domenico Ventrella
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy; (C.B.); (R.S.); (D.V.); (A.E.); (A.Z.)
| | - Alberto Elmi
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy; (C.B.); (R.S.); (D.V.); (A.E.); (A.Z.)
| | - Augusta Zannoni
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy; (C.B.); (R.S.); (D.V.); (A.E.); (A.Z.)
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research (CIRI-SDV), Alma Mater Studiorum—University of Bologna, 40126 Bologna, Italy;
| | - Monica Forni
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research (CIRI-SDV), Alma Mater Studiorum—University of Bologna, 40126 Bologna, Italy;
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| |
Collapse
|
2
|
Balikji J, Mackus M, Garssen J, Hoogbergen MM, Verster JC. Immune Fitness, Migraine, and Headache Complaints in Individuals with Self-Reported Impaired Wound Healing. Int J Gen Med 2023; 16:2245-2253. [PMID: 37293517 PMCID: PMC10246567 DOI: 10.2147/ijgm.s413258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 04/25/2023] [Indexed: 06/10/2023] Open
Abstract
Background Having chronic wounds and impaired wound healing are associated with psychological distress. The current study aims to evaluate migraine and headache complaints in young adults with self-reported impaired wound healing. Methods A survey was conducted among N=1935 young adults (83.6% women), 18-30 years old, living in the Netherlands. Wound healing status was verified, immune fitness was assessed using a single-item rating scale, and ID Migraine was completed. In addition, several questions were answered on past year's headache experiences (including frequency, quantity, type, location, and severity). Results In both the control group (p < 0.001) and the IWH group (p = 0.002) immune fitness was significantly lower among those that reported headaches compared to those that reported no headaches. Individuals with self-reported impaired wound healing (IWH) scored significantly higher on the ID Migraine scale, and individuals of the IWH group scored significantly more often positive for migraine (ie, an ID Migraine score ≥2). They reported a younger age of onset of experiencing headaches, and significantly more often reported having a beating or pounding headache than the control group. Compared to the control group, the IWH group reported being significantly more limited in their daily activities compared to the control group. Conclusion Headaches and migraines are more frequently reported by individuals with self-reported impaired wound healing, and their reported immune fitness is significantly poorer compared to healthy controls. These headache and migraine complaints significantly limit them in their daily activities.
Collapse
Affiliation(s)
- Jessica Balikji
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, 3584 CG, the Netherlands
| | - Marlou Mackus
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, 3584 CG, the Netherlands
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, 3584 CG, the Netherlands
- Division of Plastic Surgery, Catharina Ziekenhuis, Eindhoven, 5623 EJ, the Netherlands
| | - Maarten M Hoogbergen
- Global Centre of Excellence Immunology, Nutricia Danone Research, Utrecht, 3584 CT, the Netherlands
| | - Joris C Verster
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, 3584 CG, the Netherlands
- Centre for Human Psychopharmacology, Swinburne University, Melbourne, VIC, 3122, Australia
| |
Collapse
|
3
|
Campos HC, Ribeiro DE, Hashiguchi D, Hukuda DY, Gimenes C, Romariz SAA, Ye Q, Tang Y, Ulrich H, Longo BM. Distinct Effects of the Hippocampal Transplantation of Neural and Mesenchymal Stem Cells in a Transgenic Model of Alzheimer's Disease. Stem Cell Rev Rep 2022; 18:781-791. [PMID: 34997526 DOI: 10.1007/s12015-021-10321-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2021] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is a severe disabling condition with no cure currently available, which accounts for 60-70% of all dementia cases worldwide. Therefore, the investigation of possible therapeutic strategies for AD is necessary. To this end, animal models corresponding to the main aspects of AD in humans have been widely used. Similar to AD patients, the double transgenic APPswe/PS1dE9 (APP/PS1) mice show cognitive deficits, hyperlocomotion, amyloid-β (Αβ) plaques in the cortex and hippocampus, and exacerbated inflammatory responses. Recent studies have shown that these neuropathological features could be reversed by stem cell transplantation. However, the effects induced by neural (NSC) and mesenchymal (MSC) stem cells has never been compared in an AD animal model. Therefore, the present study aimed to investigate whether transplantation of NSC or MSC into the hippocampus of APP/PS1 mice reverses AD-induced pathological alterations, evaluated by the locomotor activity (open field test), short- and long-term memory (object recognition) tests, Αβ plaques (6-E10), microglia distribution (Iba-1), M1 (iNOS) and M2 (ARG-1) microglial phenotype frequencies. NSC and MSC engraftment reduced the number of Αβ plaques and produced an increase in M2 microglia polarization in the hippocampus of APP/PS1 mice, suggesting an anti-inflammatory effect of stem cell transplantation. NSC also reversed the hyperlocomotor activity and increased the number of microglia in the hippocampus of APP/PS1 mice. No impairment of short or long-term memory was observed in APP/PS1 mice. Overall, this study highlights the potential beneficial effects of transplanting NSC or MSC for AD treatment.
Collapse
Affiliation(s)
- Henrique C Campos
- Laboratório de Neurofisiologia, Depto. Fisiologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Deidiane Elisa Ribeiro
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil
| | - Debora Hashiguchi
- Laboratório de Neurofisiologia, Depto. Fisiologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil.,Laboratório de Plasticidade Sináptica, Brain Institute, Federal University of Rio Grande do Norte, Natal, RN, 59078-900, Caixa Postal: 1524, Brazil
| | - Deborah Y Hukuda
- Laboratório de Neurofisiologia, Depto. Fisiologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Christiane Gimenes
- Laboratório de Neurofisiologia, Depto. Fisiologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Simone A A Romariz
- Laboratório de Neurofisiologia, Depto. Fisiologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Qing Ye
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil.,International Collaborative Centre On Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.,Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, 610075, China
| | - Yong Tang
- International Collaborative Centre On Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.,Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, 610075, China
| | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil.,International Collaborative Centre On Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Beatriz Monteiro Longo
- Laboratório de Neurofisiologia, Depto. Fisiologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
4
|
Wang X, Wang R, Jiang L, Xu Q, Guo X. Endothelial repair by stem and progenitor cells. J Mol Cell Cardiol 2021; 163:133-146. [PMID: 34743936 DOI: 10.1016/j.yjmcc.2021.10.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/20/2021] [Accepted: 10/26/2021] [Indexed: 12/19/2022]
Abstract
The integrity of the endothelial barrier is required to maintain vascular homeostasis and fluid balance between the circulatory system and surrounding tissues and to prevent the development of vascular disease. However, the origin of the newly developed endothelial cells is still controversial. Stem and progenitor cells have the potential to differentiate into endothelial cell lines and stimulate vascular regeneration in a paracrine/autocrine fashion. The one source of new endothelial cells was believed to come from the bone marrow, which was challenged by the recent findings. By administration of new techniques, including genetic cell lineage tracing and single cell RNA sequencing, more solid data were obtained that support the concept of stem/progenitor cells for regenerating damaged endothelium. Specifically, it was found that tissue resident endothelial progenitors located in the vessel wall were crucial for endothelial repair. In this review, we summarized the latest advances in stem and progenitor cell research in endothelial regeneration through findings from animal models and discussed clinical data to indicate the future direction of stem cell therapy.
Collapse
Affiliation(s)
- Xuyang Wang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ruilin Wang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liujun Jiang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingbo Xu
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Xiaogang Guo
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
5
|
Jiang L, Chen T, Sun S, Wang R, Deng J, Lyu L, Wu H, Yang M, Pu X, Du L, Chen Q, Hu Y, Hu X, Zhou Y, Xu Q, Zhang L. Nonbone Marrow CD34 + Cells Are Crucial for Endothelial Repair of Injured Artery. Circ Res 2021; 129:e146-e165. [PMID: 34474592 DOI: 10.1161/circresaha.121.319494] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Liujun Jiang
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China (L. Jiang, T. Chen, S. Sun, R. Wang, J. Deng, L. Lyu, H. Wu, X. Pu, L. Du, Y. Hu, X. Hu, Y. Zhou, Q. Xu)
| | - Ting Chen
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China (L. Jiang, T. Chen, S. Sun, R. Wang, J. Deng, L. Lyu, H. Wu, X. Pu, L. Du, Y. Hu, X. Hu, Y. Zhou, Q. Xu).,Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, Zhejiang Province, China (T. Chen)
| | - Shasha Sun
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China (L. Jiang, T. Chen, S. Sun, R. Wang, J. Deng, L. Lyu, H. Wu, X. Pu, L. Du, Y. Hu, X. Hu, Y. Zhou, Q. Xu).,Department of Cardiology and Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China. (S. Sun, M. Yang, Q. Chen, L. Zhang)
| | - Ruilin Wang
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China (L. Jiang, T. Chen, S. Sun, R. Wang, J. Deng, L. Lyu, H. Wu, X. Pu, L. Du, Y. Hu, X. Hu, Y. Zhou, Q. Xu)
| | - Jiacheng Deng
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China (L. Jiang, T. Chen, S. Sun, R. Wang, J. Deng, L. Lyu, H. Wu, X. Pu, L. Du, Y. Hu, X. Hu, Y. Zhou, Q. Xu)
| | - Lingxia Lyu
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China (L. Jiang, T. Chen, S. Sun, R. Wang, J. Deng, L. Lyu, H. Wu, X. Pu, L. Du, Y. Hu, X. Hu, Y. Zhou, Q. Xu)
| | - Hong Wu
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China (L. Jiang, T. Chen, S. Sun, R. Wang, J. Deng, L. Lyu, H. Wu, X. Pu, L. Du, Y. Hu, X. Hu, Y. Zhou, Q. Xu)
| | - Mei Yang
- Department of Cardiology and Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China. (S. Sun, M. Yang, Q. Chen, L. Zhang)
| | - Xiangyuan Pu
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China (L. Jiang, T. Chen, S. Sun, R. Wang, J. Deng, L. Lyu, H. Wu, X. Pu, L. Du, Y. Hu, X. Hu, Y. Zhou, Q. Xu)
| | - Luping Du
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China (L. Jiang, T. Chen, S. Sun, R. Wang, J. Deng, L. Lyu, H. Wu, X. Pu, L. Du, Y. Hu, X. Hu, Y. Zhou, Q. Xu)
| | - Qishan Chen
- Department of Cardiology and Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China. (S. Sun, M. Yang, Q. Chen, L. Zhang)
| | - Yanhua Hu
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China (L. Jiang, T. Chen, S. Sun, R. Wang, J. Deng, L. Lyu, H. Wu, X. Pu, L. Du, Y. Hu, X. Hu, Y. Zhou, Q. Xu)
| | - Xiaosheng Hu
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China (L. Jiang, T. Chen, S. Sun, R. Wang, J. Deng, L. Lyu, H. Wu, X. Pu, L. Du, Y. Hu, X. Hu, Y. Zhou, Q. Xu)
| | - Yijiang Zhou
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China (L. Jiang, T. Chen, S. Sun, R. Wang, J. Deng, L. Lyu, H. Wu, X. Pu, L. Du, Y. Hu, X. Hu, Y. Zhou, Q. Xu)
| | - Qingbo Xu
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China (L. Jiang, T. Chen, S. Sun, R. Wang, J. Deng, L. Lyu, H. Wu, X. Pu, L. Du, Y. Hu, X. Hu, Y. Zhou, Q. Xu).,Centre for Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom (Q. Xu)
| | - Li Zhang
- Department of Cardiology and Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China. (S. Sun, M. Yang, Q. Chen, L. Zhang)
| |
Collapse
|
6
|
Jiang L, Sun X, Deng J, Hu Y, Xu Q. Different Roles of Stem/Progenitor Cells in Vascular Remodeling. Antioxid Redox Signal 2021; 35:192-203. [PMID: 33107320 DOI: 10.1089/ars.2020.8199] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Significance: Since the discovery of vascular stem cells, there has been considerable advancement in comprehending the nature and functions of these cells. Due to their differentiation potential to repair endothelial cells and to participate in lesion formation during vascular remodeling, it is crucial to elucidate vascular stem cell behaviors and the mechanisms underlying this process, which could provide new chances for the design of clinical therapeutic application of stem cells. Recent Advances: Over the past decades, major progress has been made on progenitor/vascular stem cells in the field of cardiovascular research. Vascular stem cells are mostly latent in their niches and can be bioactivated in response to damage and get involved in endothelial repair and smooth muscle cell aggregation to generate neointima. Accumulating evidence has been shown recently, using genetic lineage tracing mouse models, to particularly provide solutions to the nature of vascular stem cells and to monitor both cell migration and the process of differentiation during physiological angiogenesis and in vascular diseases. Critical Issues: This article reviews and summarizes the current research progress of vascular stem cells in this field and highlights future prospects for stem cell research in regenerative medicine. Future Directions: Despite recent advances and achievements of stem cells in cardiovascular research, the nature and cell fate of vascular stem cells remain elusive. Further comprehensive studies using new techniques including genetic cell lineage tracing and single-cell RNA sequencing are essential to fully illuminate the role of stem cells in vascular development and diseases. Antioxid. Redox Signal. 35, 192-203.
Collapse
Affiliation(s)
- Liujun Jiang
- Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaolei Sun
- Vascular Surgery Department, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jiacheng Deng
- Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yanhua Hu
- Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qingbo Xu
- Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
7
|
ERG Immunoreactivity in Blastic Hematolymphoid Neoplasms: Diagnostic Pitfall in the Workup of Undifferentiated Malignant Neoplasms. Appl Immunohistochem Mol Morphol 2021; 30:42-48. [PMID: 34261976 DOI: 10.1097/pai.0000000000000958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 06/06/2021] [Indexed: 11/25/2022]
Abstract
Undifferentiated malignant neoplasms pose diagnostic challenges, and reliable immunohistochemical markers with well-characterized staining profiles are desirable when characterizing them. Our initial observation of erythroblast transformation specific regulated gene-1 (ERG) reactivity in myeloid sarcomas led us to broadly explore the utility of ERG as a marker of immature hematolymphoid neoplasms presenting in extramedullary sites. We stained 207 immature and mature hematolymphoid lesions as well as 39 benign hematolymphoid tissues and found weak-to-moderate ERG immunopositivity in 15 of 16 (94%) acute myeloid leukemias/myeloid sarcomas, including 4 of 5 (80%) CD34-negative/CD117-negative acute myeloid leukemias/myeloid sarcomas. ERG positivity was also seen in all 9 cases of B-lymphoblastic and T-lymphoblastic leukemia/lymphoma, all 3 cases of hematogone hyperplasia, and all 4 cases of systemic mastocytosis. ERG was negative in 148 mature B-cell and T-cell lymphomas, including 2 high-grade B-cell lymphomas and 2 blastoid variant mantle cell lymphomas; 23 histiocytic/dendritic cell neoplasms; 2 indolent T-lymphoblastic proliferations; and 2 blastic plasmacytoid dendritic cell neoplasms. We conclude that ERG immunoreactivity may pose a significant diagnostic pitfall in the workup of undifferentiated malignant neoplasms, particularly those presenting in extramedullary sites.
Collapse
|
8
|
Starosta A, Konieczny P. Therapeutic aspects of cell signaling and communication in Duchenne muscular dystrophy. Cell Mol Life Sci 2021; 78:4867-4891. [PMID: 33825942 PMCID: PMC8233280 DOI: 10.1007/s00018-021-03821-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/26/2021] [Accepted: 03/23/2021] [Indexed: 12/11/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a devastating chromosome X-linked disease that manifests predominantly in progressive skeletal muscle wasting and dysfunctions in the heart and diaphragm. Approximately 1/5000 boys and 1/50,000,000 girls suffer from DMD, and to date, the disease is incurable and leads to premature death. This phenotypic severity is due to mutations in the DMD gene, which result in the absence of functional dystrophin protein. Initially, dystrophin was thought to be a force transducer; however, it is now considered an essential component of the dystrophin-associated protein complex (DAPC), viewed as a multicomponent mechanical scaffold and a signal transduction hub. Modulating signal pathway activation or gene expression through epigenetic modifications has emerged at the forefront of therapeutic approaches as either an adjunct or stand-alone strategy. In this review, we propose a broader perspective by considering DMD to be a disease that affects myofibers and muscle stem (satellite) cells, as well as a disorder in which abrogated communication between different cell types occurs. We believe that by taking this systemic view, we can achieve safe and holistic treatments that can restore correct signal transmission and gene expression in diseased DMD tissues.
Collapse
Affiliation(s)
- Alicja Starosta
- Faculty of Biology, Institute of Human Biology and Evolution, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Patryk Konieczny
- Faculty of Biology, Institute of Human Biology and Evolution, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland.
| |
Collapse
|
9
|
Quiroz HJ, Parikh PP, Lassance-Soares RM, Regueiro MM, Li Y, Shao H, Vazquez-Padron R, Percival J, Liu ZJ, Velazquez OC. Gangrene, revascularization, and limb function improved with E-selectin/adeno-associated virus gene therapy. JVS Vasc Sci 2020; 2:20-32. [PMID: 34617055 PMCID: PMC8489216 DOI: 10.1016/j.jvssci.2020.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/19/2020] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE Novel therapeutic angiogenic concepts for critical limb ischemia are still needed for limb salvage. E-selectin, a cell-adhesion molecule, is vital for recruitment of the stem/progenitor cells necessary for neovascularization in ischemic tissues. We hypothesized that priming ischemic limb tissue with E-selectin/adeno-associated virus (AAV) gene therapy, in a murine hindlimb ischemia and gangrene model, would increase therapeutic angiogenesis and improve gangrene. METHODS FVB/NJ mice were given intramuscular hindlimb injections of either E-selectin/AAV or LacZ/AAV and then underwent induction of gangrene via femoral artery ligation and concomitant systemic injections of the nitric oxide synthesis inhibitor L-NAME (L-NG-Nitro arginine methyl ester; 40 mg/kg). Gangrene was evaluated via the Faber hindlimb appearance score. The rate of ischemic limb reperfusion and ischemic tissue angiogenesis were evaluated using laser Doppler perfusion imaging and DiI perfusion with confocal laser scanning microscopy of the ischemic footpads, respectively. The treadmill exhaustion test was performed on postoperative day (POD) 8 to determine hindlimb functionality. RESULTS The E-selectin/AAV-treated mice (n = 10) had decreased Faber ischemia scores compared with those of the LacZ/AAV-treated mice (n = 7) at both PODs 7 and 14 (P < .05 and P < .01, respectively), improved laser Doppler perfusion imaging reperfusion indexes by POD 14 (P < .01), and greater gangrene footpad capillary density (P < .001). E-selectin/AAV-treated mice also had improved exercise tolerance (P < .05) and lower relative muscular atrophy (P < .01). CONCLUSION We surmised that E-selectin/AAV gene therapy would significantly promote hindlimb angiogenesis, reperfusion, and limb functionality in mice with hindlimb ischemia and gangrene. Our findings highlight the reported novel gene therapy approach to critical limb ischemia as a potential therapeutic option for future clinical studies.
Collapse
Affiliation(s)
- Hallie J. Quiroz
- Division of Vascular Surgery, DeWitt-Daughtry Family Department of Surgery, University of Miami Leonard M. Miller School of Medicine, Miami, Fla
| | - Punam P. Parikh
- Division of Vascular Surgery, DeWitt-Daughtry Family Department of Surgery, University of Miami Leonard M. Miller School of Medicine, Miami, Fla
| | - Roberta M. Lassance-Soares
- Division of Vascular Surgery, DeWitt-Daughtry Family Department of Surgery, University of Miami Leonard M. Miller School of Medicine, Miami, Fla
| | - Manuela M. Regueiro
- Division of Vascular Surgery, DeWitt-Daughtry Family Department of Surgery, University of Miami Leonard M. Miller School of Medicine, Miami, Fla
| | - Yan Li
- Division of Vascular Surgery, DeWitt-Daughtry Family Department of Surgery, University of Miami Leonard M. Miller School of Medicine, Miami, Fla
| | - Hongwei Shao
- Division of Vascular Surgery, DeWitt-Daughtry Family Department of Surgery, University of Miami Leonard M. Miller School of Medicine, Miami, Fla
| | - Roberto Vazquez-Padron
- Division of Vascular Surgery, DeWitt-Daughtry Family Department of Surgery, University of Miami Leonard M. Miller School of Medicine, Miami, Fla
| | - Justin Percival
- Department of Molecular and Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine, Miami, Fla
| | - Zhao-Jun Liu
- Division of Vascular Surgery, DeWitt-Daughtry Family Department of Surgery, University of Miami Leonard M. Miller School of Medicine, Miami, Fla
| | - Omaida C. Velazquez
- Division of Vascular Surgery, DeWitt-Daughtry Family Department of Surgery, University of Miami Leonard M. Miller School of Medicine, Miami, Fla
| |
Collapse
|
10
|
Tamaki T. Biomedical applications of muscle-derived stem cells: from bench to bedside. Expert Opin Biol Ther 2020; 20:1361-1371. [PMID: 32643444 DOI: 10.1080/14712598.2020.1793953] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Skeletal muscle-derived stem cells (Sk-MDSCs) are considered promising sources of adult stem cell therapy. Skeletal muscle comprises approximately 40-50% of the total body mass with marked potential for postnatal adaptive response, such as muscle hypertrophy, hyperplasia, atrophy, and regenerative capacity. This strongly suggests that skeletal muscle contains various stem/progenitor cells related to muscle-nerve-vascular tissues, which would support the above postnatal events even in adulthood. AREA COVERED The focus of this review is the therapeutic potential of the Sk-MDSCs as an adult stem cell autograft. For this purpose, the validity of cell isolation and purification, tissue reconstitution capacity in vivo after transplantation, comparison of the results of basic mouse and preclinical human studies, potential problematic and beneficial aspects, and effective usage have been discussed following the history of clinical applications. EXPERT OPINION Although the clinical application of Sk-MDSCs began as a therapy for the systemic disease of Duchenne muscular dystrophy, here, through the unique local injection method, therapy for severely damaged peripheral nerves, particularly the long-gap nerve transection, has been introduced. The beneficial aspects of the use of Sk-MDSCs as the source of local tissue transplantation therapy have also been discussed.
Collapse
Affiliation(s)
- Tetsuro Tamaki
- Muscle Physiology and Cell Biology Unit, Department of Physiology, Tokai University School of Medicine , Isehara, Kanagawa ,Japan
| |
Collapse
|
11
|
Insulin-dependent Non-canonical Activation of Notch in Drosophila: A Story of Notch-Induced Muscle Stem Cell Proliferation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1227:131-144. [PMID: 32072503 DOI: 10.1007/978-3-030-36422-9_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Notch plays multiple roles both in development and in adult tissue homeostasis. Notch was first identified in Drosophila in which it has then been extensively studied. Among the flag-ship Notch functions we could mention its capacity to keep precursor and stem cells in a nondifferentiated state but also its ability to activate cell proliferation that in some contexts could led to cancer. In general, both these functions involve, canonical, ligand-dependent Notch activation. However, a ligand-independent Notch activation has also been described in a few cellular contexts. Here, we focus on one of such contexts, Drosophila muscle stem cells, called AMPs, and discuss how insulin-dependent noncanonical activation of Notch pushes quiescent AMPs to proliferation.
Collapse
|
12
|
Vascular Wall as Source of Stem Cells Able to Differentiate into Endothelial Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019. [PMID: 31797283 DOI: 10.1007/5584_2019_421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
The traditional view of the vascular biology is changed by the discovery of vascular progenitor cells in bone marrow or peripheral blood Further complexity is due to the findings that the vessel walls harbor progenitor and stem cells, called vascular wall-resident vascular stem cells (VW-VSCs), able to differentiate to mature vascular wall cells. These immature stem/progenitor cell populations and multipotent mesenchymal lineage participate in postnatal neovascularization and vascular wall remodeling. Further studies are necessary to deepen the knowledge on characterization and biology of VW-VSCs, in particular of endothelial progenitor cells (EPCs) in order to improve their use in clinical settings for regenerative approaches.
Collapse
|
13
|
Kaushik K, Das A. Endothelial progenitor cell therapy for chronic wound tissue regeneration. Cytotherapy 2019; 21:1137-1150. [PMID: 31668487 DOI: 10.1016/j.jcyt.2019.09.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/20/2019] [Accepted: 09/24/2019] [Indexed: 02/07/2023]
Abstract
Despite advancements in wound care, healing of chronic diabetic wounds remains a great challenge for the clinical fraternity because of the intricacies of the healing process. Due to the limitations of existing treatment strategies for chronic wounds, stem/progenitor cell transplantation therapies have been explored as an alternative for tissue regeneration at the wound site. The non-healing phenotype of chronic wounds is directly associated with lack of vascularization. Therefore, endothelial progenitor cell (EPC) transplantation is proving to be a promising approach for the treatment of hypo-vascular chronic wounds. With the existing knowledge in EPC biology, significant efforts have been made to enrich EPCs at the chronic wound site, generating EPCs from somatic cells, induced pluripotent stem cells (iPSCs) using transcription factors, or from adult stem cells using chemicals/drugs for use in transplantation, as well as modulating the endogenous dysfunctional/compromised EPCs under diabetic conditions. This review mainly focuses on the pre-clinical and clinical approaches undertaken to date with EPC-based translational therapy for chronic diabetic as well as non-diabetic wounds to evaluate their vascularity-mediated regeneration potential.
Collapse
Affiliation(s)
- Komal Kaushik
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-IICT Campus, Hyderabad, India
| | - Amitava Das
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-IICT Campus, Hyderabad, India.
| |
Collapse
|
14
|
The effect of estrogen on diabetic wound healing is mediated through increasing the function of various bone marrow-derived progenitor cells. J Vasc Surg 2018; 68:127S-135S. [PMID: 30064832 DOI: 10.1016/j.jvs.2018.04.069] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 04/18/2018] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Endothelial progenitor cells (EPCs) are the key cells of postnatal neovascularization, and mesenchymal stem cells (MSCs) possess pluripotent differentiation capacity and contribute to tissue regeneration and wound healing. Both EPCs and MSCs are critical to the wound repair process, which is hindered in diabetes mellitus. Diabetes has been shown to decrease the function of these progenitor cells, whereas estrogen has beneficial wound healing effects. However, the role of estrogen in modulating EPC and MSC biology in diabetes is unknown. We investigated the effect of estrogen on improving bone marrow (BM)-derived EPC and MSC function using a murine diabetic wound healing model. METHODS Female diabetic db+/db+ and nondiabetic control mice were wounded cutaneously and treated with topical estrogen or placebo cream. On day 5 after wounding, BM cells were harvested to quantify EPC number and colony-forming units of EPCs and MSCs. Wound healing rate was concurrently studied. Vessel density and scar density were then quantified using whole body perfusion and laser confocal microscopy. EPC recruitment was documented by immunohistochemistry to identify CD34- and vascular endothelial growth factor receptor 2-positive cells in the vessel wall. Data were analyzed by analysis of variance. RESULTS Topical estrogen significantly increased colony-forming units of both EPCs and MSCs compared with placebo treatment, indicating improved viability and proliferative ability of these cells. Consistently, increased recruitment of EPCs to diabetic wounds and higher vessel density were observed in estrogen-treated compared with placebo-treated mice. Consequently, topical estrogen significantly accelerated wound healing as early as day 6 after wounding. In addition, scar density resulting from collagen deposition was increased in the estrogen-treated group, reflecting increased MSC activity and differentiation. CONCLUSIONS Estrogen treatment increases wound healing and wound neovascularization in diabetic mice. Our data implicate that these beneficial effects may be mediated through improving the function of BM-derived EPCs and MSCs.
Collapse
|
15
|
Wosczyna MN, Rando TA. A Muscle Stem Cell Support Group: Coordinated Cellular Responses in Muscle Regeneration. Dev Cell 2018; 46:135-143. [PMID: 30016618 PMCID: PMC6075730 DOI: 10.1016/j.devcel.2018.06.018] [Citation(s) in RCA: 231] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 06/12/2018] [Accepted: 06/20/2018] [Indexed: 01/11/2023]
Abstract
Skeletal muscle has an extraordinary regenerative capacity due to the activity of tissue-specific muscle stem cells. Consequently, these cells have received the most attention in studies investigating the cellular processes of skeletal muscle regeneration. However, efficient capacity to rebuild this tissue also depends on additional cells in the local milieu, as disrupting their normal contributions often leads to incomplete regeneration. Here, we review these additional cells that contribute to the regenerative process. Understanding the complex interactions between and among these cell populations has the potential to lead to therapies that will help promote normal skeletal muscle regeneration under conditions in which this process is suboptimal.
Collapse
Affiliation(s)
- Michael N Wosczyna
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Thomas A Rando
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA 94305, USA; Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA.
| |
Collapse
|
16
|
Abstract
Vascular, resident stem cells are present in all 3 layers of the vessel wall; they play a role in vascular formation under physiological conditions and in remodeling in pathological situations. Throughout development and adult early life, resident stem cells participate in vessel formation through vasculogenesis and angiogenesis. In adults, the vascular stem cells are mostly quiescent in their niches but can be activated in response to injury and participate in endothelial repair and smooth muscle cell accumulation to form neointima. However, delineation of the characteristics and of the migration and differentiation behaviors of these stem cells is an area of ongoing investigation. A set of genetic mouse models for cell lineage tracing has been developed to specifically address the nature of these cells and both migration and differentiation processes during physiological angiogenesis and in vascular diseases. This review summarizes the current knowledge on resident stem cells, which has become more defined and refined in vascular biology research, thus contributing to the development of new potential therapeutic strategies to promote endothelial regeneration and ameliorate vascular disease development.
Collapse
Affiliation(s)
- Li Zhang
- From the Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, China (L.Z., T.C., Q.X.)
| | - Shirin Issa Bhaloo
- School of Cardiovascular Medicine and Sciences, King’s College London, BHF Centre, United Kingdom (S.I.B., Q.X.)
| | - Ting Chen
- From the Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, China (L.Z., T.C., Q.X.)
| | - Bin Zhou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academic of Sciences (B.Z.)
| | - Qingbo Xu
- From the Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, China (L.Z., T.C., Q.X.)
- School of Cardiovascular Medicine and Sciences, King’s College London, BHF Centre, United Kingdom (S.I.B., Q.X.)
| |
Collapse
|
17
|
Pellegata AF, Tedeschi AM, De Coppi P. Whole Organ Tissue Vascularization: Engineering the Tree to Develop the Fruits. Front Bioeng Biotechnol 2018; 6:56. [PMID: 29868573 PMCID: PMC5960678 DOI: 10.3389/fbioe.2018.00056] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/23/2018] [Indexed: 12/15/2022] Open
Abstract
Tissue engineering aims to regenerate and recapitulate a tissue or organ that has lost its function. So far successful clinical translation has been limited to hollow organs in which rudimental vascularization can be achieved by inserting the graft into flaps of the omentum or muscle fascia. This technique used to stimulate vascularization of the graft takes advantage of angiogenesis from existing vascular networks. Vascularization of the engineered graft is a fundamental requirement in the process of engineering more complex organs, as it is crucial for the efficient delivery of nutrients and oxygen following in-vivo implantation. To achieve vascularization of the organ many different techniques have been investigated and exploited. The most promising results have been obtained by seeding endothelial cells directly into decellularized scaffolds, taking advantage of the channels remaining from the pre-existing vascular network. Currently, the main hurdle we need to overcome is achieving a fully functional vascular endothelium, stable over a long time period of time, which is engineered using a cell source that is clinically suitable and can generate, in vitro, a yield of cells suitable for the engineering of human sized organs. This review will give an overview of the approaches that have recently been investigated to address the issue of vascularization in the field of tissue engineering of whole organs, and will highlight the current caveats and hurdles that should be addressed in the future.
Collapse
Affiliation(s)
- Alessandro F Pellegata
- Stem Cells and Regenerative Medicine, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Alfonso M Tedeschi
- Stem Cells and Regenerative Medicine, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Paolo De Coppi
- Stem Cells and Regenerative Medicine, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom.,SNAPS, Great Ormond Street Hospital for Children NHS Foundation Trust, University College London, London, United Kingdom
| |
Collapse
|
18
|
Muscle Stem/Progenitor Cells and Mesenchymal Stem Cells of Bone Marrow Origin for Skeletal Muscle Regeneration in Muscular Dystrophies. Arch Immunol Ther Exp (Warsz) 2018. [PMID: 29536116 PMCID: PMC6154032 DOI: 10.1007/s00005-018-0509-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Muscular dystrophies represent a group of diseases which may develop in several forms, and severity of the disease is usually associated with gene mutations. In skeletal muscle regeneration and in muscular dystrophies, both innate and adaptive immune responses are involved. The regenerative potential of mesenchymal stem/stromal cells (MSCs) of bone marrow origin was confirmed by the ability to differentiate into diverse tissues and by their immunomodulatory and anti-inflammatory properties by secretion of a variety of growth factors and anti-inflammatory cytokines. Skeletal muscle comprises different types of stem/progenitor cells such as satellite cells and non-satellite stem cells including MSCs, interstitial stem cells positive for stress mediator PW1 expression and negative for PAX7 called PICs (PW1+/PAX7− interstitial cells), fibro/adipogenic progenitors/mesenchymal stem cells, muscle side population cells and muscle resident pericytes, and all of them actively participate in the muscle regeneration process. In this review, we present biological properties of MSCs of bone marrow origin and a heterogeneous population of muscle-resident stem/progenitor cells, their interaction with the inflammatory environment of dystrophic muscle and potential implications for cellular therapies for muscle regeneration. Subsequently, we propose—based on current research results, conclusions, and our own experience—hypothetical mechanisms for modulation of the complete muscle regeneration process to treat muscular dystrophies.
Collapse
|
19
|
Yoder MC. Endothelial stem and progenitor cells (stem cells): (2017 Grover Conference Series). Pulm Circ 2018; 8:2045893217743950. [PMID: 29099663 PMCID: PMC5731724 DOI: 10.1177/2045893217743950] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 10/31/2017] [Indexed: 12/11/2022] Open
Abstract
The capacity of existing blood vessels to give rise to new blood vessels via endothelial cell sprouting is called angiogenesis and is a well-studied biologic process. In contrast, little is known about the mechanisms for endothelial cell replacement or regeneration within established blood vessels. Since clear definitions exist for identifying cells with stem and progenitor cell properties in many tissues and organs of the body, several groups have begun to accumulate evidence that endothelial stem and progenitor cells exist within the endothelial intima of existing blood vessels. This paper will review stem and progenitor cell definitions and highlight several recent papers purporting to have identified resident vascular endothelial stem and progenitor cells.
Collapse
Affiliation(s)
- Mervin C. Yoder
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
20
|
Stem Cells in Alzheimer’s Disease: Current Standing and Future Challenges. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1079:93-102. [DOI: 10.1007/5584_2018_214] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
21
|
Wang H, Yi J, Li X, Xiao Y, Dhakal K, Zhou J. ALS-associated mutation SOD1 G93A leads to abnormal mitochondrial dynamics in osteocytes. Bone 2018; 106:126-138. [PMID: 29030231 PMCID: PMC5718158 DOI: 10.1016/j.bone.2017.10.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/05/2017] [Accepted: 10/09/2017] [Indexed: 12/13/2022]
Abstract
While the death of motor neuron is a pathological hallmark of amyotrophic lateral sclerosis (ALS), defects in other cell types or organs may also actively contribute to ALS disease progression. ALS patients experience progressive skeletal muscle wasting that may not only exacerbate neuronal degeneration, but likely has a significant impact on bone function. In our previous published study, we have discovered severe bone loss in an ALS mouse model with overexpression of ALS-associated mutation SOD1G93A (G93A). Here we further provide a mechanistic understanding of the bone loss in ALS animal and cellular models. Combining mitochondrial fluorescent indicators and confocal live cell imaging, we discovered abnormalities in mitochondrial network and dynamics in primary osteocytes derived from the same ALS mouse model G93A. Those mitochondrial defects occur in ALS mice after the onset of neuromuscular symptoms, indicating that mitochondria in bone cells respond to muscle atrophy during ALS disease progression. To examine whether ALS mutation has a direct contribution to mitochondrial dysfunction independent of muscle atrophy, we evaluated mitochondrial morphology and motility in cultured osteocytes (MLO-Y4) with overexpression of mitochondrial targeted SOD1G93A. Compared with osteocytes overexpressing the wild type SOD1 as a control, the SOD1G93A osteocytes showed similar defects in mitochondrial network and dynamic as that of the primary osteocytes derived from the ALS mouse model. In addition, we further discovered that overexpression of SOD1G93A enhanced the expression level of dynamin-related protein 1 (Drp1), a key protein promoting mitochondrial fission activity, and reduced the expression level of optic atrophy protein 1 (OPA1), a key protein related to mitochondrial fusion. A specific mitochondrial fission inhibitor (Mdivi-1) partially reversed the effect of SOD1G93A on mitochondrial network and dynamics, indicating that SOD1G93A likely promotes mitochondrial fission, but suppresses the fusion activity. Our data provide the first evidence that mitochondria show abnormality in osteocytes derived from an ALS mouse model. The accumulation of mutant SOD1G93A protein inside mitochondria directly causes dysfunction in mitochondrial dynamics in cultured MLO-Y4 osteocytes. In addition, the ALS mutation SOD1G93A-mediated dysfunction in mitochondrial dynamics is associated with an enhanced apoptosis in osteocytes, which could be a potential mechanism underlying the bone loss during ALS progression.
Collapse
Affiliation(s)
- Huan Wang
- Kansas City University of Medicine and Bioscience, Kansas City, MO, USA
| | - Jianxun Yi
- Kansas City University of Medicine and Bioscience, Kansas City, MO, USA
| | - Xuejun Li
- Kansas City University of Medicine and Bioscience, Kansas City, MO, USA
| | - Yajuan Xiao
- Kansas City University of Medicine and Bioscience, Kansas City, MO, USA
| | - Kamal Dhakal
- Kansas City University of Medicine and Bioscience, Kansas City, MO, USA
| | - Jingsong Zhou
- Kansas City University of Medicine and Bioscience, Kansas City, MO, USA.
| |
Collapse
|
22
|
Kropski JA, Richmond BW, Gaskill CF, Foronjy RF, Majka SM. Deregulated angiogenesis in chronic lung diseases: a possible role for lung mesenchymal progenitor cells (2017 Grover Conference Series). Pulm Circ 2017; 8:2045893217739807. [PMID: 29040010 PMCID: PMC5731726 DOI: 10.1177/2045893217739807] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Chronic lung disease (CLD), including pulmonary fibrosis (PF) and chronic obstructive pulmonary disease (COPD), is the fourth leading cause of mortality worldwide. Both are debilitating pathologies that impede overall tissue function. A common co-morbidity in CLD is vasculopathy, characterized by deregulated angiogenesis, remodeling, and loss of microvessels. This substantially worsens prognosis and limits survival, with most current therapeutic strategies being largely palliative. The relevance of angiogenesis, both capillary and lymph, to the pathophysiology of CLD has not been resolved as conflicting evidence depicts angiogenesis as both reparative or pathologic. Therefore, we must begin to understand and model the underlying pathobiology of pulmonary vascular deregulation, alone and in response to injury induced disease, to define cell interactions necessary to maintain normal function and promote repair. Capillary and lymphangiogenesis are deregulated in both PF and COPD, although the mechanisms by which they co-regulate and underlie early pathogenesis of disease are unknown. The cell-specific mechanisms that regulate lung vascular homeostasis, repair, and remodeling represent a significant gap in knowledge, which presents an opportunity to develop targeted therapies. We have shown that that ABCG2pos multipotent adult mesenchymal stem or progenitor cells (MPC) influence the function of the capillary microvasculature as well as lymphangiogenesis. A balance of both is required for normal tissue homeostasis and repair. Our current models suggest that when lymph and capillary angiogenesis are out of balance, the non-equivalence appears to support the progression of disease and tissue remodeling. The angiogenic regulatory mechanisms underlying CLD likely impact other interstitial lung diseases, tuberous sclerosis, and lymphangioleiomyomatosis.
Collapse
Affiliation(s)
- Jonathan A Kropski
- 1 12328 Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bradley W Richmond
- 1 12328 Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Christa F Gaskill
- 1 12328 Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Robert F Foronjy
- 3 5718 Department of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Susan M Majka
- 1 12328 Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,2 74498 Department of Medicine, Division of Pulmonary and Critical Care Medicine, SUNY Downstate Medical Center, Brooklyn, NY, USA
| |
Collapse
|
23
|
Gaskill CF, Carrier EJ, Kropski JA, Bloodworth NC, Menon S, Foronjy RF, Taketo MM, Hong CC, Austin ED, West JD, Means AL, Loyd JE, Merryman WD, Hemnes AR, De Langhe S, Blackwell TS, Klemm DJ, Majka SM. Disruption of lineage specification in adult pulmonary mesenchymal progenitor cells promotes microvascular dysfunction. J Clin Invest 2017; 127:2262-2276. [PMID: 28463231 DOI: 10.1172/jci88629] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 03/02/2017] [Indexed: 01/04/2023] Open
Abstract
Pulmonary vascular disease is characterized by remodeling and loss of microvessels and is typically attributed to pathological responses in vascular endothelium or abnormal smooth muscle cell phenotypes. We have challenged this understanding by defining an adult pulmonary mesenchymal progenitor cell (MPC) that regulates both microvascular function and angiogenesis. The current understanding of adult MPCs and their roles in homeostasis versus disease has been limited by a lack of genetic markers with which to lineage label multipotent mesenchyme and trace the differentiation of these MPCs into vascular lineages. Here, we have shown that lineage-labeled lung MPCs expressing the ATP-binding cassette protein ABCG2 (ABCG2+) are pericyte progenitors that participate in microvascular homeostasis as well as adaptive angiogenesis. Activation of Wnt/β-catenin signaling, either autonomously or downstream of decreased BMP receptor signaling, enhanced ABCG2+ MPC proliferation but suppressed MPC differentiation into a functional pericyte lineage. Thus, enhanced Wnt/β-catenin signaling in ABCG2+ MPCs drives a phenotype of persistent microvascular dysfunction, abnormal angiogenesis, and subsequent exacerbation of bleomycin-induced fibrosis. ABCG2+ MPCs may, therefore, account in part for the aberrant microvessel function and remodeling that are associated with chronic lung diseases.
Collapse
Affiliation(s)
- Christa F Gaskill
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine or Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee USA
| | - Erica J Carrier
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine or Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee USA
| | - Jonathan A Kropski
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine or Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee USA
| | | | - Swapna Menon
- Pulmonary Vascular Research Institute, Kochi, and AnalyzeDat Consulting Services, Kerala, India
| | - Robert F Foronjy
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, SUNY Downstate Medical Center, Brooklyn, New York, USA
| | | | - Charles C Hong
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine or Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee USA.,Department of Pathology and Laboratory Medicine or Department of Medicine, Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | | | - James D West
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine or Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee USA
| | - Anna L Means
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - James E Loyd
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine or Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee USA
| | - W David Merryman
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee USA
| | - Anna R Hemnes
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine or Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee USA
| | | | - Timothy S Blackwell
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine or Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee USA
| | - Dwight J Klemm
- Department of Medicine, Pulmonary and Critical Care Medicine, Gates Center for Regenerative Medicine and Stem Cell Biology, University of Colorado, Aurora, Colorado, USA.,Geriatric Research Education and Clinical Center, Eastern Colorado Health Care System, Denver, Colorado, USA
| | - Susan M Majka
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine or Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee USA.,Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
24
|
From skeletal muscle to stem cells: an innovative and minimally-invasive process for multiple species. Sci Rep 2017; 7:696. [PMID: 28386120 PMCID: PMC5429713 DOI: 10.1038/s41598-017-00803-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 03/14/2017] [Indexed: 02/06/2023] Open
Abstract
Bone marrow and adipose tissue represent the two most commonly exploited sources of adult mesenchymal stem cells for musculoskeletal applications. Unfortunately the sampling of bone marrow and fat tissue is invasive and does not always lead to a sufficient number of cells. The present study describes a novel sampling method based on microbiopsy of skeletal muscle in man, pigs, dogs and horses. The process includes explant of the sample, Percoll density gradient for isolation and subsequent culture of the cells. We further characterized the cells and identified their clonogenic and immunomodulatory capacities, their immune-phenotyping behavior and their capability to differentiate into chondroblasts, osteoblasts and adipocytes. In conclusion, this report describes a novel and easy-to-use technique of skeletal muscle-derived mesenchymal stem cell harvest, culture, characterization. This technique is transposable to a multitude of different animal species.
Collapse
|
25
|
Yeboah A, Maguire T, Schloss R, Berthiaume F, Yarmush ML. Stromal Cell-Derived Growth Factor-1 Alpha-Elastin Like Peptide Fusion Protein Promotes Cell Migration and Revascularization of Experimental Wounds in Diabetic Mice. Adv Wound Care (New Rochelle) 2017; 6:10-22. [PMID: 28116224 DOI: 10.1089/wound.2016.0694] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 06/28/2016] [Indexed: 12/12/2022] Open
Abstract
Objective: In previous work, we demonstrated the development of a novel fusion protein containing stromal cell-derived growth factor-1 alpha juxtaposed to an elastin-like peptide (SDF1-ELP), which has similar bioactivity, but is more stable in elastase than SDF1. Herein, we compare the ability of a single topical application of SDF1-ELP to that of SDF1 in healing 1 × 1 cm excisional wounds in diabetic mice. Approach: Human Leukemia-60 cells were used to demonstrate the chemotactic potential of SDF1-ELP versus SDF1 in vitro. Human umbilical vascular endothelial cells were used to demonstrate the angiogenic potential of SDF1-ELP versus SDF1 in vitro. The bioactivity of SDF1-ELP versus SDF1 after incubation in ex-vivo diabetic wound fluid was compared. The in-vivo effectiveness of SDF1-ELP versus SDF1 was compared in diabetic mice wound model by monitoring for the number of CD31+ cells in harvested wound tissues. Results: SDF1-ELP promotes the migration of cells and induces vascularization similar to SDF1 in vitro. SDF1-ELP is more stable in wound fluids compared to SDF1. In vivo, SDF1-ELP induced a higher number of vascular endothelial cells (CD31+ cells) compared to SDF1 and other controls, suggesting increased vascularization. Innovation: While growth factors have been shown to improve wound healing, this strategy is largely ineffective in chronic wounds. In this work, we show that SDF1-ELP is a promising agent for the treatment of chronic skin wounds. Conclusion: The superior in vivo performance and stability of SDF1-ELP makes it a promising agent for the treatment of chronic skin wounds.
Collapse
Affiliation(s)
- Agnes Yeboah
- Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, New Jersey
| | - Tim Maguire
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey
| | - Rene Schloss
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey
| | - Francois Berthiaume
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey
| | - Martin L. Yarmush
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey
- Center for Engineering in Medicine, Massachusetts General Hospital and Shriners Burns Hospital, Boston, Massachusetts
| |
Collapse
|
26
|
Salem H, Rocha NP, Colpo GD, Teixeira AL. Moving from the Dish to the Clinical Practice: A Decade of Lessons and Perspectives from the Pre-Clinical and Clinical Stem Cell Studies for Alzheimer’s Disease. J Alzheimers Dis 2016; 53:1209-30. [DOI: 10.3233/jad-160250] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Haitham Salem
- Department of Psychiatry and Behavioral Sciences, Neuropsychiatry Program, McGovern Medical School, The University of Texas Health Science Center, Houston, TX, USA
- Regenerative Medicine Program, University of Lübeck, Schleswig-Holstein, Germany
| | - Natalia Pessoa Rocha
- Department of Psychiatry and Behavioral Sciences, Neuropsychiatry Program, McGovern Medical School, The University of Texas Health Science Center, Houston, TX, USA
| | - Gabriela Delevati Colpo
- Department of Psychiatry and Behavioral Sciences, Neuropsychiatry Program, McGovern Medical School, The University of Texas Health Science Center, Houston, TX, USA
| | - Antonio Lucio Teixeira
- Department of Psychiatry and Behavioral Sciences, Neuropsychiatry Program, McGovern Medical School, The University of Texas Health Science Center, Houston, TX, USA
| |
Collapse
|
27
|
Muskiewicz KR, Frank NY, Flint AF, Gussoni E. Myogenic Potential of Muscle Side and Main Population Cells after Intravenous Injection into Sub-lethally IrradiatedmdxMice. J Histochem Cytochem 2016; 53:861-73. [PMID: 15995145 DOI: 10.1369/jhc.4a6573.2005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Muscle side population (SP) cells have demonstrated hematopoietic and myogenic activities in vivo upon intravenous (IV) injection into lethally irradiated mdx mice. In contrast, muscle main population (MP) cells were unable to rescue the bone marrow of lethally irradiated mice and, consequently, their in vivo myogenic potential could not be assessed using this method. In the current study, muscle SP or MP cells derived from syngeneic wild-type male mice were delivered to sub-lethally irradiated mdx female mice by single or serial IV injections. Recipient mice were euthanized 12 weeks after transplantation at which time the quadriceps and diaphragm muscles were analyzed for the presence of donor-derived cells. Mice injected with 104muscle SP cells or with 106MP cells appeared to have similar numbers of dystrophin-positive myofibers containing fused donor nuclei. Analysis of the remaining tissue via real-time quantitative PCR indicated that mice injected with muscle SP cells had a higher percentage of donor-derived Y-DNA in the quadriceps than mice injected with MP cells, suggesting that muscle SP cells may be enriched for progenitors able to engraft dystrophic skeletal muscles from the circulation. Although the overall engraftment did not reach therapeutically significant levels, these results indicate that further optimization of cell delivery techniques may lead to improved efficacy of cell-mediated therapy using muscle SP cells.
Collapse
Affiliation(s)
- Kristina R Muskiewicz
- Division of Genetics, Program in Genomics, Children's Hospital Boston, 320 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
28
|
The development and characterization of SDF1α-elastin-like-peptide nanoparticles for wound healing. J Control Release 2016; 232:238-47. [PMID: 27094603 DOI: 10.1016/j.jconrel.2016.04.020] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 04/07/2016] [Accepted: 04/11/2016] [Indexed: 12/18/2022]
Abstract
Chronic skin wounds are characterized by poor re-epithelialization, angiogenesis and granulation. Previous work has demonstrated that topical stromal cell-derived growth factor-1 (SDF1) promotes neovascularization, resulting in faster re-epithelialization of skin wounds in diabetic mice. However, the clinical usefulness of such bioactive peptides is limited because they are rapidly degraded in the wound environment due to high levels of proteases. Here, we describe the development of a recombinant fusion protein comprised of SDF1 and an elastin-like peptide that confers the ability to self-assemble into nanoparticles. The fusion protein and recombinant human SDF1 showed similar binding characteristics, as indicated by the measured equilibrium dissociation constant (Kd) for the binding of free SDF1 or the fusion protein to the CXCR4 receptor. The biological activity of SDF1-ELP, as measured by intracellular calcium release in HL60 cells was dose dependent, and also very similar to that of free SDF1. In contrast, the biological activity of SDF1-ELP in vivo was significantly superior to that of free SDF1. When applied to full thickness skin wounds in diabetic mice, wounds treated with SDF1-ELP nanoparticles were 95% closed by day 21, and fully closed by day 28, while wounds treated with free SDF1, ELP alone, or vehicle were only 80% closed by day 21, and took 42days to fully close. In addition, the SDF1-ELP nanoparticles significantly increased the epidermal and dermal layer of the healed wound, as compared to the other groups. These results indicate that SDF1-ELP fusion protein nanoparticles are promising agents for the treatment of chronic skin wounds.
Collapse
|
29
|
Zou S, Ren P, Zhang L, Azares AR, Zhang S, Coselli JS, Shen YH, LeMaire SA. AKT2 Promotes Bone Marrow Cell-Mediated Aortic Protection in Mice. Ann Thorac Surg 2016; 101:2085-96. [PMID: 27090732 DOI: 10.1016/j.athoracsur.2016.01.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 12/08/2015] [Accepted: 01/04/2016] [Indexed: 12/14/2022]
Abstract
BACKGROUND Insufficient aortic protection and repair may contribute to the development of aortic aneurysms and dissections (AAD). However, mechanisms of aortic protection and repair are poorly understood. We have shown that the multifunctional kinase AKT2 plays an important role in protecting the aortic wall. Here, we examined whether AKT2 protects against AAD by promoting bone marrow cell (BMC)-mediated aortic protection. METHODS Irradiated wild-type mice received green fluorescent protein-expressing BMCs from wild-type mice or Akt2(-/-) mice, followed by challenge with angiotensin II (1000 ng/kg/min) infusion for 4 weeks. We compared BMC recruitment, aortic destruction, and AAD development between groups. The direct effects of wild-type and Akt2(-/-) BMCs on smooth muscle cell survival were examined in coculture experiments. RESULTS After angiotensin II infusion, no (0 of 14) wild-type BMC recipients had AAD; in contrast, 64% (9 of 14) of Akt2(-/-) BMC recipients had AAD (p = 0.002) with severe aortic destruction. Compared with aortas from challenged wild-type BMC recipients, aortas from challenged Akt2(-/-) BMC recipients showed significantly less BMC recruitment, NG2 (neuron-glial antigen 2) progenitor activation, and FSP1 (fibroblast-specific protein 1) fibroblast activation. In addition, aortas from challenged Akt2(-/-) BMC recipients showed increased apoptosis and inflammation. In coculture experiments, wild-type but not Akt2(-/-) BMCs prevented smooth muscle cells from undergoing oxidative stress-induced apoptosis. CONCLUSIONS After aortic challenge, BMCs are recruited to the aortic wall and provide protection by activating progenitors and fibroblasts and by promoting aortic cell survival. Our findings indicate that AKT2 is involved in these processes and that defects in this pathway may promote progressive degeneration during AAD development.
Collapse
Affiliation(s)
- Sili Zou
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas; Department of Cardiovascular Surgery, Texas Heart Institute, Houston, Texas; Department of Vascular Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Pingping Ren
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas; Department of Cardiovascular Surgery, Texas Heart Institute, Houston, Texas
| | - Lin Zhang
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas; Department of Cardiovascular Surgery, Texas Heart Institute, Houston, Texas
| | - Alon R Azares
- Stem Cell Research, Texas Heart Institute, Houston, Texas
| | - Sui Zhang
- Stem Cell Research, Texas Heart Institute, Houston, Texas
| | - Joseph S Coselli
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas; Department of Cardiovascular Surgery, Texas Heart Institute, Houston, Texas; Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas; Department of Cardiovascular Surgery, CHI St. Luke's Health-Baylor St. Luke's Medical Center, Houston, Texas
| | - Ying H Shen
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas; Department of Cardiovascular Surgery, Texas Heart Institute, Houston, Texas; Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas
| | - Scott A LeMaire
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas; Department of Cardiovascular Surgery, Texas Heart Institute, Houston, Texas; Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas; Department of Cardiovascular Surgery, CHI St. Luke's Health-Baylor St. Luke's Medical Center, Houston, Texas.
| |
Collapse
|
30
|
Exercise as an Adjuvant Therapy for Hematopoietic Stem Cell Mobilization. Stem Cells Int 2016; 2016:7131359. [PMID: 27123008 PMCID: PMC4830735 DOI: 10.1155/2016/7131359] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 02/03/2016] [Accepted: 02/07/2016] [Indexed: 12/13/2022] Open
Abstract
Hematopoietic stem cell transplant (HSCT) using mobilized peripheral blood hematopoietic stem cells (HSPCs) is the only curative strategy for many patients suffering from hematological malignancies. HSPC collection protocols rely on pharmacological agents to mobilize HSPCs to peripheral blood. Limitations including variable donor responses and long dosing protocols merit further investigations into adjuvant therapies to enhance the efficiency of HSPCs collection. Exercise, a safe and feasible intervention in patients undergoing HSCT, has been previously shown to robustly stimulate HSPC mobilization from the bone marrow. Exercise-induced HSPC mobilization is transient limiting its current clinical potential. Thus, a deeper investigation of the mechanisms responsible for exercise-induced HSPC mobilization and the factors responsible for removal of HSPCs from circulation following exercise is warranted. The present review will describe current research on exercise and HSPC mobilization, outline the potential mechanisms responsible for exercise-induced HSPC mobilization, and highlight potential sites for HSPC homing following exercise. We also outline current barriers to the implementation of exercise as an adjuvant therapy for HSPC mobilization and suggest potential strategies to overcome these barriers.
Collapse
|
31
|
Turner EC, Huang CL, Sawhney N, Govindarajan K, Clover AJP, Martin K, Browne TC, Whelan D, Kumar AHS, Mackrill JJ, Wang S, Schmeckpeper J, Stocca A, Pierce WG, Leblond AL, Cai L, O'Sullivan DM, Buneker CK, Choi J, MacSharry J, Ikeda Y, Russell SJ, Caplice NM. A Novel Selectable Islet 1 Positive Progenitor Cell Reprogrammed to Expandable and Functional Smooth Muscle Cells. Stem Cells 2016; 34:1354-68. [PMID: 26840832 DOI: 10.1002/stem.2319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 12/17/2015] [Indexed: 11/08/2022]
Abstract
Disorders affecting smooth muscle structure/function may require technologies that can generate large scale, differentiated and contractile smooth muscle cells (SMC) suitable for cell therapy. To date no clonal precursor population that provides large numbers of differentiated SMC in culture has been identified in a rodent. Identification of such cells may also enhance insight into progenitor cell fate decisions and the relationship between smooth muscle precursors and disease states that implicate differentiated SMC. In this study, we used classic clonal expansion techniques to identify novel self-renewing Islet 1 (Isl-1) positive primitive progenitor cells (PPC) within rat bone marrow that exhibited canonical stem cell markers and preferential differentiation towards a smooth muscle-like fate. We subsequently used molecular tagging to select Isl-1 positive clonal populations from expanded and de novo marrow cell populations. We refer to these previously undescribed cells as the PPC given its stem cell marker profile, and robust self-renewal capacity. PPC could be directly converted into induced smooth muscle cells (iSMC) using single transcription factor (Kruppel-like factor 4) knockdown or transactivator (myocardin) overexpression in contrast to three control cells (HEK 293, endothelial cells and mesenchymal stem cells) where such induction was not possible. iSMC exhibited immuno- and cytoskeletal-phenotype, calcium signaling profile and contractile responses similar to bona fide SMC. Passaged iSMC could be expanded to a scale sufficient for large scale tissue replacement. PPC and reprogramed iSMC so derived may offer future opportunities to investigate molecular, structure/function and cell-based replacement therapy approaches to diverse cardiovascular, respiratory, gastrointestinal, and genitourinary diseases that have as their basis smooth muscle cell functional aberrancy or numerical loss. Stem Cells 2016;34:1354-1368.
Collapse
Affiliation(s)
- Elizabeth C Turner
- Centre for Research in Vascular Biology (CRVB), Biosciences Institute, University College Cork, Cork, Ireland
| | - Chien-Ling Huang
- Centre for Research in Vascular Biology (CRVB), Biosciences Institute, University College Cork, Cork, Ireland
| | - Neha Sawhney
- Centre for Research in Vascular Biology (CRVB), Biosciences Institute, University College Cork, Cork, Ireland
| | - Kalaimathi Govindarajan
- Centre for Research in Vascular Biology (CRVB), Biosciences Institute, University College Cork, Cork, Ireland
| | - Anthony J P Clover
- Centre for Research in Vascular Biology (CRVB), Biosciences Institute, University College Cork, Cork, Ireland
| | - Kenneth Martin
- Centre for Research in Vascular Biology (CRVB), Biosciences Institute, University College Cork, Cork, Ireland
| | - Tara C Browne
- Centre for Research in Vascular Biology (CRVB), Biosciences Institute, University College Cork, Cork, Ireland
| | - Derek Whelan
- Centre for Research in Vascular Biology (CRVB), Biosciences Institute, University College Cork, Cork, Ireland
| | - Arun H S Kumar
- Centre for Research in Vascular Biology (CRVB), Biosciences Institute, University College Cork, Cork, Ireland
| | - John J Mackrill
- Department of Physiology, University College Cork, Biosciences Institute, College Road, Cork, Ireland
| | - Shaohua Wang
- Molecular Medicine Program, Mayo Clinic and Foundation, 200 First St, Rochester, Minnesota, 55905
| | - Jeffrey Schmeckpeper
- Centre for Research in Vascular Biology (CRVB), Biosciences Institute, University College Cork, Cork, Ireland
| | - Alessia Stocca
- Centre for Research in Vascular Biology (CRVB), Biosciences Institute, University College Cork, Cork, Ireland
| | - William G Pierce
- Department of Physiology, University College Cork, Biosciences Institute, College Road, Cork, Ireland
| | - Anne-Laure Leblond
- Centre for Research in Vascular Biology (CRVB), Biosciences Institute, University College Cork, Cork, Ireland
| | - Liquan Cai
- Centre for Research in Vascular Biology (CRVB), Biosciences Institute, University College Cork, Cork, Ireland
| | - Donnchadh M O'Sullivan
- Centre for Research in Vascular Biology (CRVB), Biosciences Institute, University College Cork, Cork, Ireland
| | - Chirlei K Buneker
- Centre for Research in Vascular Biology (CRVB), Biosciences Institute, University College Cork, Cork, Ireland
| | - Janet Choi
- Centre for Research in Vascular Biology (CRVB), Biosciences Institute, University College Cork, Cork, Ireland
| | - John MacSharry
- Alimentary Pharmabiotic Centre (APC), Biosciences Institute, University College Cork, Cork, Ireland
| | - Yasuhiro Ikeda
- Molecular Medicine Program, Mayo Clinic and Foundation, 200 First St, Rochester, Minnesota, 55905
| | - Stephen J Russell
- Molecular Medicine Program, Mayo Clinic and Foundation, 200 First St, Rochester, Minnesota, 55905
| | - Noel M Caplice
- Centre for Research in Vascular Biology (CRVB), Biosciences Institute, University College Cork, Cork, Ireland
| |
Collapse
|
32
|
Dey D, Goldhamer DJ, Yu PB. Contributions of muscle-resident progenitor cells to homeostasis and disease. CURRENT MOLECULAR BIOLOGY REPORTS 2015; 1:175-188. [PMID: 29075589 PMCID: PMC5654566 DOI: 10.1007/s40610-015-0025-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Adult skeletal muscle maintains a homeostatic state with modest levels of cellular turnover, unlike the skin or blood. However, the muscle is highly sensitive to tissue injury, which unleashes a cascade of regenerative and inflammatory processes. Muscle regeneration involves cross-talk between numerous cytokine signaling axes, and the coordinated activity of multiple muscle-resident and circulating progenitor populations. Satellite cells, closely associated with myofibers, are established as the canonical muscle stem cell, with self-renewal and myofiber-regenerating capacity. However, a heterogeneous group of mesenchymal progenitor cells residing within the muscle interstitium are also highly responsive to muscle injury and exhibit varying degrees of regenerative potential. These cells interact with satellite cells via direct and indirect mechanisms to regulate regeneration or repair. We describe the known phylogenetic and functional relationships of the multiple progenitor populations residing within skeletal muscle, their putative roles in the coordination of injury repair, and their possible contributions to health and disease.
Collapse
Affiliation(s)
- Devaveena Dey
- Department of Medicine, Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, MA 02115-6119, USA
| | - David J. Goldhamer
- Department of Molecular and Cell Biology, University of Connecticut Stem Cell Institute, University of Connecticut, Storrs, CT 06269-3125, USA
| | - Paul B. Yu
- Department of Medicine, Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, MA 02115-6119, USA
| |
Collapse
|
33
|
Caplan AI. MSCs: The Sentinel and Safe-Guards of Injury. J Cell Physiol 2015; 231:1413-6. [PMID: 26565391 DOI: 10.1002/jcp.25255] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 11/11/2015] [Indexed: 01/08/2023]
Abstract
Mesenchymal stem cells (MSCs) were originally named because they could differentiate in a variety of mesenchymal phenotypes in culture. Evidence indicates that MSCs arise from perivascular cells, pericytes, when the blood vessels are broken or inflamed. These pericyte/MSCs are situated on every blood vessel in the body. The MSCs sense the micro-environment of the injury site and secrete site-specific factors that serve several important reparative functions: first, a curtain of molecules from the front of the MSCs provide a barrier from the interrogation of the over-aggressive immune system. Second, from the back of the MSCs, a different set of bioactive agents inhibit scar formation and establish a regenerative micro-environment. Third, if bacteria are sensed by the MSCs, they produce powerful protein antibiotics that kill the bacteria on contact. Last, the MSCs surround and encyst intruding solid objects like a piece of wood (a "splinter") or other foreign objects. The MSCs act as a combination paramedic and emergency room (ER) staff to survey the damage, isolate foreign components, stabilize the injured tissues, provide antibiotics and encysting protection before a slower, medicinal sequence can be initiated to regenerate the damaged tissue. The MSCs, thus, act as sentinels to safeguard the individual from intrusion and chronic injury. A societal treatment system has evolved, paramedics and ER procedures, which mirror in a macro-sense what MSCs orchestrate in a micro-sense. Key to this new understanding is that MSCs are not "stem cells," but rather as Medicinal Signaling Cells as the therapeutic agents.
Collapse
Affiliation(s)
- Arnold I Caplan
- Department of Biology, Skeletal Research Center, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
34
|
Abstract
Amyotrophic lateral sclerosis (ALS), also called Lou Gehrig's disease, is a fatal neuromuscular disorder characterized by degeneration of motor neurons and by skeletal muscle atrophy. Although the death of motor neurons is a pathological hallmark of ALS, the potential role of other organs in disease progression remains to be elucidated. Skeletal muscle and bone are the two largest organs in the human body. They are responsible not only for locomotion but also for maintaining whole body normal metabolism and homeostasis. Patients with ALS display severe muscle atrophy, which may reflect intrinsic defects in mitochondrial respiratory function and calcium (Ca) signaling in muscle fibers, in addition to the role of axonal withdrawal associated with ALS progression. Incidence of fractures is high in ALS patients, indicating there are potential bone defects in individuals with this condition. There is a lifelong interaction between skeletal muscle and bone. The severe muscle degeneration that occurs during ALS progression may potentially have a significant impact on bone function, and the defective bone may also contribute significantly to neuromuscular degeneration in the course of the disease. Due to the nature of the rapid and severe neuromuscular symptoms, a majority of studies on ALS have focused on neurodegeneration. Just a few studies have explored the possible contribution of muscle defects, even fewer on bone defects, and fewer still on possible muscle-bone crosstalk in ALS. This review article discusses current studies on bone defects and potential defects in muscle-bone crosstalk in ALS.
Collapse
Affiliation(s)
- Jingsong Zhou
- Department of Physiology, Kansas City University of Medicine and Biosciences, 1750 Independence Ave., Kansas City, MO, 64106, USA,
| | | | | |
Collapse
|
35
|
Tam JCW, Ko CH, Lau KM, To MH, Kwok HF, Siu WS, Lau CP, Chan WY, Leung PC, Fung KP, Lau CBS. Enumeration and functional investigation of endothelial progenitor cells in neovascularization of diabetic foot ulcer rats with a Chinese 2-herb formula. J Diabetes 2015; 7:718-28. [PMID: 25350858 DOI: 10.1111/1753-0407.12230] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 09/26/2014] [Accepted: 09/29/2014] [Indexed: 12/19/2022] Open
Abstract
BACKBROUND We investigated the effect of a Chinese 2-herb formula (NF3) on the enumeration and angiogenic differentiation of endothelial progenitor cells (EPCs) in diabetic foot ulcer rats. METHODS EPCs and stromal cell-derived factor-1α (SDF-1α) were quantified by flow cytometry and ELISA, respectively. In vitro angiogenesis assays included proliferation, adhesion, migration and tube formation. RESULTS Our result demonstrated that NF3 (0.98 g/kg) could significantly enhance the circulating CD34(+) /VEGFR2(+) /CD45(-) EPCs levels in diabetic foot ulcer rats by 60% (P < 0.05) through the partial elevation of SDF-1α, restoring the mobilization ability of EPCs for wound neovascularization. We successfully isolated the BM-derived EPCs to study their angiogenic potential after NF3 treatment. BM-derived EPCs significantly expressed cell surface markers of CD34, CD146 and VEGFR2 (P < 0.05 - 0.01). NF3 could significantly stimulate the proliferation and attachment ability of EPCs dose-dependently (P < 0.01-0.001). Besides, NF3 could significantly augment EPCs migration (P < 0.001) and tube formation (P < 0.01-0.001). CONCLUSIONS NF3 modulated diabetic wound healing through regulation of systemic EPCs level and increase in local vascular formation.
Collapse
Affiliation(s)
- Jacqueline Chor Wing Tam
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Hong Kong
| | - Chun Hay Ko
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Hong Kong
| | - Kit Man Lau
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Hong Kong
| | - Ming Ho To
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Hong Kong
| | - Hin Fai Kwok
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Hong Kong
| | - Wing Sum Siu
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Hong Kong
| | - Ching Po Lau
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Hong Kong
| | - Wai Yee Chan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Ping Chung Leung
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Hong Kong
| | - Kwok Pui Fung
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Hong Kong
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Clara Bik San Lau
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
36
|
Bobryshev YV, Orekhov AN, Chistiakov DA. Vascular stem/progenitor cells: current status of the problem. Cell Tissue Res 2015; 362:1-7. [PMID: 26169302 DOI: 10.1007/s00441-015-2231-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 05/26/2015] [Indexed: 02/06/2023]
Abstract
Stem/progenitor cells residing in the vascular wall of post-natal vessels play a crucial role in angiogenesis and vascular regeneration after damage. There are four major populations of vascular-resident stem/progenitor cells with differentiated clonogenic and proliferative potential, namely mesenchymal stem cells, pericytes, endothelial progenitor cells, and smooth muscle progenitor cells. These progenitors reside in vascular stem cell niches, which are more likely to be in the adventitia, a vascular wall layer in which increased concentration of stem cell surface markers has been shown. Indeed, vascular resident progenitors are not uniformly distributed across the vessel wall and the circulatory system. The heterogeneity of such a distribution could contribute to the differentiated susceptibility of various vessel regions to chronic vascular diseases such as atherosclerosis. In cardiovascular pathology, adult vascular resident progenitors could play either a negative or a positive role.
Collapse
Affiliation(s)
- Yuri V Bobryshev
- Faculty of Medicine, School of Medical Sciences, University of New South Wales, Kensington, Sydney, NSW, 2052, Australia.
| | - Alexander N Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Sciences, Moscow, 125315, Russia
- Institute for Atherosclerosis, Skolkovo Innovative Center, Moscow, 143025, Russia
- Department of Biophysics, Biological Faculty, Moscow State University, Moscow, 119991, Russia
| | - Dimitry A Chistiakov
- The Mount Sinai Community Clinical Oncology Program, Mount Sinai Comprehensive Cancer Center, Mount Sinai Medical Center, Miami Beach, FL, 33140, USA
| |
Collapse
|
37
|
Tamaki T, Uchiyama Y, Hirata M, Hashimoto H, Nakajima N, Saito K, Terachi T, Mochida J. Therapeutic isolation and expansion of human skeletal muscle-derived stem cells for the use of muscle-nerve-blood vessel reconstitution. Front Physiol 2015; 6:165. [PMID: 26082721 PMCID: PMC4451695 DOI: 10.3389/fphys.2015.00165] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 05/13/2015] [Indexed: 12/04/2022] Open
Abstract
Skeletal muscle makes up 40–50% of body mass, and is thus considered to be a good adult stem cell source for autologous therapy. Although, several stem/progenitor cells have been fractionated from mouse skeletal muscle showing a high potential for therapeutic use, it is unclear whether this is the case in human. Differentiation and therapeutic potential of human skeletal muscle-derived cells (Sk-Cs) was examined. Samples (5–10 g) were obtained from the abdominal and leg muscles of 36 patients (age, 17–79 years) undergoing prostate cancer treatment or leg amputation surgery. All patients gave informed consent. Sk-Cs were isolated using conditioned collagenase solution, and were then sorted as CD34−/CD45−/CD29+ (Sk-DN/29+) and CD34+/CD45− (Sk-34) cells, in a similar manner as for the previous mouse Sk-Cs. Both cell fractions were appropriately expanded using conditioned culture medium for about 2 weeks. Differentiation potentials were then examined during cell culture and in vivo transplantation into the severely damaged muscles of athymic nude mice and rats. Interestingly, these two cell fractions could be divided into highly myogenic (Sk-DN/29+) and multipotent stem cell (Sk-34) fractions, in contrast to mouse Sk-Cs, which showed comparable capacities in both cells. At 6 weeks after the separate transplantation of both cell fractions, the former showed an active contribution to muscle fiber regeneration, but the latter showed vigorous engraftment to the interstitium associated with differentiation into Schwann cells, perineurial/endoneurial cells, and vascular endothelial cells and pericytes, which corresponded to previous observations with mouse SK-Cs. Importantly, mixed cultures of both cells resulted the reduction of tissue reconstitution capacities in vivo, whereas co-transplantation after separate expansion showed favorable results. Therefore, human Sk-Cs are potentially applicable to therapeutic autografts and show multiple differentiation potential in vivo.
Collapse
Affiliation(s)
- Tetsuro Tamaki
- Muscle Physiology and Cell Biology Unit, Tokai University School of Medicine Isehara, Japan ; Department of Human Structure and Function, Tokai University School of Medicine Isehara, Japan
| | - Yoshiyasu Uchiyama
- Muscle Physiology and Cell Biology Unit, Tokai University School of Medicine Isehara, Japan ; Department of Orthopedics, Tokai University School of Medicine Isehara, Japan
| | - Maki Hirata
- Muscle Physiology and Cell Biology Unit, Tokai University School of Medicine Isehara, Japan ; Department of Human Structure and Function, Tokai University School of Medicine Isehara, Japan ; Department of Orthopedics, Tokai University School of Medicine Isehara, Japan
| | - Hiroyuki Hashimoto
- Muscle Physiology and Cell Biology Unit, Tokai University School of Medicine Isehara, Japan ; Department of Orthopedics, Tokai University School of Medicine Isehara, Japan
| | - Nobuyuki Nakajima
- Muscle Physiology and Cell Biology Unit, Tokai University School of Medicine Isehara, Japan ; Department of Urology, Tokai University School of Medicine Isehara, Japan
| | - Kosuke Saito
- Muscle Physiology and Cell Biology Unit, Tokai University School of Medicine Isehara, Japan ; Department of Urology, Tokai University School of Medicine Isehara, Japan
| | - Toshiro Terachi
- Department of Urology, Tokai University School of Medicine Isehara, Japan
| | - Joji Mochida
- Department of Orthopedics, Tokai University School of Medicine Isehara, Japan
| |
Collapse
|
38
|
Growth of bone marrow and skeletal muscle side population stem cells in suspension culture. Methods Mol Biol 2015; 1210:51-61. [PMID: 25173160 DOI: 10.1007/978-1-4939-1435-7_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
The ability to efficiently isolate and expand various stem cell populations in vitro is crucial for successful translation of cell-based therapies to the clinical setting. One such heterogeneous population that possesses a remarkable potential for the development of cell-based treatments for a variety of degenerative diseases and disorders is called the Side Population (SP). For many years, investigators have isolated these primitive cells based upon their ability to efflux the fluorophore Hoechst 33342. This attribute enabled separation of SP cells derived from multiple tissue sources from other endogenous cell populations using fluorescence-activated cell sorting (FACS). While all tissue-specific SP fractions appear to contain cells with multi-potent stem cell activity, the therapeutic utility of these cells has yet to be fully realized because of the scarcity of this fraction in vivo. In view of that, we developed a method to expand adult murine bone marrow and skeletal muscle-derived SP cells in vitro. Here, we describe a spinner-flask culture system that supports the growth of SP cells in suspension when they are combined with feeder cells cultured on spherical microcarriers. In this way, their distinguishing biological characteristics can be maintained, attachment-stimulated differentiation is avoided, and therapeutically relevant quantities of SP cells are generated. Modification of the described procedure may permit expansion of the SP from other relevant tissue sources and our method is amenable to establishing compliance with current good manufacturing practices.
Collapse
|
39
|
Murfee WL, Sweat RS, Tsubota KI, Mac Gabhann F, Khismatullin D, Peirce SM. Applications of computational models to better understand microvascular remodelling: a focus on biomechanical integration across scales. Interface Focus 2015; 5:20140077. [PMID: 25844149 DOI: 10.1098/rsfs.2014.0077] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Microvascular network remodelling is a common denominator for multiple pathologies and involves both angiogenesis, defined as the sprouting of new capillaries, and network patterning associated with the organization and connectivity of existing vessels. Much of what we know about microvascular remodelling at the network, cellular and molecular scales has been derived from reductionist biological experiments, yet what happens when the experiments provide incomplete (or only qualitative) information? This review will emphasize the value of applying computational approaches to advance our understanding of the underlying mechanisms and effects of microvascular remodelling. Examples of individual computational models applied to each of the scales will highlight the potential of answering specific questions that cannot be answered using typical biological experimentation alone. Looking into the future, we will also identify the needs and challenges associated with integrating computational models across scales.
Collapse
Affiliation(s)
- Walter L Murfee
- Department of Biomedical Engineering , Tulane University , 500 Lindy Boggs Energy Center, New Orleans, LA 70118 , USA
| | - Richard S Sweat
- Department of Biomedical Engineering , Tulane University , 500 Lindy Boggs Energy Center, New Orleans, LA 70118 , USA
| | - Ken-Ichi Tsubota
- Department of Mechanical Engineering , Chiba University , 1-33 Yayoi, Inage, Chiba 263-8522 , Japan
| | - Feilim Mac Gabhann
- Department of Biomedical Engineering , Johns Hopkins University , 3400 North Charles Street, Baltimore, MD 21218 , USA ; Department of Materials Science and Engineering , Johns Hopkins University , 3400 North Charles Street, Baltimore, MD 21218 , USA ; Institute for Computational Medicine , Johns Hopkins University , 3400 North Charles Street, Baltimore, MD 21218 , USA
| | - Damir Khismatullin
- Department of Biomedical Engineering , Tulane University , 500 Lindy Boggs Energy Center, New Orleans, LA 70118 , USA
| | - Shayn M Peirce
- Department of Biomedical Engineering , University of Virginia , 415 Lane Road, Charlottesville, VA 22903 , USA
| |
Collapse
|
40
|
De Lisio M, Jensen T, Sukiennik RA, Huntsman HD, Boppart MD. Substrate and strain alter the muscle-derived mesenchymal stem cell secretome to promote myogenesis. Stem Cell Res Ther 2014; 5:74. [PMID: 24906706 PMCID: PMC4097833 DOI: 10.1186/scrt463] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 06/02/2014] [Accepted: 06/03/2014] [Indexed: 12/25/2022] Open
Abstract
INTRODUCTION Mesenchymal stem cells (MSCs) reside in a variety of tissues and provide a stromal role in regulating progenitor cell function. Current studies focus on identifying the specific factors in the niche that can alter the MSC secretome, ultimately determining the effectiveness and timing of tissue repair. The purpose of the present study was to evaluate the extent to which substrate and mechanical strain simultaneously regulate MSC quantity, gene expression, and secretome. METHODS MSCs (Sca-1+CD45-) isolated from murine skeletal muscle (muscle-derived MSCs, or mMSCs) via fluorescence-activated cell sorting were seeded onto laminin (LAM)- or collagen type 1 (COL)-coated membranes and exposed to a single bout of mechanical strain (10%, 1 Hz, 5 hours). RESULTS mMSC proliferation was not directly affected by substrate or strain; however, gene expression of growth and inflammatory factors and extracellular matrix (ECM) proteins was downregulated in mMSCs grown on COL in a manner independent of strain. Focal adhesion kinase (FAK) may be involved in substrate regulation of mMSC secretome as FAK phosphorylation was significantly elevated 24 hours post-strain in mMSCs plated on LAM but not COL (P <0.05). Conditioned media (CM) from mMSCs exposed to both LAM and strain increased myoblast quantity 5.6-fold 24 hours post-treatment compared with myoblasts treated with serum-free media (P <0.05). This response was delayed in myoblasts treated with CM from mMSCs grown on COL. CONCLUSIONS Here, we demonstrate that exposure to COL, the primary ECM component associated with tissue fibrosis, downregulates genes associated with growth and inflammation in mMSCs and delays the ability for mMSCs to stimulate myoblast proliferation.
Collapse
Affiliation(s)
- Michael De Lisio
- Department of Kinesiology and Community Health, University of Illinois, Urbana, IL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois, 405 N. Mathews Avenue, MC-251, Urbana, IL 61801, USA
| | - Tor Jensen
- Division of Biomedical Sciences, University of Illinois, Urbana, IL, USA
| | - Richard A Sukiennik
- Department of Kinesiology and Community Health, University of Illinois, Urbana, IL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois, 405 N. Mathews Avenue, MC-251, Urbana, IL 61801, USA
| | - Heather D Huntsman
- Department of Kinesiology and Community Health, University of Illinois, Urbana, IL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois, 405 N. Mathews Avenue, MC-251, Urbana, IL 61801, USA
| | - Marni D Boppart
- Department of Kinesiology and Community Health, University of Illinois, Urbana, IL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois, 405 N. Mathews Avenue, MC-251, Urbana, IL 61801, USA
| |
Collapse
|
41
|
Garcia KO, Ornellas FLM, Martin PKM, Patti CL, Mello LE, Frussa-Filho R, Han SW, Longo BM. Therapeutic effects of the transplantation of VEGF overexpressing bone marrow mesenchymal stem cells in the hippocampus of murine model of Alzheimer's disease. Front Aging Neurosci 2014; 6:30. [PMID: 24639647 PMCID: PMC3945612 DOI: 10.3389/fnagi.2014.00030] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 02/18/2014] [Indexed: 12/11/2022] Open
Abstract
Alzheimer’s disease (AD) is clinically characterized by progressive memory loss, behavioral and learning dysfunction and cognitive deficits, such as alterations in social interactions. The major pathological features of AD are the formation of senile plaques and neurofibrillary tangles together with neuronal and vascular damage. The double transgenic mouse model of AD (2xTg-AD) with the APPswe/PS1dE9 mutations shows characteristics that are similar to those observed in AD patients, including social memory impairment, senile plaque formation and vascular deficits. Mesenchymal stem cells (MSCs), when transplanted into the brain, produce positive effects by reducing amyloid-beta (Aβ) deposition in transgenic amyloid precursor protein (APP)/presenilins1 (PS1) mice. Vascular endothelial growth factor (VEGF), exhibits neuroprotective effects against the excitotoxicity implicated in the AD neurodegeneration. The present study investigates the effects of MSCs overexpressing VEGF in hippocampal neovascularization, cognitive dysfunction and senile plaques present in 2xTg-AD transgenic mice. MSC were transfected with vascular endothelial growth factor cloned in uP vector under control of modified CMV promoter (uP-VEGF) vector, by electroporation and expanded at the 14th passage. 2xTg-AD animals at 6, 9 and 12 months old were transplanted with MSC-VEGF or MSC. The animals were tested for behavioral tasks to access locomotion, novelty exploration, learning and memory, and their brains were analyzed by immunohistochemistry (IHC) for vascularization and Aβ plaques. MSC-VEGF treatment favored the neovascularization and diminished senile plaques in hippocampal specific layers. Consequently, the treatment was able to provide behavioral benefits and reduce cognitive deficits by recovering the innate interest to novelty and counteracting memory deficits present in these AD transgenic animals. Therefore, this study has important therapeutic implications for the vascular damage in the neurodegeneration promoted by AD.
Collapse
Affiliation(s)
- Karina O Garcia
- Neurofisiologia, Depto. Fisiologia, Universidade Federal de São Paulo São Paulo, Brazil
| | - Felipe L M Ornellas
- Neurofisiologia, Depto. Fisiologia, Universidade Federal de São Paulo São Paulo, Brazil
| | | | - Camilla L Patti
- Farmacologia, Universidade Federal de São Paulo São Paulo, Brazil
| | - Luiz E Mello
- Neurofisiologia, Depto. Fisiologia, Universidade Federal de São Paulo São Paulo, Brazil
| | | | - Sang W Han
- Biofísica, Universidade Federal de São Paulo São Paulo, Brazil
| | - Beatriz M Longo
- Neurofisiologia, Depto. Fisiologia, Universidade Federal de São Paulo São Paulo, Brazil
| |
Collapse
|
42
|
Synthesis and anticancer potential of certain novel 2-oxo-N'-(2-oxoindolin-3-ylidene)-2H-chromene-3-carbohydrazides. Eur J Med Chem 2013; 70:358-63. [DOI: 10.1016/j.ejmech.2013.09.060] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 09/07/2013] [Accepted: 09/24/2013] [Indexed: 12/29/2022]
|
43
|
Boppart MD, De Lisio M, Zou K, Huntsman HD. Defining a role for non-satellite stem cells in the regulation of muscle repair following exercise. Front Physiol 2013; 4:310. [PMID: 24204344 PMCID: PMC3817631 DOI: 10.3389/fphys.2013.00310] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 10/10/2013] [Indexed: 11/16/2022] Open
Abstract
Skeletal muscle repair is essential for effective remodeling, tissue maintenance, and initiation of beneficial adaptations post-eccentric exercise. A series of well characterized events, such as recruitment of immune cells and activation of satellite cells, constitute the basis for muscle regeneration. However, details regarding the fine-tuned regulation of this process in response to different types of injury are open for investigation. Muscle-resident non-myogenic, non-satellite stem cells expressing conventional mesenchymal stem cell (MSC) markers, have the potential to significantly contribute to regeneration given the role for bone marrow-derived MSCs in whole body tissue repair in response to injury and disease. The purpose of this mini-review is to highlight a regulatory role for Pnon-satellite stem cells in the process of skeletal muscle healing post-eccentric exercise. The non-myogenic, non-satellite stem cell fraction will be defined, its role in tissue repair will be briefly reviewed, and recent studies demonstrating a contribution to eccentric exercise-induced regeneration will be presented.
Collapse
Affiliation(s)
- Marni D Boppart
- Department of Kinesiology and Community Health, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana, IL, USA
| | | | | | | |
Collapse
|
44
|
Tecilazich F, Dinh TL, Veves A. Emerging drugs for the treatment of diabetic ulcers. Expert Opin Emerg Drugs 2013; 18:207-17. [PMID: 23687931 DOI: 10.1517/14728214.2013.802305] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Diabetic ulcers are chronic nonhealing ulcerations that despite the available medical tools still result in high amputation rates. Growing evidence suggests that alteration of the biochemical milieu of the chronic wound plays a significant role in impaired diabetic wound healing. AREAS COVERED The basic pathophysiology and the conventional treatment strategy of diabetic foot ulcers have been reviewed in the first section. In the second part, the most up-to-date bench and translational research in the field are described. The third section focuses on the drugs currently under development and the ongoing clinical trials evaluating their safety and efficacy. Finally, the major drug development issues and the possible scientific approaches to overcome them are analyzed. EXPERT OPINION Significant strides in understanding the chronic wound development have led to the development of topical therapies to address aberrant expression of growth factors and overexpression of inflammatory cytokines. Current research in the laboratory suggests that while decreased growth factor expression occurs at the local wound level, increased systemic serum levels of growth factors suggest growth factor resistance.
Collapse
Affiliation(s)
- Francesco Tecilazich
- Harvard Medical School, Joslin-Beth Israel Deaconess Foot Center, and Microcirculation Lab, Beth Israel Deaconess Foot Center, Boston, MA, USA
| | | | | |
Collapse
|
45
|
Kamiura N, Hirahashi J, Matsuzaki Y, Idei M, Takase O, Fujita T, Takato T, Hishikawa K. Basic helix-loop-helix transcriptional factor MyoR regulates BMP-7 in acute kidney injury. Am J Physiol Renal Physiol 2013; 304:F1159-66. [PMID: 23515721 DOI: 10.1152/ajprenal.00510.2012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
MyoR was originally identified as a transcriptional repressor in embryonic skeletal muscle precursors, but its function in adult kidney has not been clarified. In this study, we tried to clarify the functional role of MyoR using MyoR(-/-) mice. Cisplatin induced a significantly higher degree of severe renal dysfunction, tubular injury, and mortality in MyoR(-/-) mice than in wild-type mice. The injection of cisplatin significantly increased the number of apoptotic cells in the kidney tissues of MyoR(-/-) mice, compared with that in wild-type mice. To clarify the mechanism of severe cisplatin-induced damage and apoptosis in MyoR(-/-) mice, we focused on the p53 signaling pathway and bone morphogenic protein-7 (BMP-7). Treatment with cisplatin significantly activated p53 signaling in cultured renal proximal tubular epithelial cells (RTECs) in both wild-type and MyoR(-/-) mice, but no significant difference between the groups was observed. The injection of cisplatin significantly increased the expression of BMP-7 in the kidney tissues of wild-type mice, but no increase was observed in the MyoR(-/-) mice. Treatment with cisplatin significantly increased the expression of BMP-7 in cultured RTECs from wild-type mice but not in those from MyoR(-/-) mice. Moreover, treatment with recombinant BMP-7 rescued the cisplatin-induced apoptosis in RTECs from MyoR(-/-) mice. Taken together, our results demonstrate a new protective role of MyoR in adult kidneys that acts through the regulation of BMP-7.
Collapse
Affiliation(s)
- Nozomu Kamiura
- Department of Advanced Nephrology and Regenerative Medicine, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Tréguer K, Naye F, Thiébaud P, Fédou S, Soulet F, Thézé N, Faucheux C. Smooth muscle cell differentiation from human bone marrow: Variations in cell type specific markers and Id
gene expression in a new model of cell culture. Cell Biol Int 2013; 33:621-31. [DOI: 10.1016/j.cellbi.2009.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 11/07/2008] [Accepted: 02/17/2009] [Indexed: 01/12/2023]
|
47
|
Kidney. Regen Med 2013. [DOI: 10.1007/978-94-007-5690-8_38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
48
|
Comparative analysis of mesenchymal stem cells from adult mouse adipose, muscle, and fetal muscle. Mol Biol Rep 2012; 40:885-92. [PMID: 23070912 DOI: 10.1007/s11033-012-2129-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 10/03/2012] [Indexed: 12/19/2022]
Abstract
Recently, increasing evidence supports that adult stem cells are the part of a natural system for tissue growth and repair. This study focused on the differences of mesenchymal stem cells from adult adipose (ADSCs), skeletal muscle (MDSCs) and fetal muscle (FMSCs) in biological characteristics, which is the key to cell therapy success. Stem cell antigen 1 (Sca-1) expression of MDSCs and FMSCs at passage 3 was two times more than that at passage 1 (P < 0.0001). After 28-day myogenic induction, higher expression levels of skeletal muscle-specific genes were observed in MDSCs than FMSCs (P < 0.01), and the lowest expression levels were demonstrated in ADSCs among three cells (P < 0.01). Besides, M-Cad and MyHC expressions in ADSCs were not detected by immunofluorescence or real-time quantitative PCR. Furthermore, after 14 days adipogenic induction, PPARγ2, LPL and aP2 mRNA expressions were higher in ADSCs vs. MDSCs (P < 0.01). Besides, MSCs from adult or fetal muscle expressed higher OCN and OPN than ADSCs after 28 days osteogenic induction (P < 0.01). Taken together, our results suggested that cell source and developmental stage had great impacts on biological properties of mesenchymal stem cells, and proper consideration of all the issues is necessary.
Collapse
|
49
|
Imoukhuede PI, Popel AS. Expression of VEGF receptors on endothelial cells in mouse skeletal muscle. PLoS One 2012; 7:e44791. [PMID: 22984559 PMCID: PMC3440347 DOI: 10.1371/journal.pone.0044791] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 08/13/2012] [Indexed: 01/01/2023] Open
Abstract
VEGFR surface localization plays a critical role in converting extracellular VEGF signaling towards angiogenic outcomes, and the quantitative characterization of these parameters is critical for advancing computational models; however the levels of these receptors on blood vessels is currently unknown. Therefore our aim is to quantitatively determine the VEGFR localization on endothelial cells from mouse hindlimb skeletal muscles. We contextualize this VEGFR quantification through comparison to VEGFR-levels on cells in vitro. Using quantitative fluorescence we measure and compare the levels of VEGFR1 and VEGFR2 on endothelial cells isolated from C57BL/6 and BALB/c gastrocnemius and tibialis anterior hindlimb muscles. Fluorescence measurements are calibrated using beads with known numbers of phycoerythrin molecules. The data show a 2-fold higher VEGFR1 surface localization relative to VEGFR2 with 2,000-3,700 VEGFR1/endothelial cell and 1,300-2,000 VEGFR2/endothelial cell. We determine that endothelial cells from the highly glycolytic muscle, tibialis anterior, contain 30% higher number of VEGFR1 surface receptors than gastrocnemius; BALB/c mice display ~17% higher number of VEGFR1 than C57BL/6. When we compare these results to mouse fibroblasts in vitro, we observe high levels of VEGFR1 (35,800/cell) and very low levels of VEGFR2 (700/cell), while in human endothelial cells in vitro, we observe that the balance of VEGFRs is inverted, with higher levels VEGFR2 (5,800/cell) and lower levels of VEGFR1 (1,800/cell). Our studies also reveal significant cell-to-cell heterogeneity in receptor expression, and the quantification of these dissimilarities ex vivo for the first time provides insight into the balance of anti-angiogenic or modulatory (VEGFR1) and pro-angiogenic (VEGFR2) signaling.
Collapse
Affiliation(s)
- Princess I. Imoukhuede
- Department of Bioengineering, University of Illinois Urbana Champaign, Urbana, Illinois, United States of America
| | - Aleksander S. Popel
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
50
|
Fatima S, Zhou S, Sorrentino BP. Abcg2 expression marks tissue-specific stem cells in multiple organs in a mouse progeny tracking model. Stem Cells 2012; 30:210-21. [PMID: 22134889 DOI: 10.1002/stem.1002] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The side population phenotype is associated with the Hoechst dye efflux activity of the Abcg2 transporter and identifies hematopoietic stem cells (HSCs) in the bone marrow. This association suggests the direct use of Abcg2 expression to identify adult stem cells in various other organs. We have generated a lineage tracing mouse model based on an allele that coexpresses both Abcg2 and a CreERT2 expression cassette. By crossing these mice with lox-STOP-lox reporter lines (LacZ or YFP), cells that express Abcg2 and their progeny were identified following treatment with tamoxifen (Tam). In the liver and kidney, in which mature cells express Abcg2, reporter gene expression verified the expected physiologic expression pattern of the recombinant allele. Long-term marking of HSCs was seen in multiple peripheral blood lineages from adult mice, demonstrating that Abcg2(+) bone marrow HSCs contribute to steady-state hematopoiesis. Stem cell tracing patterns were seen in the small intestine and in seminiferous tubules in the testis 20 months after Tam treatment, proving that stem cells from these organs express Abcg2. Interstitial cells from skeletal and cardiac muscle were labeled, and some cells were costained with endothelial markers, raising the possibility that these cells may function in the repair response to muscle injury. Altogether, these studies prove that Abcg2 is a stem cell marker for blood, small intestine, testicular germ cells, and possibly for injured skeletal and/or cardiac muscle and provide a new model for studying stem cell activity that does not require transplant-based assays.
Collapse
Affiliation(s)
- Soghra Fatima
- Division of Experimental Hematology, Department of Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | | | | |
Collapse
|