1
|
He H, Cao X, He F, Zhang W, Wang X, Peng P, Xie C, Yin F, Li D, Li J, Wang M, Klüssendorf M, Jentsch TJ, Stauber T, Peng J. Mutations in CLCN6 as a Novel Genetic Cause of Neuronal Ceroid Lipofuscinosis in a Murine Model. Ann Neurol 2024; 96:608-624. [PMID: 38877824 DOI: 10.1002/ana.27002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/30/2024] [Accepted: 05/08/2024] [Indexed: 06/16/2024]
Abstract
OBJECTIVE The aim of this study was to explore the pathogenesis of CLCN6-related disease and to assess whether its Cl-/H+-exchange activity is crucial for the biological role of ClC-6. METHODS We performed whole-exome sequencing on a girl with development delay, intractable epilepsy, behavioral abnormities, retinal dysfunction, progressive brain atrophy, suggestive of neuronal ceroid lipofuscinoses (NCLs). We generated and analyzed the first knock-in mouse model of a patient variant (p.E200A) and compared it with a Clcn6-/- mouse model. Additional functional tests were performed with heterologous expression of mutant ClC-6. RESULTS We identified a de novo heterozygous p.E200A variant in the proband. Expression of disease-causing ClC-6E200A or ClC-6Y553C mutants blocked autophagic flux and activated transcription factors EB (TFEB) and E3 (TFE3), leading to autophagic vesicle and cholesterol accumulation. Such alterations were absent with a transport-deficient ClC-6E267A mutant. Clcn6E200A/+ mice developed severe neurodegeneration with typical features of NCLs. Mutant ClC-6E200A, but not loss of ClC-6 in Clcn6-/- mice, increased lysosomal biogenesis by suppressing mTORC1-TFEB signaling, blocked autophagic flux through impairing lysosomal function, and increased apoptosis. Carbohydrate and lipid deposits accumulated in Clcn6E200A/+ brain, while only lipid storage was found in Clcn6-/- brain. Lysosome dysfunction, autophagy defects, and gliosis were early pathogenic events preceding neuron loss. INTERPRETATION CLCN6 is a novel genetic cause of NCLs, highlighting the importance of considering CLCN6 mutations in the diagnostic workup for molecularly undefined forms of NCLs. Uncoupling of Cl- transport from H+ countertransport in the E200A mutant has a dominant effect on the autophagic/lysosomal pathway. ANN NEUROL 2024;96:608-624.
Collapse
Affiliation(s)
- Hailan He
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Children Neurodevelopmental Disabilities of Hunan Province, Changsha, China
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Xiaoshuang Cao
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Children Neurodevelopmental Disabilities of Hunan Province, Changsha, China
| | - Fang He
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Children Neurodevelopmental Disabilities of Hunan Province, Changsha, China
| | - Wen Zhang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Children Neurodevelopmental Disabilities of Hunan Province, Changsha, China
| | - Xiaole Wang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Children Neurodevelopmental Disabilities of Hunan Province, Changsha, China
| | - Pan Peng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Children Neurodevelopmental Disabilities of Hunan Province, Changsha, China
| | - Changning Xie
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Children Neurodevelopmental Disabilities of Hunan Province, Changsha, China
| | - Fei Yin
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Children Neurodevelopmental Disabilities of Hunan Province, Changsha, China
| | - Dengfeng Li
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China
| | - Jiada Li
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China
| | - Minghui Wang
- The First People's Hospital of Changde, Changde, China
| | - Malte Klüssendorf
- Institute for Molecular Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Thomas J Jentsch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Tobias Stauber
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
- Institute for Molecular Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Jing Peng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Children Neurodevelopmental Disabilities of Hunan Province, Changsha, China
| |
Collapse
|
2
|
Takahashi K, Rensing NR, Eultgen EM, Wang SH, Nelvagal HR, Le SQ, Roberts MS, Doray B, Han EB, Dickson PI, Wong M, Sands MS, Cooper JD. GABAergic interneurons contribute to the fatal seizure phenotype of CLN2 disease mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.29.587276. [PMID: 38585903 PMCID: PMC10996664 DOI: 10.1101/2024.03.29.587276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
GABAergic interneuron deficits have been implicated in the epileptogenesis of multiple neurological diseases. While epileptic seizures are a key clinical hallmark of CLN2 disease, a childhood-onset neurodegenerative lysosomal storage disorder caused by a deficiency of tripeptidyl peptidase 1 (TPP1), the etiology of these seizures remains elusive. Given that Cln2 R207X/R207X mice display fatal spontaneous seizures and an early loss of several cortical interneuron populations, we hypothesized that those two events might be causally related. To address this hypothesis, we first generated an inducible transgenic mouse expressing lysosomal membrane-tethered TPP1 (TPP1LAMP1) on the Cln2 R207X/R207X genetic background to study the cell-autonomous effects of cell-type-specific TPP1 deficiency. We crossed the TPP1LAMP1 mice with Vgat-Cre mice to introduce interneuron-specific TPP1 deficiency. Vgat-Cre ; TPP1LAMP1 mice displayed storage material accumulation in several interneuron populations both in cortex and striatum, and increased susceptibility to die after PTZ-induced seizures. Secondly, to test the role of GABAergic interneuron activity in seizure progression, we selectively activated these cells in Cln2 R207X/R207X mice using Designer Receptor Exclusively Activated by Designer Drugs (DREADDs) in in Vgat-Cre : Cln2 R207X/R207X mice. EEG monitoring revealed that DREADD-mediated activation of interneurons via chronic deschloroclozapine administration accelerated the onset of spontaneous seizures and seizure-associated death in Vgat-Cre : Cln2 R207X/R207X mice, suggesting that modulating interneuron activity can exert influence over epileptiform abnormalities in CLN2 disease. Taken together, these results provide new mechanistic insights into the underlying etiology of seizures and premature death that characterize CLN2 disease.
Collapse
|
3
|
Kovács AD, Gonzalez Hernandez JL, Pearce DA. Acidified drinking water improves motor function, prevents tremors and changes disease trajectory in Cln2 R207X mice, a model of late infantile Batten disease. Sci Rep 2023; 13:19229. [PMID: 37932327 PMCID: PMC10628098 DOI: 10.1038/s41598-023-46283-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/30/2023] [Indexed: 11/08/2023] Open
Abstract
Batten disease is a group of mostly pediatric neurodegenerative lysosomal storage disorders caused by mutations in the CLN1-14 genes. We have recently shown that acidified drinking water attenuated neuropathological changes and improved motor function in the Cln1R151X and Cln3-/- mouse models of infantile CLN1 and juvenile CLN3 diseases. Here we tested if acidified drinking water has beneficial effects in Cln2R207X mice, a nonsense mutant model of late infantile CLN2 disease. Cln2R207X mice have motor deficits, muscle weakness, develop tremors, and die prematurely between 4 and 6 months of age. Acidified water administered to Cln2R207X male mice from postnatal day 21 significantly improved motor function, restored muscle strength and prevented tremors as measured at 3 months of age. Acidified drinking water also changed disease trajectory, slightly delaying the death of Cln2R207X males and females. The gut microbiota compositions of Cln2R207X and wild-type male mice were markedly different and acidified drinking water significantly altered the gut microbiota of Cln2R207X mice. This suggests that gut bacteria might contribute to the beneficial effects of acidified drinking water. Our study demonstrates that drinking water is a major environmental factor that can alter disease phenotypes and disease progression in rodent disease models.
Collapse
Affiliation(s)
- Attila D Kovács
- Pediatrics and Rare Diseases Group, Sanford Research, 2301 E. 60th Street N., Sioux Falls, SD, 57104, USA.
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA.
| | - Jose L Gonzalez Hernandez
- Department of Agronomy, Horticulture, and Plant Science, South Dakota State University, Brookings, SD, USA
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, USA
| | - David A Pearce
- Pediatrics and Rare Diseases Group, Sanford Research, 2301 E. 60th Street N., Sioux Falls, SD, 57104, USA
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA
| |
Collapse
|
4
|
Buchanan GF. Revoking the Seize Order: Preventing Spontaneous Seizures With AAV in a CLN2 Mouse Model. Epilepsy Curr 2023; 23:386-388. [PMID: 38269343 PMCID: PMC10805085 DOI: 10.1177/15357597231200702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024] Open
Abstract
Gene Therapy Ameliorates Spontaneous Seizures Associated With Cortical Neuron Loss in a Cln2R207X Mouse Model Takahashi K, Eultgen EM, Wang S, Rensing NR, Nelvagal HR, Dearborn JT, Danos O, Buss N, Sands MS, Wong M, Cooper JD. 2023. J Clin Invest. 133(12):e165908. doi:10.1172/JCI165908 Although a disease-modifying therapy for classic late infantile neuronal ceroid lipofuscinosis (CLN2 disease) exists, poor understanding of cellular pathophysiology has hampered the development of more effective and persistent therapies. Here, we investigated the nature and progression of neurological and underlying neuropathological changes in Cln2R207X mice, which carry one of the most common pathogenic mutations in human patients but are yet to be fully characterized. Long-term electroencephalography recordings revealed progressive epileptiform abnormalities, including spontaneous seizures, providing a robust, quantifiable, and clinically relevant phenotype. These seizures were accompanied by the loss of multiple cortical neuron populations, including those stained for interneuron markers. Further histological analysis revealed early localized microglial activation months before neuron loss started in the thalamocortical system and spinal cord, which was accompanied by astrogliosis. This pathology was more pronounced and occurred in the cortex before the thalamus or spinal cord and differed markedly from the staging seen in mouse models of other forms of neuronal ceroid lipofuscinosis. Neonatal administration of adeno-associated virus serotype 9–mediated gene therapy ameliorated the seizure and gait phenotypes and prolonged the life span of Cln2R207X mice, attenuating most pathological changes. Our findings highlight the importance of clinically relevant outcome measures for judging preclinical efficacy of therapeutic interventions for CLN2 disease.
Collapse
Affiliation(s)
- Gordon F Buchanan
- Department of Neurology and Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa
| |
Collapse
|
5
|
Bernardi S, Gemignani F, Marchese M. The involvement of Purkinje cells in progressive myoclonic epilepsy: Focus on neuronal ceroid lipofuscinosis. Neurobiol Dis 2023; 185:106258. [PMID: 37573956 PMCID: PMC10480493 DOI: 10.1016/j.nbd.2023.106258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/01/2023] [Accepted: 08/11/2023] [Indexed: 08/15/2023] Open
Abstract
The progressive myoclonic epilepsies (PMEs) are a group of rare neurodegenerative diseases characterized by myoclonus, epileptic seizures, and progressive neurological deterioration with cerebellar involvement. They include storage diseases like Gaucher disease, Lafora disease, and forms of neuronal ceroid lipofuscinosis (NCL). To date, 13 NCLs have been reported (CLN1-CLN8, CLN10-CLN14), associated with mutations in different genes. These forms, which affect both children and adults, are characterized by seizures, cognitive and motor impairments, and in most cases visual loss. In NCLs, as in other PMEs, central nervous system (CNS) neurodegeneration is widespread and involves different subpopulations of neurons. One of the most affected regions is the cerebellar cortex, where motor and non-motor information is processed and transmitted to deep cerebellar nuclei through the axons of Purkinje cells (PCs). PCs, being GABAergic, have an inhibitory effect on their target neurons, and provide the only inhibitory output of the cerebellum. Degeneration of PCs has been linked to motor impairments and epileptic seizures. Seizures occur when some insult upsets the normal balance in the CNS between excitatory and inhibitory impulses, causing hyperexcitability. Here we review the role of PCs in epilepsy onset and progression following their PME-related loss. In particular, we focus on the involvement of PCs in seizure phenotype in NCLs, highlighting findings from case reports and studies of animal models in which epilepsy can be linked to PC loss.
Collapse
Affiliation(s)
- Sara Bernardi
- Department Neurobiology and Molecular Medicine, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy; Department of Biology, University of Pisa, Pisa, Italy
| | | | - Maria Marchese
- Department Neurobiology and Molecular Medicine, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy.
| |
Collapse
|