1
|
Cell based therapies in Parkinson's Disease. Ann Neurosci 2014; 18:76-83. [PMID: 25205926 PMCID: PMC4117039 DOI: 10.5214/ans.0972.7531.1118209] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2011] [Revised: 04/09/2011] [Accepted: 04/30/2011] [Indexed: 12/27/2022] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disorder after Alzheimer’s disease. It is characterized by bradykinesia, hypokinesia/ akinesia, rigidity, tremor, and postural instability, caused by dopaminergic (DA) striatal denervation. The prevalence of PD increases from 50 years of age with steep rise after age 60 years. Current treatment of PD relies heavily on replacing lost dopamine either with its precursor L-dopa or dopamine agonists (ropinirole, pramipexole, bromocriptine, lisuride etc). Other pharmacological measures like catechol-O-methyltrasferase (COMT) inhibitors like entacopone, telcapone and monoamine oxidase B (MAO-B) inhibitors like selegiline and rasagiline are also useful, while L-dopa remains the gold standard in the treatment of PD. Emerging therapies are focusing on cell based therapeutics derived from various sources.
Collapse
|
2
|
Cripto regulates skeletal muscle regeneration and modulates satellite cell determination by antagonizing myostatin. Proc Natl Acad Sci U S A 2012; 109:E3231-40. [PMID: 23129614 DOI: 10.1073/pnas.1204017109] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Skeletal muscle regeneration mainly depends on satellite cells, a population of resident muscle stem cells. However, our understanding of the molecular mechanisms underlying satellite cell activation is still largely undefined. Here, we show that Cripto, a regulator of early embryogenesis, is a novel regulator of muscle regeneration and satellite cell progression toward the myogenic lineage. Conditional inactivation of cripto in adult satellite cells compromises skeletal muscle regeneration, whereas gain of function of Cripto accelerates regeneration, leading to muscle hypertrophy. Moreover, we provide evidence that Cripto modulates myogenic cell determination and promotes proliferation by antagonizing the TGF-β ligand myostatin. Our data provide unique insights into the molecular and cellular basis of Cripto activity in skeletal muscle regeneration and raise previously undescribed implications for stem cell biology and regenerative medicine.
Collapse
|
3
|
Gray PC, Vale W. Cripto/GRP78 modulation of the TGF-β pathway in development and oncogenesis. FEBS Lett 2012; 586:1836-45. [PMID: 22306319 PMCID: PMC3723343 DOI: 10.1016/j.febslet.2012.01.051] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 01/24/2012] [Accepted: 01/25/2012] [Indexed: 10/14/2022]
Abstract
Cripto is a small, GPI-anchored signaling protein that regulates cellular survival, proliferation, differentiation and migration during normal developmental processes and tumorigenesis. Cripto functions as an obligatory co-receptor for the TGF-β ligands Nodal, GDF1 and GDF3 but attenuates signaling of others such as activin-A, activin-B and TGF-β1. Soluble, secreted forms of Cripto also activate Src, ras/raf/MAPK and PI3K/Akt pathways via a mechanism that remains largely obscure. This review describes the biological roles and signaling mechanisms of Cripto, highlighting our identification of the 78 kDa glucose regulated protein (GRP78) as a cell surface receptor/co-factor required for Cripto signaling via both TGF-β and Src/MAPK/PI3K pathways. We discuss emerging evidence indicating that Cripto/GRP78 signaling regulates normal somatic stem cells and their tumorigenic counterparts.
Collapse
Affiliation(s)
- Peter C Gray
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, United States.
| | | |
Collapse
|
4
|
Abstract
Antibody conjugates are a diverse class of therapeutics consisting of a cytotoxic agent linked covalently to an antibody or antibody fragment directed toward a specific cell surface target expressed by tumor cells. The notion that antibodies directed toward targets on the surface of malignant cells could be used for drug delivery is not new. The history of antibody conjugates is marked by hurdles that have been identified and overcome. Early conjugates used mouse antibodies; cytotoxic agents that were immunogenic (proteins), too toxic, or not sufficiently potent; and linkers that were not sufficiently stable in circulation. Investigators have explored 4 main avenues using antibodies to target cytotoxic agents to malignant cells: antibody-protein toxin (or antibody fragment-protein toxin fusion) conjugates, antibody-chelated radionuclide conjugates, antibody-small-molecule drug conjugates, and antibody-enzyme conjugates administered along with small-molecule prodrugs that require metabolism by the conjugated enzyme to release the activated species. Only antibody-radionuclide conjugates and antibody-drug conjugates have reached the regulatory approval stage, and nearly 20 antibody conjugates are currently in clinical trials. The time may have come for this technology to become a major contributor to improving treatment for cancer patients.
Collapse
Affiliation(s)
- Beverly A Teicher
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.
| | | |
Collapse
|
5
|
Ravisankar V, Singh TP, Manoj N. Molecular evolution of the EGF-CFC protein family. Gene 2011; 482:43-50. [PMID: 21640172 DOI: 10.1016/j.gene.2011.05.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 05/16/2011] [Indexed: 10/18/2022]
Abstract
The epidermal growth factor-Cripto-1/FRL-1/Cryptic (EGF-CFC) proteins, characterized by the highly conserved EGF and CFC domains, are extracellular membrane associated growth factor-like glycoproteins. These proteins are essential components of the Nodal signaling pathway during early vertebrate embryogenesis. Homologs of the EGF-CFC family have also been implicated in tumorigenesis in humans. Yet, little is known about the mode of molecular evolution in this family. Here we investigate the origin, extent of conservation and evolutionary relationships of EGF-CFC proteins across the metazoa. The results suggest that the first appearance of the EGF-CFC gene occurred in the ancestor of the deuterostomes. Phylogenetic analysis supports the classification of the family into distinct subfamilies that appear to have evolved through lineage-specific duplication and divergence. Site-specific analyses of evolutionary rate shifts between the two major mammalian paralogous subfamilies, Cripto and Cryptic, reveal critical amino acid sites that may account for the observed functional divergence. Furthermore, estimates of functional divergence suggest that rapid change of evolutionary rates at sites located mainly in the CFC domain may contribute towards distinct functional properties of the two paralogs.
Collapse
Affiliation(s)
- V Ravisankar
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, India.
| | | | | |
Collapse
|
6
|
Calvanese L, Marasco D, Doti N, Saporito A, D'Auria G, Paolillo L, Ruvo M, Falcigno L. Structural investigations on the Nodal-Cripto binding: A theoretical and experimental approach. Biopolymers 2010; 93:1011-21. [DOI: 10.1002/bip.21517] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Torres PB, Florio P, Galleri L, Reis FM, Borges LE, Petraglia F. Activin A, Activin Receptor Type II, Nodal, and Cripto mRNA Are Expressed by Eutopic and Ectopic Endometrium in Women With Ovarian Endometriosis. Reprod Sci 2009; 16:727-33. [DOI: 10.1177/1933719109334967] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Paulo B. Torres
- Department of Pediatrics, Obstetrics and Reproductive Medicine, Section of Obstetrics and Gynecology, University of Siena, Siena, Italy
| | - Pasquale Florio
- Department of Pediatrics, Obstetrics and Reproductive Medicine, Section of Obstetrics and Gynecology, University of Siena, Siena, Italy,
| | - Letizia Galleri
- Department of Pediatrics, Obstetrics and Reproductive Medicine, Section of Obstetrics and Gynecology, University of Siena, Siena, Italy
| | - Fernando M. Reis
- Department of Pediatrics, Obstetrics and Reproductive Medicine, Section of Obstetrics and Gynecology, University of Siena, Siena, Italy
| | - Lavinia E. Borges
- Department of Pediatrics, Obstetrics and Reproductive Medicine, Section of Obstetrics and Gynecology, University of Siena, Siena, Italy
| | - Felice Petraglia
- Department of Pediatrics, Obstetrics and Reproductive Medicine, Section of Obstetrics and Gynecology, University of Siena, Siena, Italy
| |
Collapse
|
8
|
Chambery A, Vissers JPC, Langridge JI, Lonardo E, Minchiotti G, Ruvo M, Parente A. Qualitative and Quantitative Proteomic Profiling of Cripto−/− Embryonic Stem Cells by Means of Accurate Mass LC−MS Analysis. J Proteome Res 2009; 8:1047-58. [DOI: 10.1021/pr800485c] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Angela Chambery
- Dipartimento di Scienze della Vita, Seconda Università di Napoli, I-81100 Caserta, Italy, Waters Corporation, MS Technologies Center, M22 5PP Manchester, United Kingdom, Istituto di Genetica e Biofisica “A Buzzati-Traverso”, CNR, I-80131 Napoli, Italy, and Istituto di Biostrutture e Bioimmagini, CNR, I-80134, Napoli, Italy
| | - Johannes P. C. Vissers
- Dipartimento di Scienze della Vita, Seconda Università di Napoli, I-81100 Caserta, Italy, Waters Corporation, MS Technologies Center, M22 5PP Manchester, United Kingdom, Istituto di Genetica e Biofisica “A Buzzati-Traverso”, CNR, I-80131 Napoli, Italy, and Istituto di Biostrutture e Bioimmagini, CNR, I-80134, Napoli, Italy
| | - James I. Langridge
- Dipartimento di Scienze della Vita, Seconda Università di Napoli, I-81100 Caserta, Italy, Waters Corporation, MS Technologies Center, M22 5PP Manchester, United Kingdom, Istituto di Genetica e Biofisica “A Buzzati-Traverso”, CNR, I-80131 Napoli, Italy, and Istituto di Biostrutture e Bioimmagini, CNR, I-80134, Napoli, Italy
| | - Enza Lonardo
- Dipartimento di Scienze della Vita, Seconda Università di Napoli, I-81100 Caserta, Italy, Waters Corporation, MS Technologies Center, M22 5PP Manchester, United Kingdom, Istituto di Genetica e Biofisica “A Buzzati-Traverso”, CNR, I-80131 Napoli, Italy, and Istituto di Biostrutture e Bioimmagini, CNR, I-80134, Napoli, Italy
| | - Gabriella Minchiotti
- Dipartimento di Scienze della Vita, Seconda Università di Napoli, I-81100 Caserta, Italy, Waters Corporation, MS Technologies Center, M22 5PP Manchester, United Kingdom, Istituto di Genetica e Biofisica “A Buzzati-Traverso”, CNR, I-80131 Napoli, Italy, and Istituto di Biostrutture e Bioimmagini, CNR, I-80134, Napoli, Italy
| | - Menotti Ruvo
- Dipartimento di Scienze della Vita, Seconda Università di Napoli, I-81100 Caserta, Italy, Waters Corporation, MS Technologies Center, M22 5PP Manchester, United Kingdom, Istituto di Genetica e Biofisica “A Buzzati-Traverso”, CNR, I-80131 Napoli, Italy, and Istituto di Biostrutture e Bioimmagini, CNR, I-80134, Napoli, Italy
| | - Augusto Parente
- Dipartimento di Scienze della Vita, Seconda Università di Napoli, I-81100 Caserta, Italy, Waters Corporation, MS Technologies Center, M22 5PP Manchester, United Kingdom, Istituto di Genetica e Biofisica “A Buzzati-Traverso”, CNR, I-80131 Napoli, Italy, and Istituto di Biostrutture e Bioimmagini, CNR, I-80134, Napoli, Italy
| |
Collapse
|
9
|
Calvanese L, Saporito A, Oliva R, D' Auria G, Pedone C, Paolillo L, Ruvo M, Marasco D, Falcigno L. Structural insights into the interaction between the Cripto CFC domain and the ALK4 receptor. J Pept Sci 2008; 15:175-83. [DOI: 10.1002/psc.1091] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
10
|
Sun C, Orozco O, Olson DL, Choi E, Garber E, Tizard R, Szak S, Sanicola M, Carulli JP. CRIPTO3, a presumed pseudogene, is expressed in cancer. Biochem Biophys Res Commun 2008; 377:215-20. [PMID: 18835250 DOI: 10.1016/j.bbrc.2008.09.113] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Accepted: 09/23/2008] [Indexed: 11/17/2022]
Abstract
Cripto is a cell surface protein highly expressed in certain solid tumors, and overexpression of Cripto protein is oncogenic. Cripto-1 protein is encoded by CRIPTO1 gene. CRIPTO3, a presumed pseudogene, has an open reading frame with six amino acid differences from Cripto-1. We show that CRIPTO3 mRNA is the CRIPTO message expressed in many cancer samples. A CRIPTO3 SAGE tag was found in several cancer SAGE libraries, while the CRIPTO1 tag was found in ES cell libraries. In vitro experiments indicate both Cripto-1 and Cripto-3 proteins are functional in the Nodal-dependent signal pathway. Our data indicate that CRIPTO3 is an expressed gene, particularly in certain cancers, and suggest a potentially novel mechanism of oncogenesis through activation of a retrogene.
Collapse
Affiliation(s)
- Chao Sun
- Department of Drug Discovery, Biogen Idec Inc, 14 Cambridge Center, Cambridge, MA 02142, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Kelber JA, Shani G, Booker EC, Vale WW, Gray PC. Cripto is a noncompetitive activin antagonist that forms analogous signaling complexes with activin and nodal. J Biol Chem 2007; 283:4490-500. [PMID: 18089557 DOI: 10.1074/jbc.m704960200] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cripto plays critical roles during embryogenesis and has been implicated in promoting the growth and spread of tumors. Cripto is required for signaling by certain transforming growth factor-beta superfamily members, such as Nodal, but also antagonizes others, such as activin. The opposing effects of Cripto on Nodal and activin signaling seem contradictory, however, because these closely related ligands utilize the same type I (ALK4) and type II (ActRII/IIB) receptors. Here, we have addressed this apparent paradox by demonstrating that Cripto forms analogous receptor complexes with Nodal and activin and functions as a noncompetitive activin antagonist. Our results show that activin-A and Nodal elicit similar maximal signaling responses in the presence of Cripto that are substantially lower than that of activin-A in the absence of Cripto. In addition, we provide biochemical evidence for complexes containing activin-A, Cripto, and both receptor types and show that the assembly of such complexes is competitively inhibited by Nodal. We further demonstrate that Nodal and activin-A share the same binding site on ActRII and that ALK4 has distinct and separable binding sites for activin-A and Cripto. Finally, we show that ALK4 mutants with disrupted activin-A binding retain Cripto binding and prevent the effects of Cripto on both activin-A and Nodal signaling. Together, our data indicate that Cripto facilitates Nodal signaling and inhibits activin signaling by forming receptor complexes with these ligands that are structurally and functionally similar.
Collapse
Affiliation(s)
- Jonathan A Kelber
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
12
|
Parish CL, Arenas E. Stem-cell-based strategies for the treatment of Parkinson's disease. NEURODEGENER DIS 2007; 4:339-47. [PMID: 17627139 DOI: 10.1159/000101892] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Cell transplantation to replace lost neurons in neurodegenerative diseases such as Parkinson's disease (PD) offers a hopeful prospect for many patients. Previously, fetal grafts have been shown to survive, integrate and induce functional recovery in PD patients. However, limited tissue availability has haltered the widespread use of this therapy and begs the demand for alternative tissue sources. In this regard, stem cells may constitute one such source. OBJECTIVE/METHODS In this review we outline various types of stem cells currently available and provide an overview of their possible application for PD. We address not only the obvious possibility of using stem cells in cell replacement therapy but also the benefits of stem cell lines in drug discovery. RESULTS/CONCLUSION Stem cells carrying reporters or mutations in genes linked to familial PD are likely to contribute to the identification of new drug targets and subsequent development of new drugs for PD. Thus, stem cells are, and will be more so in the future, invaluable tools in the quest for new therapies against neurodegenerative diseases such as PD.
Collapse
Affiliation(s)
- Clare L Parish
- Laboratory of Molecular Neurobiology, Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | | |
Collapse
|
13
|
Shi S, Ge C, Luo Y, Hou X, Haltiwanger RS, Stanley P. The threonine that carries fucose, but not fucose, is required for Cripto to facilitate Nodal signaling. J Biol Chem 2007; 282:20133-41. [PMID: 17504756 DOI: 10.1074/jbc.m702593200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cripto is a membrane-bound co-receptor for Nodal, a member of the transforming growth factor-beta superfamily. Mouse embryos lacking either Cripto or Nodal have the same lethal phenotype at embryonic day 7.5. Previous studies suggest that O-fucosylation of the epidermal growth factor-like (EGF) repeat in Cripto is essential for the facilitation of Nodal signaling. Substitution of Ala for the Thr to which O-fucose is attached led to functional inactivation of both human and mouse Cripto. However, embryos null for protein O-fucosyltransferase 1, the enzyme that adds O-fucose to EGF repeats, do not exhibit a Cripto null phenotype and die at about embryonic day 9.5. This suggested that the loss of O-fucose from the EGF repeat may not have led to the inactivation of Cripto in previous studies. Here we investigate this hypothesis and show the following: 1) protein O-fucosyltransferase 1 is indeed the enzyme that adds O-fucose to Cripto; 2) Pofut1(-/-) embryonic stem cells behave the same as Pofut1(+/+) embryonic stem cells in a Nodal signaling assay; 3) Pofut1(-/-) and Pofut1(+/+) embryoid bodies are indistinguishable in their ability to differentiate into cardiomyocytes; and 4) none of 10 amino acid substitutions at Thr(72), including Ser which acquires O-fucose, rescues the activity of mouse Cripto in Nodal signaling assays. Therefore, the Thr to which O-fucose is linked in Cripto plays a key functional role, but O-fucose at Thr(72) is not required for Cripto to function in cell-based signaling assays or in vivo. By contrast, we show that O-fucose, and not the Thr to which it is attached, is required in the ligand-binding domain of Notch1 for Notch1 signaling.
Collapse
Affiliation(s)
- Shaolin Shi
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, New York, NY 10461, USA
| | | | | | | | | | | |
Collapse
|
14
|
Simões PD, Ramos T. Human pluripotent embryonal carcinoma NTERA2 cl.D1 cells maintain their typical morphology in an angiomyogenic medium. J Negat Results Biomed 2007; 6:5. [PMID: 17442106 PMCID: PMC1863432 DOI: 10.1186/1477-5751-6-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2006] [Accepted: 04/18/2007] [Indexed: 01/28/2023] Open
Abstract
Background Pluripotent embryonal carcinomas are good potential models, to study, "in vitro," the mechanisms that control differentiation during embryogenesis. The NTERA2cl.D1 (NT2/D1) cell line is a well known system of ectodermal differentiation. Retinoic acid (RA) induces a dorsal pattern of differentiation (essentially neurons) and bone morphogenetic protein (BMP) or hexamethylenebisacetamide (HMBA) induces a more ventral (epidermal) pattern of differentiation. However, whether these human cells could give rise to mesoderm derivatives as their counterpart in mouse remained elusive. We analyzed the morphological characteristics and transcriptional activation of genes pertinent in cardiac muscle and endothelium differentiation, during the growth of NT2/D1 cells in an inductive angiomyogenic medium with or without Bone Morphogenetic Protein 2 (BMP2). Results Our experiments showed that NT2/D1 maintains their typical actin organization in angiomyogenic medium. Although the beta myosin heavy chain gene was never detected, all the other 15 genes analyzed maintained their expression throughout the time course of the experiment. Among them were early and late cardiac, endothelial, neuronal and teratocarcinoma genes. Conclusion Our results suggest that despite the NT2/D1 cells natural tendency to differentiate into neuroectodermal lineages, they can activate genes of mesodermal lineages. Therefore, we believe that these pluripotent cells might still be a good model to study biological development of mesodermal derivatives, provided the right culture conditions are met.
Collapse
Affiliation(s)
- Pedro D Simões
- Instituto de Tecnologia Biomédica, Laboratório de Biomateriais, Faculdade de Medicina Dentária da Universidade de Lisboa, Cidade Universitária, 1649-003 Lisbon, Portugal
| | - Teresa Ramos
- Instituto de Tecnologia Biomédica, Laboratório de Biomateriais, Faculdade de Medicina Dentária da Universidade de Lisboa, Cidade Universitária, 1649-003 Lisbon, Portugal
| |
Collapse
|
15
|
Mallikarjuna K, Vaijayanthi P, Krishnakumar S. Cripto-1 expression in uveal melanoma: an immunohistochemical study. Exp Eye Res 2007; 84:1060-6. [PMID: 17412323 DOI: 10.1016/j.exer.2007.01.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2006] [Revised: 10/26/2006] [Accepted: 01/23/2007] [Indexed: 11/18/2022]
Abstract
Human Cripto, the founder member of the epidermal growth factor-Cripto-FRL1-Cryptic (EGF-CFC) family, plays an important role during early embryonic development and in particular in carcinogenesis and the development of cancer metastases. Cripto-1 is over-expressed in most cancers, but is absent or only weakly expressed in normal cells. For this reason, Cripto-1 could be of potential value in the targeted treatment. There is no information on the expression of Cripto-1 in human uveal melanoma. Cripto-1 reactivity was evaluated by immunohistochemistry on 36 archival uveal melanomas using the polyclonal antibody to Cripto-1. The tumors were divided in to 2 groups. There were 18 uveal melanomas with no intrascleral or extrascleral extension and 18 uveal melanomas with intrascleral/extrascleral extension/liver metastasis. Cripto-1 reactivity was correlated with tumor aggressiveness and cell type. Furthermore, we studied the immunolocalization of Cripto-1 in 4 uveal melanoma cell lines OCM-1, OCM-8, and 92-1, and OMM-1 and in 2 primary uveal melanocyte cultures. Cripto-1 was expressed in both the non-invasive and aggressive uveal melanomas. Cripto-1 was positive in the 4 uveal melanoma cell lines and absent in the primary uveal melanocyte cultures. Retinal tissue did not express Cripto-1. The results suggest that Cripto-1 is expressed in uveal melanoma, negative in the non-neoplastic ocular tissue and point to its use as a target for therapy.
Collapse
Affiliation(s)
- Kandalam Mallikarjuna
- Department of Ocular Pathology, Vision Research Foundation, Sankara Nethralaya, 18 College Road, Nungambakkam, Chennai 600 006, Tamil Nadu, India
| | | | | |
Collapse
|
16
|
Gray PC, Shani G, Aung K, Kelber J, Vale W. Cripto binds transforming growth factor beta (TGF-beta) and inhibits TGF-beta signaling. Mol Cell Biol 2006; 26:9268-78. [PMID: 17030617 PMCID: PMC1698529 DOI: 10.1128/mcb.01168-06] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cripto is a developmental oncoprotein and a member of the epidermal growth factor-Cripto, FRL-1, Cryptic family of extracellular signaling molecules. In addition to having essential functions during embryogenesis, Cripto is highly expressed in tumors and promotes tumorigenesis. During development, Cripto acts as an obligate coreceptor for transforming growth factor beta (TGF-beta) ligands, including nodals, growth and differentiation factor 1 (GDF1), and GDF3. As an oncogene, Cripto is thought to promote tumor growth via mechanisms including activation of mitogenic signaling pathways and antagonism of activin signaling. Here, we provide evidence supporting a novel mechanism in which Cripto inhibits the tumor suppressor function of TGF-beta. Cripto bound TGF-beta and reduced the association of TGF-beta with its type I receptor, TbetaRI. Consistent with its ability to block receptor assembly, Cripto suppressed TGF-beta signaling in multiple cell types and diminished the cytostatic effects of TGF-beta in mammary epithelial cells. Furthermore, targeted disruption of Cripto expression by use of small inhibitory RNA enhanced TGF-beta signaling, indicating that endogenous Cripto plays a role in restraining TGF-beta responses.
Collapse
Affiliation(s)
- Peter C Gray
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| | | | | | | | | |
Collapse
|
17
|
Hentschke M, Kurth I, Borgmeyer U, Hübner CA. Germ cell nuclear factor is a repressor of CRIPTO-1 and CRIPTO-3. J Biol Chem 2006; 281:33497-504. [PMID: 16954206 DOI: 10.1074/jbc.m606975200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The pluripotency of embryonic stem and embryonic carcinoma cells is maintained by the expression of a set of "stemness" genes. Whereas these genes are down-regulated upon induction of differentiation, the germ cell nuclear factor (GCNF) is transiently up-regulated and represses several pluripotency genes. CRIPTO-1, a co-receptor for the morphogen nodal, is strongly expressed in undifferentiated cells and is rapidly down-regulated during retinoic acid-induced differentiation. Although CRIPTO-1 is expressed at very low levels in adult tissues under normal conditions, it is found highly expressed in a broad range of tumors, where it acts as a potent oncogene. We show that expression of CRIPTO-1 is directly repressed by GCNF during differentiation of the human teratocarcinoma cell line, NT2. GCNF bound to a DR0 element of the CRIPTO-1 promoter in vitro, as shown by electrophoretic mobility shift assays, and in vivo, as demonstrated by chromatin immunoprecipitation. Reporter gene assays demonstrated that GCNF-mediated repression of the CRIPTO-1 promoter is dependent upon the DR0 site. Overexpression of GCNF in NT2 cells resulted in repression of CRIPTO-1 transcription, whereas expression of the transcription-activating fusion construct GCNF-VP16 led to an induction of the CRIPTO-1 gene and prevented its retinoic acid-induced down-regulation. Furthermore, we demonstrated that CRIPTO-3, a processed pseudogene of CRIPTO-1 on the X chromosome, is expressed in undifferentiated NT2 cells and is regulated by GCNF in parallel to CRIPTO-1. Thus, our study supports the hypothesis of GCNF playing a central role during differentiation of stem cells by repression of stem cell-specific genes.
Collapse
Affiliation(s)
- Moritz Hentschke
- Institute of Medical Microbiology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| | | | | | | |
Collapse
|
18
|
Parish CL, Parisi S, Persico MG, Arenas E, Minchiotti G. Cripto as a target for improving embryonic stem cell-based therapy in Parkinson's disease. Stem Cells 2006; 23:471-6. [PMID: 15790767 DOI: 10.1634/stemcells.2004-0294] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Embryonic stem (ES) cells have been suggested as candidate therapeutic tools for cell replacement therapy in neurodegenerative disorders. However, limitations for the use of these cells lie in our restricted knowledge of the molecular mechanisms involved in their specialized differentiation and in the risk of tumor formation. Recent findings suggest that the EGF-CFC protein Cripto is a key player in the signaling pathways controlling neural induction in ES cells. Here we show that in vitro differentiation of Cripto(-/-) ES cells results in increased dopaminergic differentiation and that, upon transplantation into Parkinsonian rats, they result in behavioral and anatomical recovery with no tumor formation. The use of knockout ES cells that can generate dopamine cells while eliminating tumor risk holds enormous potential for cell replacement therapy in Parkinson's disease.
Collapse
Affiliation(s)
- Clare L Parish
- Institute of Genetics and Biophysics A. Buzzati-Traverso, CNR, Naples, Italy
| | | | | | | | | |
Collapse
|
19
|
Arenas E. Engineering a Dopaminergic Phenotype in Stem/Precursor Cells: Role of Nurr1, Glia-Derived Signals, and Wnts. Ann N Y Acad Sci 2006; 1049:51-66. [PMID: 15965107 DOI: 10.1196/annals.1334.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recent results from clinical trials using fetal tissue grafts in patients with Parkinson's disease (PD) have indicated that current surgical strategies for dopamine cell replacement therapy need to be improved in order to achieve better functional integration of the grafts and to avoid dyskinesias. Previous studies using rich dopaminergic (DA) cell suspensions have provided proof-of-concept that PD patients can benefit from cell replacement therapy. Stem cells have been proposed as better candidates for cell replacement therapy in PD since they can be standardized, expanded, and engineered in vitro. Recent developments indicate that cell preparations enriched in DA neurons can be generated in vitro, but their functional integration in animal models of disease is still far from optimal. This is not entirely surprising considering our limited knowledge of the development of DA neurons and the reduced number of factors that have been implemented in stem cell differentiation protocols. This review will focus on three aspects of DA neuron development: (1) the function of Nurr1 and retinoid X receptors (RXR) in the differentiation of DA precursors and in the survival of DA neurons; (2) the role of glia in DA neurogenesis and the differentiation of DA precursors; and (3) the function of the Wnt family of lipoproteins in the proliferation and differentiation of DA precursors. A greater understanding of the cellular and molecular mechanisms that control DA neuron development, as well as their functional integration in vivo, are likely to ultimately contribute to the development of novel stem cell replacement therapies for PD.
Collapse
Affiliation(s)
- Ernest Arenas
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Scheeles vägen 1, 17 177, Stockholm, Sweden.
| |
Collapse
|
20
|
Wechselberger C, Bianco C, Strizzi L, Ebert AD, Kenney N, Sun Y, Salomon DS. Modulation of TGF-β signaling by EGF-CFC proteins. Exp Cell Res 2005; 310:249-55. [PMID: 16137677 DOI: 10.1016/j.yexcr.2005.07.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2005] [Revised: 07/01/2005] [Accepted: 07/01/2005] [Indexed: 11/16/2022]
Abstract
Members of the transforming growth factor-beta (TGF-beta) family of ligands exhibit potent growth-suppressive and/or apoptosis-inducing effects on different types of cells. They perform essential roles in the elimination of damaged or abnormal cells from healthy tissues. On the other hand, TGF-betas have also been shown to act as tumor-promoting cytokines in a number of malignancies that are capable of stimulating extracellular matrix production, cell migration, invasion, angiogenesis, and immune suppression. Dissecting the complex, multifaceted roles of different TGF-beta-related peptides especially during the development of pathological conditions and in carcinogenesis is an area of continuous research and development. The characterization of EGF-CFC proteins as essential co-receptors that contribute to the modulation of the physiological activities of some of the TGF-beta ligands will be beneficial for future medical research and the adaptation and possible readjustment of currently applied therapeutic regimes.
Collapse
Affiliation(s)
- Christian Wechselberger
- Upper Austrian Research GmbH, Center for Biomedical Nanotechnology, Scharitzerstrasse 6-8, 4th floor, 4020 Linz, Austria.
| | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Embryonic stem (ES) cells have provided a valid model to understand early events of mammalian lineage specification and differentiation, leading to important insights into the mechanisms that control embryogenesis at the molecular and cellular levels. Furthermore, ES cells have recently evoked great scientific interest as ideal candidates for the generation of tissues for transplantation therapies. In this respect, particular attention has been paid to the molecules and signaling pathways triggering ES cell differentiation. The EGF-CFC Cripto protein is a key regulator of ES cells fate. The cripto gene is expressed both in ES cells and during the early phases of embryo development, while, in the adult, it is reactivated in a wide range of epithelial cancers. This review will discuss recent findings on the molecular basis of Cripto signaling in ES cell differentiation, providing an intriguing link between stem cell and tumor biology.
Collapse
Affiliation(s)
- Gabriella Minchiotti
- Institute of Genetics and Biophysics A Buzzati-Traverso, CNR, Via Pietro Castellino 111, 80131 Naples, Italy.
| |
Collapse
|
22
|
Champier J, Jouvet A, Rey C, Brun V, Bernard A, Fèvre-Montange M. Identification of differentially expressed genes in human pineal parenchymal tumors by microarray analysis. Acta Neuropathol 2005; 109:306-13. [PMID: 15627204 DOI: 10.1007/s00401-004-0964-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2004] [Revised: 11/08/2004] [Accepted: 11/08/2004] [Indexed: 10/26/2022]
Abstract
Human pineal parenchymal tumors (PPTs) are rare tumors, and little is known about their molecular pathogenesis. We used Atlas plastic human 8 K microarray analysis to identify the genes expressed in four human PPTs of different grades, in normal brain tissue and in a normal fetal pineal gland. We selected the most highly expressed genes in PPT (n=39) and compared their expression to that both in normal brain and fetal pineal gland. Nine genes were expressed more than twice as strongly and 3 at about half the level in PPT. Furthermore, real-time reverse transcription-PCR was performed to compare mRNA levels in the four PPTs, in four medulloblastomas (MBs) (the most common type of similar embryonal neoplasm in the cerebellum), and in normal brain, for 9 of the 39 genes. Among genes showing an expression similar to that obtained with microarray, puromycin-sensitive aminopeptidase and teratocarcinoma-derived growth factor 3 were up-regulated in PPT and in MB, and adenomatous polyposis coli like was down-regulated only in PPT. Up-regulated expression of chromosome 17 open reading frame 1A was seen in high-grade PPT and in MB, but not in lower grade PPT. In conclusion, our results identified a number of genes that are differentially expressed in PPT and MB, and some of them may serve as prognostic markers and can be used to define mechanisms of tumorigenesis.
Collapse
Affiliation(s)
- Jacques Champier
- INSERM U433, Faculté de Médecine RTH Laennec, 69372, Lyon Cedex 08, France.
| | | | | | | | | | | |
Collapse
|
23
|
Harrison CA, Gray PC, Vale WW, Robertson DM. Antagonists of activin signaling: mechanisms and potential biological applications. Trends Endocrinol Metab 2005; 16:73-8. [PMID: 15734148 DOI: 10.1016/j.tem.2005.01.003] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Activins are members of the transforming growth factor-beta (TGF-beta) superfamily that control many physiological processes such as cell proliferation and differentiation, immune responses, wound repair and various endocrine activities. Activins elicit these diverse biological responses by signaling via type I and type II receptor serine kinases. Recent studies have revealed details of the roles of inhibin, betaglycan, follistatin and its related protein follistatin-related gene (FLRG), Cripto and BAMBI in antagonizing activin action, and exogenous antagonists against the activin type I (SB-431542 and SB-505124) and type II (activin-M108A) receptors have been developed. Understanding how activin signaling is controlled extracellularly is the first step in providing treatment for wound healing and for disorders such as cachexia and cancer, which result from a deregulated activin pathway.
Collapse
Affiliation(s)
- Craig A Harrison
- Prince Henry's Institute of Medical Research, 246 Clayton Road, Clayton, VIC 3168, Australia.
| | | | | | | |
Collapse
|
24
|
Abstract
The secreted TGFbeta factor Lefty antagonizes Nodal signaling during vertebrate embryogenesis, but how it does so has been a mystery. Recent analyses have elucidated the molecular mechanisms underlying this function of Lefty.
Collapse
Affiliation(s)
- William W Branford
- Huntsman Cancer Institute Center for Children, Department of Oncological Sciences, University of Utah, Salt Lake City, Utah 84112, USA
| | | |
Collapse
|
25
|
Cheng SK, Olale F, Brivanlou AH, Schier AF. Lefty blocks a subset of TGFbeta signals by antagonizing EGF-CFC coreceptors. PLoS Biol 2004; 2:E30. [PMID: 14966532 PMCID: PMC340941 DOI: 10.1371/journal.pbio.0020030] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2003] [Accepted: 11/24/2003] [Indexed: 01/09/2023] Open
Abstract
Members of the EGF-CFC family play essential roles in embryonic development and have been implicated in tumorigenesis. The TGFβ signals Nodal and Vg1/GDF1, but not Activin, require EGF-CFC coreceptors to activate Activin receptors. We report that the TGFβ signaling antagonist Lefty also acts through an EGF-CFC-dependent mechanism. Lefty inhibits Nodal and Vg1 signaling, but not Activin signaling. Lefty genetically interacts with EGF-CFC proteins and competes with Nodal for binding to these coreceptors. Chimeras between Activin and Nodal or Vg1 identify a 14 amino acid region that confers independence from EGF-CFC coreceptors and resistance to Lefty. These results indicate that coreceptors are targets for both TGFβ agonists and antagonists and suggest that subtle sequence variations in TGFβ signals result in greater ligand diversity. TGFβ family members and their receptors are involved in setting up the left-right body axis early in development. This article clarifies the role of Lefty and elucidates the molecular basis for signaling diversity between the family members
Collapse
Affiliation(s)
- Simon K Cheng
- 1Developmental Genetics Program, Skirball Institute of Biomolecular Medicineand Department of Cell Biology, New York University School of Medicine, New York, New YorkUnited States of America
| | - Felix Olale
- 1Developmental Genetics Program, Skirball Institute of Biomolecular Medicineand Department of Cell Biology, New York University School of Medicine, New York, New YorkUnited States of America
| | - Ali H Brivanlou
- 2Laboratory of Molecular Vertebrate Embryology, The Rockefeller UniversityNew York, New YorkUnited States of America
| | - Alexander F Schier
- 1Developmental Genetics Program, Skirball Institute of Biomolecular Medicineand Department of Cell Biology, New York University School of Medicine, New York, New YorkUnited States of America
| |
Collapse
|