1
|
Holst LM, Iribarren C, Sapnara M, Savolainen O, Törnblom H, Wettergren Y, Strid H, Simrén M, Magnusson MK, Öhman L. Fecal Luminal Factors from Patients with Gastrointestinal Diseases Alter Gene Expression Profiles in Caco-2 Cells and Colonoids. Int J Mol Sci 2022; 23:ijms232415505. [PMID: 36555145 PMCID: PMC9779506 DOI: 10.3390/ijms232415505] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Previous in vitro studies have shown that the intestinal luminal content, including metabolites, possibly regulates epithelial layer responses to harmful stimuli and promotes disease. Therefore, we aimed to test the hypothesis that fecal supernatants from patients with colon cancer (CC), ulcerative colitis (UC) and irritable bowel syndrome (IBS) contain distinct metabolite profiles and establish their effects on Caco-2 cells and human-derived colon organoids (colonoids). The metabolite profiles of fecal supernatants were analyzed by liquid chromatography-mass spectrometry and distinguished patients with CC (n = 6), UC (n = 6), IBS (n = 6) and healthy subjects (n = 6). Caco-2 monolayers and human apical-out colonoids underwent stimulation with fecal supernatants from different patient groups and healthy subjects. Their addition did not impair monolayer integrity, as measured by transepithelial electrical resistance; however, fecal supernatants from different patient groups and healthy subjects altered the gene expression of Caco-2 monolayers, as well as colonoid cultures. In conclusion, the stimulation of Caco-2 cells and colonoids with fecal supernatants derived from CC, UC and IBS patients altered gene expression profiles, potentially reflecting the luminal microenvironment of the fecal sample donor. This experimental approach allows for investigating the crosstalk at the gut barrier and the effects of the gut microenvironment in the pathogenesis of intestinal diseases.
Collapse
Affiliation(s)
- Luiza Moraes Holst
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Cristina Iribarren
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Maria Sapnara
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Otto Savolainen
- Chalmers Mass Spectrometry Infrastructure, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70210 Kuopio, Finland
| | - Hans Törnblom
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Yvonne Wettergren
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska University Hospital, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Hans Strid
- Department of Internal Medicine, Södra Älvsborgs Hospital, 501 82 Borås, Sweden
| | - Magnus Simrén
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Maria K. Magnusson
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Lena Öhman
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
- Correspondence:
| |
Collapse
|
2
|
Invariant natural killer T cells and immunotherapy of cancer. Clin Immunol 2008; 129:182-94. [PMID: 18783990 DOI: 10.1016/j.clim.2008.07.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Revised: 07/29/2008] [Accepted: 07/29/2008] [Indexed: 11/20/2022]
Abstract
Invariant CD1d restricted natural killer T (iNKT) cells are regulatory cells that express a canonical TCR-Valpha-chain (Valpha24.Jalpha18 in humans and Valpha14.Jalpha18 in mice) which recognizes glycolipid antigens presented by the monomorphic CD1d molecule. They can secrete a wide variety of both pro-inflammatory and anti-inflammatory cytokines very swiftly upon their activation. Evidence for the significance of iNKT cells in human cancer has been ambiguous. Still, the (pre-)clinical findings reviewed here, provide evidence for a distinct contribution of iNKT cells to natural anti-tumor immune responses in humans. Furthermore, clinical phase I studies that are discussed here have revealed that the infusion of cancer patients with ligand-loaded dendritic cells or cultured iNKT cells is well tolerated. We thus underscore the potential of iNKT cell based immunotherapy in conjunction with established modalities such as surgery and radiotherapy, as adjuvant therapy against carcinomas.
Collapse
|
3
|
Zhang Y, Zan Y, Shan M, Liu C, Shi M, Li W, Zhang Z, Liu N, Wang F, Zhong W, Liao F, Gao GF, Tien P. Effects of heat shock protein gp96 on human dendritic cell maturation and CTL expansion. Biochem Biophys Res Commun 2006; 344:581-7. [PMID: 16630554 DOI: 10.1016/j.bbrc.2006.03.171] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2006] [Accepted: 03/20/2006] [Indexed: 11/29/2022]
Abstract
We reported previously that heat shock protein gp96 and its N-terminal fragment were able to stimulate CTL expansion specific for a HBV peptide (SYVNTNMGL) in BALB/c mice. Here we characterized the adjuvant effects of gp96 on human HLA-A2 restricted T cells. Full-length gp96 isolated from healthy human liver and recombinant fragments both from prokaryotic cells and eukaryotic cells were analyzed for their ability to stimulate maturation of human dendritic cells. It was found that in vitro these proteins were capable of maturating human monocyte-derived dendritic cells (MDDC) isolated from healthy donors as well as from HBV-positive, hepatocellular carcinoma (HCC) patients. In HLA-A2.1/Kb transgenic mice, gp96 and the recombinant fragments were found to augment CTL response specific for the HBcAg(18-27) FLPSDFFPSV peptide of hepatitis B virus.
Collapse
Affiliation(s)
- Yuxia Zhang
- Molecular Virology Research Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100080, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|