1
|
Ghosh P, Stabley JN, Behnke BJ, Allen MR, Delp MD. Effects of spaceflight on the murine mandible: Possible factors mediating skeletal changes in non-weight bearing bones of the head. Bone 2016; 83:156-161. [PMID: 26545335 DOI: 10.1016/j.bone.2015.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 11/01/2015] [Accepted: 11/02/2015] [Indexed: 11/22/2022]
Abstract
Spaceflight-induced remodeling of the skull is characterized by greater bone volume, mineral density, and mineral content. To further investigate the effects of spaceflight on other non-weight bearing bones of the head, as well as to gain insight into potential factors mediating the remodeling of the skull, the purpose of the present study was to determine the effects of spaceflight on mandibular bone properties. Female C57BL/6 mice were flown 15d on the STS-131 Space Shuttle mission (n=8) and 13d on the STS-135 mission (n=5) or remained as ground controls (GC). Upon landing, mandibles were collected and analyzed via micro-computed tomography for tissue mineralization, bone volume (BV/TV), and distance from the cemento-enamel junction to the alveolar crest (CEJ-AC). Mandibular mineralization was not different between spaceflight (SF) and GC mice for either the STS-131 or STS-135 missions. Mandibular BV/TV (combined cortical and trabecular bone) was lower in mandibles from SF mice on the STS-131 mission (80.7±0.8%) relative to that of GC (n=8) animals (84.2±1.2%), whereas BV/TV from STS-135 mice was not different from GC animals (n=7). The CEJ-AC distance was shorter in mandibles from STS-131 mice (0.217±0.004mm) compared to GC animals (0.283±0.009mm), indicating an anabolic (or anti-catabolic) effect of spaceflight, while CEJ-AC distance was similar between STS-135 and GC mice. These findings demonstrate that mandibular bones undergo skeletal changes during spaceflight and are susceptible to the effects of weightlessness. However, adaptation of the mandible to spaceflight is dissimilar to that of the cranium, at least in terms of changes in BV/TV.
Collapse
Affiliation(s)
- Payal Ghosh
- Department of Nutrition, Food and Exercise Science, Florida State University, Tallahassee, FL 32306, USA
| | - John N Stabley
- Sanford-Burnham Medical Research Institute, Orlando, FL 3282, USA
| | - Bradley J Behnke
- Department of Kinesiology and Johnson Cancer Research Center, Kansas State University, Manhattan, KS 66506, USA
| | - Matthew R Allen
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Michael D Delp
- Department of Nutrition, Food and Exercise Science, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
2
|
Sofronova SI, Tarasova OS, Gaynullina D, Borzykh AA, Behnke BJ, Stabley JN, McCullough DJ, Maraj JJ, Hanna M, Muller-Delp JM, Vinogradova OL, Delp MD. Spaceflight on the Bion-M1 biosatellite alters cerebral artery vasomotor and mechanical properties in mice. J Appl Physiol (1985) 2015; 118:830-8. [PMID: 25593287 PMCID: PMC4385880 DOI: 10.1152/japplphysiol.00976.2014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 01/13/2015] [Indexed: 01/03/2023] Open
Abstract
Conditions during spaceflight, such as the loss of the head-to-foot gravity vector, are thought to potentially alter cerebral blood flow and vascular resistance. The purpose of the present study was to determine the effects of long-term spaceflight on the functional, mechanical, and structural properties of cerebral arteries. Male C57BL/6N mice were flown 30 days in a Bion-M1 biosatellite. Basilar arteries isolated from spaceflight (SF) (n = 6), habitat control (HC) (n = 6), and vivarium control (VC) (n = 16) mice were used for in vitro functional and mechanical testing and histological structural analysis. The results demonstrate that vasoconstriction elicited through a voltage-gated Ca(2+) mechanism (30-80 mM KCl) and thromboxane A2 receptors (10(-8) - 3 × 10(-5) M U46619) are lower in cerebral arteries from SF mice. Inhibition of Rho-kinase activity (1 μM Y27632) abolished group differences in U46619-evoked contractions. Endothelium-dependent vasodilation elicited by acetylcholine (10 μM, 2 μM U46619 preconstriction) was virtually absent in cerebral arteries from SF mice. The pressure-diameter relation was lower in arteries from SF mice relative to that in HC mice, which was not related to differences in the extracellular matrix protein elastin or collagen content or the elastin/collagen ratio in the basilar arteries. Diameter, medial wall thickness, and medial cross-sectional area of unpressurized basilar arteries were not different among groups. These results suggest that the microgravity-induced attenuation of both vasoconstrictor and vasodilator properties may limit the range of vascular control of cerebral perfusion or impair the distribution of brain blood flow during periods of stress.
Collapse
Affiliation(s)
- Svetlana I Sofronova
- Institute for Biomedical Problems, Russian Academy of Sciences, Moscow; Faculty of Biology, M.V. Lomonosov Moscow State University
| | - Olga S Tarasova
- Institute for Biomedical Problems, Russian Academy of Sciences, Moscow; Faculty of Biology, M.V. Lomonosov Moscow State University
| | - Dina Gaynullina
- Institute for Biomedical Problems, Russian Academy of Sciences, Moscow; Faculty of Biology, M.V. Lomonosov Moscow State University; Department of Physiology, Russian National Research Medical University, Moscow, Russia
| | - Anna A Borzykh
- Institute for Biomedical Problems, Russian Academy of Sciences, Moscow
| | - Bradley J Behnke
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - John N Stabley
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Danielle J McCullough
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Joshua J Maraj
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Mina Hanna
- Department of Materials Science and Engineering, Stanford University, Stanford, California
| | - Judy M Muller-Delp
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida; and
| | | | - Michael D Delp
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida; Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, Florida
| |
Collapse
|
3
|
Taylor CR, Hanna M, Behnke BJ, Stabley JN, McCullough DJ, Davis RT, Ghosh P, Papadopoulos A, Muller-Delp JM, Delp MD. Spaceflight-induced alterations in cerebral artery vasoconstrictor, mechanical, and structural properties: implications for elevated cerebral perfusion and intracranial pressure. FASEB J 2013; 27:2282-92. [PMID: 23457215 PMCID: PMC3659353 DOI: 10.1096/fj.12-222687] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 02/11/2013] [Indexed: 11/11/2022]
Abstract
Evidence indicates that cerebral blood flow is both increased and diminished in astronauts on return to Earth. Data from ground-based animal models simulating the effects of microgravity have shown that decrements in cerebral perfusion are associated with enhanced vasoconstriction and structural remodeling of cerebral arteries. Based on these results, the purpose of this study was to test the hypothesis that 13 d of spaceflight [Space Transportation System (STS)-135 shuttle mission] enhances myogenic vasoconstriction, increases medial wall thickness, and elicits no change in the mechanical properties of mouse cerebral arteries. Basilar and posterior communicating arteries (PCAs) were isolated from 9-wk-old female C57BL/6 mice for in vitro vascular and mechanical testing. Contrary to that hypothesized, myogenic vasoconstrictor responses were lower and vascular distensibility greater in arteries from spaceflight group (SF) mice (n=7) relative to ground-based control group (GC) mice (n=12). Basilar artery maximal diameter was greater in SF mice (SF: 236±9 μm and GC: 215±5 μm) with no difference in medial wall thickness (SF: 12.4±1.6 μm; GC: 12.2±1.2 μm). Stiffness of the PCA, as characterized via nanoindentation, was lower in SF mice (SF: 3.4±0.3 N/m; GC: 5.4±0.8 N/m). Collectively, spaceflight-induced reductions in myogenic vasoconstriction and stiffness and increases in maximal diameter of cerebral arteries signify that elevations in brain blood flow may occur during spaceflight. Such changes in cerebral vascular control of perfusion could contribute to increases in intracranial pressure and an associated impairment of visual acuity in astronauts during spaceflight.
Collapse
Affiliation(s)
| | - Mina Hanna
- Department of Mechanical and Aerospace Engineering
- Department of Applied Physiology and Kinesiology
| | - Bradley J. Behnke
- Department of Applied Physiology and Kinesiology
- Center for Exercise Science, and
| | - John N. Stabley
- Department of Applied Physiology and Kinesiology
- Center for Exercise Science, and
| | | | - Robert T. Davis
- Department of Applied Physiology and Kinesiology
- Center for Exercise Science, and
| | - Payal Ghosh
- Department of Applied Physiology and Kinesiology
- Center for Exercise Science, and
| | | | - Judy M. Muller-Delp
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA; and
| | - Michael D. Delp
- Department of Applied Physiology and Kinesiology
- Center for Exercise Science, and
| |
Collapse
|