1
|
Maciulewicz TS, Kazzi Z, Navis IL, Nelsen GJ, Cieslak TJ, Newton C, Lin A, West DJ, Walter FG. Pediatric Medical Countermeasures: Antidotes and Cytokines for Radiological and Nuclear Incidents and Terrorism. Disaster Med Public Health Prep 2024; 18:e76. [PMID: 38651400 PMCID: PMC11047053 DOI: 10.1017/dmp.2024.35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
The war in Ukraine raises concerns for potential hazards of radiological and nuclear incidents. Children are particularly vulnerable in these incidents and may need pharmaceutical countermeasures, including antidotes and cytokines. Searches found no published study comparing pediatric indications and dosing among standard references detailing pediatric medications for these incidents. This study addresses this gap by collecting, tabulating, and disseminating this information to healthcare professionals caring for children. Expert consensus chose the following references to compare their pediatric indications and dosing of medical countermeasures for radiation exposure and internal contamination with radioactive materials: Advanced Hazmat Life Support (AHLS) for Radiological Incidents and Terrorism, DailyMed, Internal Contamination Clinical Reference, Medical Aspects of Radiation Incidents, and Medical Management of Radiological Casualties, as well as Micromedex, POISINDEX, and Radiation Emergency Medical Management (REMM). This is the first study comparing pediatric indications and dosing for medical countermeasures among commonly used references for radiological and nuclear incidents.
Collapse
Affiliation(s)
- Thom S. Maciulewicz
- Arizona Poison and Drug Information Center, College of Pharmacy, University of Arizona, Tucson, Arizona, USA
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Arizona, Tucson, Arizona, USA
- Chemical, Biological, Radiological, & Nuclear (CBRN) Focus Group, Pediatric Countermeasures Sub-Group, Western Regional Alliance for Pediatric Emergency Management (WRAP-EM), Oakland, California, USA
| | - Ziad Kazzi
- Chemical, Biological, Radiological, & Nuclear (CBRN) Focus Group, Pediatric Countermeasures Sub-Group, Western Regional Alliance for Pediatric Emergency Management (WRAP-EM), Oakland, California, USA
- Department of Emergency Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
- Southern Regional Disaster Response System, Atlanta, Georgia, USA
| | - Irene L. Navis
- Chemical, Biological, Radiological, & Nuclear (CBRN) Focus Group, Pediatric Countermeasures Sub-Group, Western Regional Alliance for Pediatric Emergency Management (WRAP-EM), Oakland, California, USA
| | - Gregory J. Nelsen
- Chemical, Biological, Radiological, & Nuclear (CBRN) Focus Group, Pediatric Countermeasures Sub-Group, Western Regional Alliance for Pediatric Emergency Management (WRAP-EM), Oakland, California, USA
- Primary Children’s Hospital, Intermountain Health, Salt Lake City, Utah, USA
| | - Theodore J. Cieslak
- Chemical, Biological, Radiological, & Nuclear (CBRN) Focus Group, Pediatric Countermeasures Sub-Group, Western Regional Alliance for Pediatric Emergency Management (WRAP-EM), Oakland, California, USA
- University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Christopher Newton
- Chemical, Biological, Radiological, & Nuclear (CBRN) Focus Group, Pediatric Countermeasures Sub-Group, Western Regional Alliance for Pediatric Emergency Management (WRAP-EM), Oakland, California, USA
- University of California San Francisco (UCSF) – Benioff Children’s Hospital, Oakland, California, USA
| | - Anna Lin
- Chemical, Biological, Radiological, & Nuclear (CBRN) Focus Group, Pediatric Countermeasures Sub-Group, Western Regional Alliance for Pediatric Emergency Management (WRAP-EM), Oakland, California, USA
- Division of Pediatric Hospital Medicine, Stanford University, Stanford, California, USA
| | - Doneen J. West
- Chemical, Biological, Radiological, & Nuclear (CBRN) Focus Group, Pediatric Countermeasures Sub-Group, Western Regional Alliance for Pediatric Emergency Management (WRAP-EM), Oakland, California, USA
| | - Frank G. Walter
- Arizona Poison and Drug Information Center, College of Pharmacy, University of Arizona, Tucson, Arizona, USA
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Arizona, Tucson, Arizona, USA
- Chemical, Biological, Radiological, & Nuclear (CBRN) Focus Group, Pediatric Countermeasures Sub-Group, Western Regional Alliance for Pediatric Emergency Management (WRAP-EM), Oakland, California, USA
- Department of Emergency Medicine, College of Medicine, University of Arizona, Tucson, Arizona, USA
- Arizona Department of Health Services (ADHS), Phoenix, Arizona, USA
| |
Collapse
|
2
|
Feldman RJ, Kazzi Z, Walter FG. Radiation Injuries: Acute Radiation Syndrome in Children. Pediatr Ann 2023; 52:e231-e237. [PMID: 37280005 DOI: 10.3928/19382359-20230411-03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The conflict in Ukraine has raised the specter of radiological and nuclear incidents, including fighting at the Zaporizhzhia nuclear plant, the largest nuclear powerplant in Europe; concerns that a radiological dispersion device ("dirty bomb") may be used; and threats to deploy tactical nuclear weapons. Children are more susceptible than adults to immediate and delayed radiation health effects. This article reviews the diagnosis and treatment of acute radiation syndrome. Although definitive treatment of radiation injuries should involve consultation with specialists, nonspecialists should learn to recognize the distinctive signs of radiation injury and make an initial assessment of severity of exposure. [Pediatr Ann. 2023;52(6):e231-e237.].
Collapse
|
3
|
Sendker S, Waack K, Reinhardt D. Far from Health: The Bone Marrow Microenvironment in AML, A Leukemia Supportive Shelter. CHILDREN (BASEL, SWITZERLAND) 2021; 8:371. [PMID: 34066861 PMCID: PMC8150304 DOI: 10.3390/children8050371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 12/28/2022]
Abstract
Acute myeloid leukemia (AML) is the second most common leukemia among children. Although significant progress in AML therapy has been achieved, treatment failure is still associated with poor prognosis, emphasizing the need for novel, innovative therapeutic approaches. To address this major obstacle, extensive knowledge about leukemogenesis and the complex interplay between leukemic cells and their microenvironment is required. The tremendous role of this bone marrow microenvironment in providing a supportive and protective shelter for leukemic cells, leading to disease development, progression, and relapse, has been emphasized by recent research. It has been revealed that the interplay between leukemic cells and surrounding cellular as well as non-cellular components is critical in the process of leukemogenesis. In this review, we provide a comprehensive overview of recently gained knowledge about the importance of the microenvironment in AML whilst focusing on promising future therapeutic targets. In this context, we describe ongoing clinical trials and future challenges for the development of targeted therapies for AML.
Collapse
Affiliation(s)
| | | | - Dirk Reinhardt
- Department of Pediatric Hematology and Oncology, Clinic of Pediatrics III, Essen University Hospital, 45147 Essen, Germany; (S.S.); (K.W.)
| |
Collapse
|
4
|
Toyne JM, Esplin N, Buikstra JE. Examining variation in skeletal tuberculosis in a late pre-contact population from the eastern mountains of Peru. INTERNATIONAL JOURNAL OF PALEOPATHOLOGY 2020; 30:22-34. [PMID: 32416540 DOI: 10.1016/j.ijpp.2020.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 03/31/2020] [Accepted: 04/16/2020] [Indexed: 06/11/2023]
Abstract
OBJECTIVE AND MATERIALS This research evaluates the presence and chronology of tuberculosis (TB) in the northeastern highlands of Peru (CE 800-1535) through the analysis of osseous lesions from Pre-Contact Kuelap, Chachapoyas. METHODS We examined macroscopic lesion morphology and distribution from the skeletal series (MNI = 207). RESULTS We determined that skeletal evidence was highly consistent with advanced multifocal and spinal tuberculosis in 13 individuals. Destructive lesions of the lower thoracic and/or lumbar vertebra bodies and sacroiliac joints are evident in most cases, but we also observed lesions within the manubriosternal, hip, and knee joints. Both adult males (n = 7) and females (n = 6) present skeletal lesions from young adult to older adults, but there is only one late adolescent. Only three individuals demonstrate similar lesion distributions. CONCLUSIONS Variation in lesion distribution in this population-based study shows the importance of identifying extra-vertebral tuberculosis and suggests that the disease may have manifested differently than at other coastal sites. These cases confirm the presence of tuberculosis both before and after Inca occupation across this central Andean highlands region. SIGNIFICANCE This evidence for the likely endemic presence of TB in the New World prior to European Contact furthers our understanding of the distribution of this infectious disease across the region as well as elucidating lesion distribution. LIMITATIONS The diagnosis of tuberculosis is based on skeletal lesions and it should be confirmed by molecular analysis. FUTURE RESEARCH Additional examination of vertebral bodies (including juvenile remains) for evidence of earlier manifestations of infection.
Collapse
Affiliation(s)
- J Marla Toyne
- Department of Anthropology, University of Central Florida, Orlando, FL 32803-1361, United States.
| | - Nathan Esplin
- Department of Neurosurgery, Allegheny General Hospital, Pittsburgh, PA, United States
| | - Jane E Buikstra
- School of Human Evolution and Social Change, Arizona State University, Phoenix metropolitan area, AZ, United States
| |
Collapse
|
5
|
Kook SH, Sim HJ, Lee JC, Lee BC. The expression of P2Y14, a purinergic G-protein coupled receptor, defines functionally distinct subpopulations in placenta-derived hematopoietic stem progenitor cells. Leukemia 2017; 31:2837-2841. [DOI: 10.1038/leu.2017.254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
6
|
Chua HH, Tsuei DJ, Lee PH, Jeng YM, Lu J, Wu JF, Su DS, Chen YH, Chien CS, Kao PC, Lee CN, Hu RH, Ni YH, Chang MH. RBMY, a novel inhibitor of glycogen synthase kinase 3β, increases tumor stemness and predicts poor prognosis of hepatocellular carcinoma. Hepatology 2015; 62:1480-96. [PMID: 26185016 DOI: 10.1002/hep.27996] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 07/15/2015] [Indexed: 02/06/2023]
Abstract
UNLABELLED Male predominance of hepatocellular carcinoma (HCC) occurs particularly among young children aged 6-9 years, indicative of a possible role of the Y chromosome-encoded oncogene in addition to an androgenic effect. The discovery of oncogenic activation of RBMY (RNA-binding motif on Y chromosome), which is absent in normal hepatocytes but present in male HCC tissues, sheds light on this issue. Herein, we report on a critical hepatocarcinogenic role of RBMY and its ontogenic origin. During liver development, the Ser/Thr phosphorylated RBMY is expressed in the cytoplasm of human and rodent fetal livers. It is then silenced in mature hepatocytes and restricted to scarce expression in the bile ductular cells. Upon hepatocarcinogenesis, a noteworthy increase of cytoplasmic and nuclear RBMY is observed in HCC tissues; however, only the former is expressed dominantly in hepatic cancer stem cells and correlates significantly to a poor prognosis and decreased survival rate in HCC patients. Cytoplasmic expression of RBMY, which is mediated by binding to nuclear exporter chromosome region maintenance 1 and further enriched upon Wnt-3a stimulation, confers upon tumor cells the traits of cancer stem cell by augmenting self-renewal, chemoresistance, cell-cycle progression, proliferation, and xenograft tumor growth. This is achieved mechanistically through increasing Ser9 phosphorylation-inactivation of glycogen synthase kinase 3β by RBMY, thereby impeding the glycogen synthase kinase 3β-dependent degradation of β-catenin and eventually inducing the nuclear entry of β-catenin for the transcription of downstream oncogenes. CONCLUSION RBMY is a novel oncofetal protein that plays a key role in attenuating glycogen synthase kinase 3β activity, leading to aberrant activation of Wnt/β-catenin signaling, which facilitates malignant hepatic stemness; because of its absence from normal human tissues except the testis, RBMY represents a feasible therapeutic target for the selective eradication of HCC cells in male patients.
Collapse
Affiliation(s)
| | | | | | - Yung-Ming Jeng
- Department of Pathology, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jean Lu
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | | | | | - Ya-Hui Chen
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chin-Sung Chien
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Pei-Chi Kao
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | - Yen-Hsuan Ni
- Department of Pediatrics.,Department of Medical Genetics
| | - Mei-Hwei Chang
- Department of Pediatrics.,Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Hepatitis Research Center, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
7
|
Pourcher G, Mazurier C, King YY, Giarratana MC, Kobari L, Boehm D, Douay L, Lapillonne H. Human fetal liver: an in vitro model of erythropoiesis. Stem Cells Int 2011; 2011:405429. [PMID: 21961016 PMCID: PMC3179878 DOI: 10.4061/2011/405429] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 05/24/2011] [Indexed: 01/15/2023] Open
Abstract
We previously described the large-scale production of RBCs from hematopoietic stem cells (HSCs) of diverse sources. Our present efforts are focused to produce RBCs thanks to an unlimited source of stem cells. Human embryonic stem (ES) cells or induced pluripotent stem cell (iPS) are the natural candidates. Even if the proof of RBCs production from these sources has been done, their amplification ability is to date not sufficient for a transfusion application. In this work, our protocol of RBC production was applied to HSC isolated from fetal liver (FL) as an intermediate source between embryonic and adult stem cells. We studied the erythroid potential of FL-derived CD34(+) cells. In this in vitro model, maturation that is enucleation reaches a lower level compared to adult sources as observed for embryonic or iP, but, interestingly, they (i) displayed a dramatic in vitro expansion (100-fold more when compared to CB CD34(+)) and (ii) 100% cloning efficiency in hematopoietic progenitor assays after 3 days of erythroid induction, as compared to 10-15% cloning efficiency for adult CD34(+) cells. This work supports the idea that FL remains a model of study and is not a candidate for ex vivo RBCS production for blood transfusion as a direct source of stem cells but could be helpful to understand and enhance proliferation abilities for primitive cells such as ES cells or iPS.
Collapse
Affiliation(s)
- Guillaume Pourcher
- Prolifération et Différenciation des Cellules Souches: Application à la Thérapie Cellulaire Hématopoïétique, INSERM, UMR_S938, CDR Saint-Antoine, 75012 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Galassetti PR, Rosa JS, Heydari S, Oliver SR, Flores RL, Pontello AM, Ibardolaza M. Inflammatory cytokine profiles during exercise in obese, diabetic, and healthy children. J Clin Res Pediatr Endocrinol 2011; 3:115-21. [PMID: 21911323 PMCID: PMC3184511 DOI: 10.4274/jcrpe.v3i3.23] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE Modulation of inflammatory status is considered a key component of the overall health effects of exercise. This may be especially relevant in children with obesity (Ob) or type 1 diabetes (T1DM), in which an imbalance between pro- and anti-inflammatory mediators could accelerate onset and progression of cardiovascular complications. To date, exercise-induced alterations in immuno-modulatory mediators in Ob and T1DM children remain largely unknown. METHODS In this study, we monitored the kinetic profiles of 8 pro-and anti-inflammatory cytokines (TNF-a, IL-6, IL-2, IL-8, IL-5, IL-13, IL-10, IL-4) during a standardized exercise challenge (ten 2-min cycling bouts at 80% VO2max, separated by 1-min intervals) in 23 Ob (12 females, 11 males), 23 T1DM (10 females and 13 males) patients and 20 healthy (CL, 10 females and 10 males) children. Blood glucose of T1DM patients was kept in the 4.4-6.1 mM range for at least 90 minute prior to and during exercise. Blood samples were drawn at rest and after every other exercise bout. RESULTS In Ob, TNF-a and IL-2 were significantly greater (p<0.0167) as compared to T1DM and CL, both at baseline and throughout exercise. All other variables, while not significant, were quantitatively elevated in Ob vs. CL. In T1DM, IL-4 and IL-8 levels were similar to Ob, IL-2 and TNF-a similar to CL, and IL-6, IL-5, IL-13, IL-4 levels were intermediate between the Ob and CL groups. CONCLUSIONS During exercise, therefore, both Ob and T1DM children displayed exaggerated pro-inflammatory responses, although with clearly different magnitude and involved mediators. Our data support the necessity to identify specific exercise formats through which each at-risk pediatric population can draw maximal beneficial health effects.
Collapse
Affiliation(s)
- Pietro R. Galassetti
- University of California, Institute for Clinical and Translational Science, Irvine, CA, USA
| | - Jaime S. Rosa
- University of California, Department of Pharmacology, Irvine, CA, USA
| | - Shirin Heydari
- University of California, Institute for Clinical and Translational Science, Irvine, CA, USA
| | - Stacy R. Oliver
- University of California, Department of Pharmacology, Irvine, CA, USA
| | - Rebecca L. Flores
- University of California, Institute for Clinical and Translational Science, Irvine, CA, USA
| | - Andria M. Pontello
- University of California, Institute for Clinical and Translational Science, Irvine, CA, USA
| | - Milagros Ibardolaza
- University of California, Institute for Clinical and Translational Science, Irvine, CA, USA
| |
Collapse
|
9
|
Rosa JS, Oliver SR, Flores RL, Ngo J, Milne GL, Zaldivar FP, Galassetti PR. Altered inflammatory, oxidative, and metabolic responses to exercise in pediatric obesity and type 1 diabetes. Pediatr Diabetes 2011; 12:464-72. [PMID: 21443585 PMCID: PMC2945245 DOI: 10.1111/j.1399-5448.2010.00724.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Obesity (Ob) and type 1 diabetes (T1DM) are associated with increased inflammation and oxidative stress, which are major pathogenetic pathways toward higher cardiovascular risks. Although long-term exercise protects against systemic inflammation and oxidation, acute exercise actually exerts pro-inflammatory and oxidative effects, prompting the necessity for better defining these molecular processes in at-risk patients; in particular, very little is known regarding obese and T1DM children. We therefore examined key inflammatory and oxidative stress variables during exercise in 138 peripubertal children (47 Ob, 12.7 ± 0.4 yr, 22 F, BMI% 97.6 ± 0.2; 49 T1DM, 13.9 ± 0.2 yr, 20 F, body mass index% [BMI] 63.0 ± 3.6; 42 healthy, CL, 13.5 ± 0.5 yr, 24 F, BMI% 57.0 ± 3.6), who performed 10 bouts of 2-min cycling ~80% VO(2max) , separated by 1-min rest intervals. Blood samples were drawn at baseline and peak exercise. Ob displayed elevated baseline interleukin-6 (IL-6, 2.1 ± 0.2 pg/mL, p < 0.005) vs. CL (1.5 ± 0.3), whereas T1DM displayed the greatest maximum exercise-induced change in IL-6 (1.2 ± 0.3) than in both Ob (0.7 ± 0.1, p < 0.001) and CL (0.6 ± 0.1, p < 0.0167). Myeloperoxidase (MPO) was elevated in T1DM (143 ± 30 ng/mL, p < 0.0167) vs. CL (89 ± 10) and Ob (76 ± 6), whereas increases in exercise only occurred in Ob and CL. Disparate baseline and exercise responses were also observed for 8-hydroxy-2'-deoxyguanosine, glutathione, and F(2) -isoprostane. This data show distinct patterns of dysregulation in baseline and adaptive immunologic and oxidative responses to exercise in Ob and T1DM. A full understanding of these alterations is required so that developing exercise regimens aimed at maximizing health benefits for specific dysmetabolic states can be achieved based on complete scientific characterization rather than empirical implementation.
Collapse
Affiliation(s)
- Jaime S. Rosa
- Department of Pharmacology, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA
,Institute for Clinical Translational Science, Department of Pediatrics, University of California, Irvine, Orange, CA 92868, USA
| | - Stacy R. Oliver
- Department of Pharmacology, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA
,Institute for Clinical Translational Science, Department of Pediatrics, University of California, Irvine, Orange, CA 92868, USA
| | - Rebecca L. Flores
- Institute for Clinical Translational Science, Department of Pediatrics, University of California, Irvine, Orange, CA 92868, USA
| | - Jerry Ngo
- Institute for Clinical Translational Science, Department of Pediatrics, University of California, Irvine, Orange, CA 92868, USA
| | - Ginger L. Milne
- Division of Clinical Pharmacology, Departments of Medicine and Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Frank P. Zaldivar
- Institute for Clinical Translational Science, Department of Pediatrics, University of California, Irvine, Orange, CA 92868, USA
| | - Pietro R. Galassetti
- Department of Pharmacology, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA
,Institute for Clinical Translational Science, Department of Pediatrics, University of California, Irvine, Orange, CA 92868, USA
| |
Collapse
|
10
|
Oliver SR, Rosa JS, Milne GL, Pontello AM, Borntrager HL, Heydari S, Galassetti PR. Increased oxidative stress and altered substrate metabolism in obese children. ACTA ACUST UNITED AC 2011; 5:436-44. [PMID: 20233149 DOI: 10.3109/17477160903545163] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Pediatric obesity, a major risk factor for cardiovascular diseases and diabetes, has steadily increased in the last decades. Although excessive inflammation and oxidation are possible biochemical links between obesity and cardiovascular events in adults, little information is available in children. Furthermore, effects of gender and fitness on the interaction between dyslipidemia and oxidative/inflammatory stress in children are mostly unknown. METHODS Therefore, we measured systemic markers of oxidation (F(2)-isoprostanes [F(2)-IsoP] and antioxidants) and inflammation (interleukin-6 [IL-6] and leukocyte counts) and metabolic variables in 113 peripubertal children (55 obese [Ob] age and gender-adjusted BMI% ≥ 95(th), 25 Females [F]; 15 overweight [OW] BMI% 85(th)-95(th), 8 F; 43 normoweight [NW] 25 F). RESULTS When compared with NW, Ob displayed elevated F(2)-IsoP (99 ± 7 vs. 75 ± 4 pg/mL, p<0.005), IL-6 (2.2 ± 0.2 vs. 1.5 ± 0.3 pg/mL, p<0.005), elevated total leukocytes and neutrophils, altered levels of total cholesterol , low- and high-density-lipoprotein cholesterol, triglycerides, free fatty acids, glucose, and insulin (all p<0.005). This pattern was present in both genders and over a broad range of fitness in Ob. CONCLUSIONS Our data indicate that alterations in metabolic control and a concomitant increase in inflammation and oxidative stress occur early in life in obese children, likely exposing both genders to a similar degree of increased risk of future cardiovascular diseases.
Collapse
Affiliation(s)
- Stacy R Oliver
- Department of Pharmacology, School of Medicine, University of California, Irvine, CA 92697, USA.
| | | | | | | | | | | | | |
Collapse
|
11
|
Markovà E, Malmgren LO, Belyaev IY. Microwaves from Mobile Phones Inhibit 53BP1 Focus Formation in Human Stem Cells More Strongly Than in Differentiated Cells: Possible Mechanistic Link to Cancer Risk. ENVIRONMENTAL HEALTH PERSPECTIVES 2010; 118:394-399. [PMID: 20064781 PMCID: PMC2854769 DOI: 10.1289/ehp.0900781] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Accepted: 10/22/2009] [Indexed: 05/26/2023]
Abstract
BACKGROUND It is widely accepted that DNA double-strand breaks (DSBs) and their misrepair in stem cells are critical events in the multistage origination of various leukemias and tumors, including gliomas. OBJECTIVES We studied whether microwaves from mobile telephones of the Global System for Mobile Communication (GSM) and the Universal Global Telecommunications System (UMTS) induce DSBs or affect DSB repair in stem cells. METHODS We analyzed tumor suppressor TP53 binding protein 1 (53BP1) foci that are typically formed at the sites of DSB location (referred to as DNA repair foci) by laser confocal microscopy. RESULTS Microwaves from mobile phones inhibited formation of 53BP1 foci in human primary fibroblasts and mesenchymal stem cells. These data parallel our previous findings for human lymphocytes. Importantly, the same GSM carrier frequency (915 MHz) and UMTS frequency band (1947.4 MHz) were effective for all cell types. Exposure at 905 MHz did not inhibit 53BP1 foci in differentiated cells, either fibroblasts or lymphocytes, whereas some effects were seen in stem cells at 905 MHz. Contrary to fibroblasts, stem cells did not adapt to chronic exposure during 2 weeks. CONCLUSIONS The strongest microwave effects were always observed in stem cells. This result may suggest both significant misbalance in DSB repair and severe stress response. Our findings that stem cells are most sensitive to microwave exposure and react to more frequencies than do differentiated cells may be important for cancer risk assessment and indicate that stem cells are the most relevant cellular model for validating safe mobile communication signals.
Collapse
Affiliation(s)
- Eva Markovà
- Department of Genetics, Microbiology and Toxicology, Stockholm University, Stockholm, Sweden
- Laboratory of Molecular Genetics, Cancer Research Institute, Bratislava, Slovak Republic
| | | | - Igor Y. Belyaev
- Department of Genetics, Microbiology and Toxicology, Stockholm University, Stockholm, Sweden
- Laboratory of Molecular Genetics, Cancer Research Institute, Bratislava, Slovak Republic
- Laboratory of Radiobiology, General Physics Institute, Russian Academy of Science, Moscow, Russia
| |
Collapse
|
12
|
Risher JF, Todd GD, Meyer D, Zunker CL. The elderly as a sensitive population in environmental exposures: making the case. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2010; 207:95-157. [PMID: 20652665 DOI: 10.1007/978-1-4419-6406-9_2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The US population is aging. CDC has estimated that 20% of all Americans will be 65 or older by the year 2030. As a part of the aging process, the body gradually deteriorates and physiologic and metabolic limitations arise. Changes that occur in organ anatomy and function present challenges for dealing with environmental stressors of all kinds, ranging from temperature regulation to drug metabolism and excretion. The elderly are not just older adults, but rather are individuals with unique challenges and different medical needs than younger adults. The ability of the body to respond to physiological challenge presented by environmental chemicals is dependent upon the health of the organ systems that eliminate those substances from the body. Any compromise in the function of those organ systems may result in a decrease in the body's ability to protect itself from the adverse effects of xenobiotics. To investigate this issue, we performed an organ system-by-organ system review of the effects of human aging and the implications for such aging on susceptibility to drugs and xenobiotics. Birnbaum (1991) reported almost 20 years ago that it was clear that the pharmacokinetic behavior of environmental chemicals is, in many cases, altered during aging. Yet, to date, there is a paucity of data regarding recorded effects of environmental chemicals on elderly individuals. As a result, we have to rely on what is known about the effects of aging and the existing data regarding the metabolism, excretion, and adverse effects of prescription medications in that population to determine whether the elderly might be at greater risk when exposed to environmental substances. With increasing life expectancy, more and more people will confront the problems associated with advancing years. Moreover, although proper diet and exercise may lessen the immediate severity of some aspects of aging, the process will continue to gradually degrade the ability to cope with a variety of injuries and diseases. Thus, the adverse effects of long-term, low-level exposure to environmental substances will have a longer time to be manifested in a physiologically weakened elderly population. When such exposures are coupled with concurrent exposure to prescription medications, the effects could be devastating. Public health officials must be knowledgeable about the sensitivity of the growing elderly population, and ensure that the use of health guidance values (HGVs) for environmental contaminants and other substances give consideration to this physiologically compromised segment of the population.
Collapse
Affiliation(s)
- John F Risher
- Agency for Toxic Substances and Disease Registry, Division of Toxicology (F-32), Toxicology Information Branch, 1600 Clifton Road, Atlanta, GA 30333, USA.
| | | | | | | |
Collapse
|
13
|
Application potential of human fetal stem/progenitor cells in cell therapy. Bull Exp Biol Med 2008; 145:114-21. [DOI: 10.1007/s10517-008-0031-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
14
|
|
15
|
Watt SM, Forde SP. The central role of the chemokine receptor, CXCR4, in haemopoietic stem cell transplantation: will CXCR4 antagonists contribute to the treatment of blood disorders? Vox Sang 2007; 94:18-32. [PMID: 18042197 DOI: 10.1111/j.1423-0410.2007.00995.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recent clinical trials have used CXCR4 antagonists for the rapid mobilization of CD34(+) haemopoietic stem/progenitor cells (HSC/HPC) from the bone marrow to the blood in patients refractory to granulocyte-colony-stimulating factor (G-CSF). These antagonists not only mobilize non-cycling cells with a higher proportion of repopulating cells, but also enhance CD34(+) cell mobilization when used in combination with G-CSF. Here, we review the importance of CXCR4 and its ligand CXCL12 in haemopoiesis, and the potential roles of CXCR4 antagonists in the clinical HSC transplant setting.
Collapse
Affiliation(s)
- S M Watt
- Stem Cells and Immunotherapies, NHS Blood and Transplant, John Radcliffe Hospital, Headington, Oxford, UK and Nuffield Department of Clinical Laboratory Sciences, University of Oxford, Oxford, UK
| | | |
Collapse
|