1
|
Lailler C, Didelot A, Garinet S, Berthou H, Sroussi M, de Reyniès A, Dedhar S, Martin-Lannerée S, Fabre E, Le Pimpec-Barthes F, Perrier A, Poindessous V, Mansuet-Lupo A, Djouadi F, Launay JM, Laurent-Puig P, Blons H, Mouillet-Richard S. PrP C controls epithelial-to-mesenchymal transition in EGFR-mutated NSCLC: implications for TKI resistance and patient follow-up. Oncogene 2024; 43:2781-2794. [PMID: 39147880 PMCID: PMC11379626 DOI: 10.1038/s41388-024-03130-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 08/17/2024]
Abstract
Patients with EGFR-mutated non-small cell lung cancer (NSCLC) benefit from treatment with tyrosine kinase inhibitors (TKI) targeting EGFR. Despite improvements in patient care, especially with the 3rd generation TKI osimertinib, disease relapse is observed in all patients. Among the various processes involved in TKI resistance, epithelial-to-mesenchymal transition (EMT) is far from being fully characterized. We hypothesized that the cellular prion protein PrPC could be involved in EMT and EGFR-TKI resistance in NSCLC. Using 5 independent lung adenocarcinoma datasets, including our own cohort, we document that the expression of the PRNP gene encoding PrPC is associated with EMT. By manipulating the levels of PrPC in different EGFR-mutated NSCLC cell lines, we firmly establish that the expression of PrPC is mandatory for cells to maintain or acquire a mesenchymal phenotype. Mechanistically, we show that PrPC operates through an ILK-RBPJ cascade, which also controls the expression of EGFR. Our data further demonstrate that PrPC levels are elevated in EGFR-mutated versus wild-type tumours or upon EGFR activation in vitro. In addition, we provide evidence that PRNP levels increase with TKI resistance and that reducing PRNP expression sensitizes cells to osimertinib. Finally, we found that plasma PrPC levels are increased in EGFR-mutated NSCLC patients from 2 independent cohorts and that their longitudinal evolution mirrors that of disease. Altogether, these findings define PrPC as a candidate driver of EMT-dependent resistance to EGFR-TKI in NSCLC. They further suggest that monitoring plasma PrPC levels may represent a valuable non-invasive strategy for patient follow-up and warrant considering PrPC-targeted therapies for EGFR-mutated NSCLC patients with TKI failure.
Collapse
Affiliation(s)
- Claire Lailler
- Centre de Recherche des Cordeliers, INSERM UMRS-1138, Sorbonne Université, Université Paris Cité, Paris, France
| | - Audrey Didelot
- Centre de Recherche des Cordeliers, INSERM UMRS-1138, Sorbonne Université, Université Paris Cité, Paris, France
| | - Simon Garinet
- Centre de Recherche des Cordeliers, INSERM UMRS-1138, Sorbonne Université, Université Paris Cité, Paris, France
| | - Hugo Berthou
- Centre de Recherche des Cordeliers, INSERM UMRS-1138, Sorbonne Université, Université Paris Cité, Paris, France
| | - Marine Sroussi
- Centre de Recherche des Cordeliers, INSERM UMRS-1138, Sorbonne Université, Université Paris Cité, Paris, France
- Institut du Cancer Paris CARPEM, AP-HP, Department of Genetics and Molecular Medicine, Hôpital Européen Georges Pompidou, Paris, France
| | - Aurélien de Reyniès
- Centre de Recherche des Cordeliers, INSERM UMRS-1138, Sorbonne Université, Université Paris Cité, Paris, France
| | - Shoukat Dedhar
- Genetics Unit, Integrative Oncology, BC Cancer, Vancouver, BC, Canada
| | - Séverine Martin-Lannerée
- Centre de Recherche des Cordeliers, INSERM UMRS-1138, Sorbonne Université, Université Paris Cité, Paris, France
| | - Elizabeth Fabre
- AP-HP Department of Thoracic Oncology, Hôpital Européen Georges Pompidou, Paris, France
| | | | - Alexandre Perrier
- Centre de Recherche des Cordeliers, INSERM UMRS-1138, Sorbonne Université, Université Paris Cité, Paris, France
| | - Virginie Poindessous
- Centre de Recherche des Cordeliers, INSERM UMRS-1138, Sorbonne Université, Université Paris Cité, Paris, France
| | - Audrey Mansuet-Lupo
- AP-HP Department of Pathology, Hôpital Cochin, Université Paris Cité, Paris, France
| | - Fatima Djouadi
- Centre de Recherche des Cordeliers, INSERM UMRS-1138, Sorbonne Université, Université Paris Cité, Paris, France
| | - Jean-Marie Launay
- INSERM U942 Lariboisière Hospital, Paris, France
- Pharma Research Department, F. Hoffmann-La-Roche Ltd., Basel, Switzerland
| | - Pierre Laurent-Puig
- Centre de Recherche des Cordeliers, INSERM UMRS-1138, Sorbonne Université, Université Paris Cité, Paris, France
- Institut du Cancer Paris CARPEM, AP-HP, Department of Genetics and Molecular Medicine, Hôpital Européen Georges Pompidou, Paris, France
| | - Hélène Blons
- Centre de Recherche des Cordeliers, INSERM UMRS-1138, Sorbonne Université, Université Paris Cité, Paris, France.
- Institut du Cancer Paris CARPEM, AP-HP, Department of Biochemistry, Pharmacogenetics and Molecular Oncology, Hôpital Européen Georges Pompidou, Paris, France.
| | - Sophie Mouillet-Richard
- Centre de Recherche des Cordeliers, INSERM UMRS-1138, Sorbonne Université, Université Paris Cité, Paris, France.
| |
Collapse
|
2
|
Shen SM, Yu DD, Ke LM, Yao LG, Su MZ, Guo YW. Polyoxygenated cembrane-type diterpenes from the Hainan soft coral Lobophytum crassum as a promising source of anticancer agents with ErbB3 and ROR1 inhibitory potential. Acta Pharmacol Sin 2024:10.1038/s41401-024-01347-z. [PMID: 39075227 DOI: 10.1038/s41401-024-01347-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/28/2024] [Indexed: 07/31/2024] Open
Abstract
A detailed chemical investigation of the Hainan soft coral Lobophytum crassum led to the identification of a class of polyoxygenated cembrane-type macrocyclic diterpenes (1-28), including three new flexible cembranoids, lobophycrasins E-G (2-4), and twenty-five known analogues. Their structures were elucidated by combining extensive spectroscopic data analysis, quantum mechanical-nuclear magnetic resonance (QM-NMR) methods, the modified Mosher's method, X-ray diffraction analysis, and comparison with data reported in the literature. Bioassays revealed that sixteen cembranoids inhibited the proliferation of H1975, MDA-MB231, A549, and H1299 cells. Among them, Compounds 10, 17, and 20 exhibited significant antiproliferative activities with IC50 values of 1.92-8.82 μM, which are very similar to that of the positive control doxorubicin. Molecular mechanistic studies showed that the antitumour activity of Compound 10 was closely related to regulation of the ROR1 and ErbB3 signalling pathways. This study may provide insight into the discovery and utilization of marine macrocyclic cembranoids as lead compounds for anticancer drugs.
Collapse
Affiliation(s)
- Shou-Mao Shen
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
- School of Pharmacy, Yancheng Teachers University, Yancheng, 224002, China
| | - Dan-Dan Yu
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China
| | - Lin-Mao Ke
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China
| | - Li-Gong Yao
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China
| | - Ming-Zhi Su
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China.
| | - Yue-Wei Guo
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China.
- School of Medicine, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
3
|
Hu M, Zhong C, Wang J, Chen J, Zhou T. Current status and breakthroughs in treating advanced non-small cell lung cancer with EGFR exon 20 insertion mutations. Front Immunol 2024; 15:1399975. [PMID: 38774882 PMCID: PMC11106363 DOI: 10.3389/fimmu.2024.1399975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/23/2024] [Indexed: 05/24/2024] Open
Abstract
Recently, targeted therapy and immunotherapy have emerged as effective treatment options for non-small cell lung cancer (NSCLC). This progress has been facilitated by the rapid development of diagnostic and therapeutic technologies and the continuous research and development of new drugs, leading to a new era in precision medicine for NSCLC. This is a breakthrough for patients with common mutations in the human epidermal growth factor receptor (EGFR) gene in NSCLC. Consequently, the use of targeted drugs has significantly improved survival. Nevertheless, certain rare genetic mutations are referred to as EGFR exon 20 insertion (ex20ins) mutations, which differ in structure from conventional EGFR gene mutations, namely, exon 19 deletion mutations (19-Del) and exon 21 point mutations. Owing to their distinct structural characteristics, patients harboring these EGFR ex20ins mutations are unresponsive to traditional tyrosine kinase inhibitor (TKI) therapy. This particular group of patients did not fall within the scope of their applicability. However, the activating A763_Y764insFQEA mutation elicits a more pronounced response than mutations in the near and far regions of the C-helix immediately following it and should, therefore, be treated differently. Currently, there is a lack of effective treatments for EGFR ex20ins mutations NSCLC. The efficacy of chemotherapy has been relatively favorable, whereas the effectiveness of immunotherapy remains ambiguous owing to inadequate clinical data. In addition, the efficacy of the first- and second-generation targeted drugs remains limited. However, third-generation and novel targeted drugs have proven to be effective. Although novel EGFR-TKIs are expected to treat EGFR ex20ins mutations in patients with NSCLC, they face many challenges. The main focus of this review is on emerging therapies that target NSCLC with EGFR ex20ins and highlight major ongoing clinical trials while also providing an overview of the associated challenges and research advancements in this area.
Collapse
Affiliation(s)
- Meng Hu
- Department of Oncology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Congying Zhong
- Department of Oncology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Jiabing Wang
- Department of Oncology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - JinQin Chen
- Department of Oncology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
- Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Tao Zhou
- Department of Chinese and Western Medicine Oncology, Jiangxi Provincial People’s Hospital, Nanchang, China
| |
Collapse
|
4
|
Vaishnavi A, Kinsey CG, McMahon M. Preclinical Modeling of Pathway-Targeted Therapy of Human Lung Cancer in the Mouse. Cold Spring Harb Perspect Med 2024; 14:a041385. [PMID: 37788883 PMCID: PMC10760064 DOI: 10.1101/cshperspect.a041385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Animal models, particularly genetically engineered mouse models (GEMMs), continue to have a transformative impact on our understanding of the initiation and progression of hematological malignancies and solid tumors. Furthermore, GEMMs have been employed in the design and optimization of potent anticancer therapies. Increasingly, drug responses are assessed in mouse models either prior, or in parallel, to the implementation of precision medical oncology, in which groups of patients with genetically stratified cancers are treated with drugs that target the relevant oncoprotein such that mechanisms of drug sensitivity or resistance may be identified. Subsequently, this has led to the design and preclinical testing of combination therapies designed to forestall the onset of drug resistance. Indeed, mouse models of human lung cancer represent a paradigm for how a wide variety of GEMMs, driven by a variety of oncogenic drivers, have been generated to study initiation, progression, and maintenance of this disease as well as response to drugs. These studies have now expanded beyond targeted therapy to include immunotherapy. We highlight key aspects of the relationship between mouse models and the evolution of therapeutic approaches, including oncogene-targeted therapies, immunotherapies, acquired drug resistance, and ways in which successful antitumor strategies improve on efficiently translating preclinical approaches into successful antitumor strategies in patients.
Collapse
Affiliation(s)
- Aria Vaishnavi
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - Conan G Kinsey
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah 84112, USA
| | - Martin McMahon
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
- Department of Dermatology, University of Utah, Salt Lake City, Utah 84112, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, Utah 84112, USA
| |
Collapse
|
5
|
Ciardiello F, Hirsch FR, Pirker R, Felip E, Valencia C, Smit EF. The role of anti-EGFR therapies in EGFR-TKI-resistant advanced non-small cell lung cancer. Cancer Treat Rev 2024; 122:102664. [PMID: 38064878 DOI: 10.1016/j.ctrv.2023.102664] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 01/01/2024]
Abstract
Epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) are the current recommended option for the first-line treatment of patients with EGFR-mutant non-small cell lung cancer (NSCLC). Resistance to first-generation TKIs led to the development of second- and third-generation TKIs with improved clinical outcomes. However, sequential administration of TKIs has led to the emergence of new EGFR resistance mutations and persistent tumor cell survival. This evidence highlights the potential role of EGFR in transducing growth signals in NSCLC tumor cells. Therefore, dual inhibition of EGFR using combinations of anti-EGFR monoclonal antibodies (mAbs) and EGFR-TKIs may offer a unique treatment strategy to suppress tumor cell growth. Several clinical studies have demonstrated the benefits of dual blockade of EGFR using anti-EGFR mAbs coupled with EGFR-TKIs in overcoming treatment resistance in patients with EGFR-mutated NSCLC. However, a single treatment option may not result in the same clinical benefits in all patients with acquired resistance. Biomarkers, including EGFR overexpression, EGFR gene copy number, EGFR and KRAS mutations, and circulating tumor DNA, have been associated with improved clinical efficacy with anti-EGFR mAbs in patients with NSCLC and acquired resistance. Further investigation of biomarkers may allow patient selection for those who could benefit from anti-EGFR mAbs in combination with EGFR-TKIs. This review summarizes findings of recent studies of anti-EGFR mAbs in combination with EGFR-TKIs for the treatment of patients with EGFR-mutated NSCLC, as well as clinical evidence for potential biomarkers towards personalized targeted medicine.
Collapse
Affiliation(s)
- Fortunato Ciardiello
- Department of Precision Medicine, The University of Campania Luigi Vanvitelli, Naples, Italy
| | - Fred R Hirsch
- Center for Thoracic Oncology, Tisch Cancer Institute at Mount Sinai, New York, NY, USA
| | - Robert Pirker
- Private Practice for Internal Medicine (Hemato-Oncology), Josefstädter Strasse 47-49, 1080 Vienna, Austria
| | - Enriqueta Felip
- Vall d'Hebron Universitary Hospital, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | | | - Egbert F Smit
- Department of Pulmonary Diseases, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
6
|
Mansour MA, AboulMagd AM, Abbas SH, Abdel-Rahman HM, Abdel-Aziz M. Insights into fourth generation selective inhibitors of (C797S) EGFR mutation combating non-small cell lung cancer resistance: a critical review. RSC Adv 2023; 13:18825-18853. [PMID: 37350862 PMCID: PMC10282734 DOI: 10.1039/d3ra02347h] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 06/12/2023] [Indexed: 06/24/2023] Open
Abstract
Lung cancer is the second most common cause of morbidity and mortality among cancer types worldwide, with non-small cell lung cancer (NSCLC) representing the majority of most cases. Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR TKIs) are among the most commonly used targeted therapy to treat NSCLC. Recent years have seen the evaluation of many synthetic EGFR TKIs, most of which showed therapeutic activity in pertinent models and were classified as first, second, and third-generation. The latest studies have concluded that their efficacy was also compromised by additional acquired mutations, including C797S. Because second- and third-generation EGFR TKIs are irreversible inhibitors, they are ineffective against C797S containing EGFR triple mutations (Del19/T790M/C797S and L858R/T790M/C797S). Therefore, there is an urgent unmet medical need to develop next-generation EGFR TKIs that selectively inhibit EGFR triple mutations via a non-irreversible mechanism. This review covers the fourth-generation EGFR-TKIs' most recent design with their essential binding interactions, the clinical difficulties, and the potential outcomes of treating patients with EGFR mutation C797S resistant to third-generation EGFR-TKIs was also discussed. Moreover, the utilization of various therapeutic strategies, including multi-targeting drugs and combination therapies, has also been reviewed.
Collapse
Affiliation(s)
- Mostafa A Mansour
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Nahda University in Beni-Suef (NUB) Beni-Suef 62513 Egypt
| | - Asmaa M AboulMagd
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Nahda University in Beni-Suef (NUB) Beni-Suef 62513 Egypt
| | - Samar H Abbas
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University Minia 61519 Egypt
| | - Hamdy M Abdel-Rahman
- Medicinal Chemistry Department, Faculty of Pharmacy, Assiut University Assiut 71526 Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Badr University in Assiut (BUA) Assiut 2014101 Egypt
| | - Mohamed Abdel-Aziz
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University Minia 61519 Egypt
| |
Collapse
|
7
|
Girard N, Basse C. EGFR-mutant NSCLC: monitoring the molecular evolution of tumors in 2022. Expert Rev Anticancer Ther 2022; 22:1115-1125. [PMID: 35993098 DOI: 10.1080/14737140.2022.2116004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Epidermal growth factor receptor (EGFR) activating mutations define a subset of advanced, metastatic non-small cell lung cancers (NSCLCs), that was historically identified along with the clinical development of specific EGFR tyrosine kinase inhibitors (TKIs), opening the era of precision medicine in thoracic oncology. AREAS COVERED Progression after EGFR TKIs is a major challenge for patients, as it occurs ineluctably along with disease evolution. Osimertinib is the current standard-of-care for the first-line treatment of EGFR-mutant NSCLC. Mechanisms of resistance to osimertinib are challenging to identify, and are dominated by MET pathway activation, and acquired EGFR mutations. EXPERT OPINION The current vision for clinical practice in patients with EGFR-mutant NSCLC developing disease progression after osimertinib includes the following 5 steps:- continuation of osimertinib beyond progression, and local treatment of oligoprogressive disease, - comprehensive genomic profiling based on tissue rebiopsy of progressing sites, - access to new treatment agents through clinical trials, - molecular tumor board to discuss the off-label use of targeted agents, depending on the availability of drugs and/or expanded access programs - chemotherapy may be the best choice, based on combination of platinum-based regimen and antiangiogenic agents and possibly immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Nicolas Girard
- Thoracic Oncology Service, Institut Curie, Institut du Thorax Curie Montsouris, Paris, France
| | - Clémence Basse
- Thoracic Oncology Service, Institut Curie, Institut du Thorax Curie Montsouris, Paris, France
| |
Collapse
|
8
|
Zhang G, Yan B, Guo Y, Yang H, Li J. "Sandwich" Strategy to Intensify EGFR Blockade by Concurrent Tyrosine Kinase Inhibitor and Monoclonal Antibody Treatment in Highly Selected Patients. Front Oncol 2022; 12:952939. [PMID: 35903676 PMCID: PMC9321780 DOI: 10.3389/fonc.2022.952939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/16/2022] [Indexed: 02/03/2023] Open
Abstract
EGFR TKIs are not curative, and targeted resistance inevitably results in therapeutic failure. Additionally, there are numerous uncommon EGFR mutations that are insensitive to EGFR TKIs, and there is a lack of clinical strategies to overcome these limitations. EGFR TKI and mAbs target EGFR at different sites, and a combination regimen for delaying/preventing resistance to targeted therapy or obtaining more intensive inhibition for uncommon mutations at cellular, animal and human levels has been explored. This review critically focuses on a combination strategy for uncommon EGFR mutation-positive NSCLC, and discuss the preclinical data, clinical implications, limitations and future prospects of the combination strategy.
Collapse
Affiliation(s)
- Guoqing Zhang
- Department of Thoracic Surgery and Lung Transplantation, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Beibei Yan
- Department of Thoracic Surgery and Lung Transplantation, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanan Guo
- Department of Thoracic Surgery and Lung Transplantation, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hang Yang
- Department of Thoracic Surgery and Lung Transplantation, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jindong Li
- Department of Thoracic Surgery and Lung Transplantation, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
9
|
SHC1 Promotes Lung Cancer Metastasis by Interacting with EGFR. JOURNAL OF ONCOLOGY 2022; 2022:3599832. [PMID: 35706930 PMCID: PMC9192283 DOI: 10.1155/2022/3599832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/27/2022] [Accepted: 05/05/2022] [Indexed: 11/27/2022]
Abstract
The study aims to explore the biological function of SHC1 in the development and progression of lung cancer. Meanwhile, the effect of SHC1 and EGFR on lung cancer was analyzed. The expression of SHC1 in lung cancer and adjacent tissues was analyzed by bioinformatics and immunohistochemistry. Meanwhile, the relationship between SHC1 expression and prognosis was analyzed. SHC1 overexpression and knockdown cell lines were constructed by overexpression plasmid and knockdown plasmid. Cell proliferation was detected by CCK-8. Cell invasion was detected by transwell. Apoptosis was detected by TUNEL. Interaction between SHC1 and EGFR was detected. The expression of SHC1 in lung adenocarcinoma tissues was significantly higher than that in paracancer tissues. Lung cancer patients with high SHC1 expression have a poor prognosis. The proliferation and invasion of SHC1 decreased with SHC1 knockout but increased after overexpression. EGFR may be a key interaction protein of SHC1. Overexpression of EGFR increases the oncogenic effect of SHC1. In conclusion, SHC1 plays a carcinogenic role in lung cancer. EGFR expression was significantly correlated with SHC1 and maybe a key interaction protein of SHC1. SHC1 interacts with EGFR to form a protein complex, which may be a new target for lung cancer metastasis.
Collapse
|
10
|
Cheng WL, Feng PH, Lee KY, Chen KY, Sun WL, Van Hiep N, Luo CS, Wu SM. The Role of EREG/EGFR Pathway in Tumor Progression. Int J Mol Sci 2021; 22:ijms222312828. [PMID: 34884633 PMCID: PMC8657471 DOI: 10.3390/ijms222312828] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/12/2022] Open
Abstract
Aberrant activation of the epidermal growth factor receptor (EGFR/ERBB1) by erythroblastic leukemia viral oncogene homolog (ERBB) ligands contributes to various tumor malignancies, including lung cancer and colorectal cancer (CRC). Epiregulin (EREG) is one of the EGFR ligands and is low expressed in most normal tissues. Elevated EREG in various cancers mainly activates EGFR signaling pathways and promotes cancer progression. Notably, a higher EREG expression level in CRC with wild-type Kirsten rat sarcoma viral oncogene homolog (KRAS) is related to better efficacy of therapeutic treatment. By contrast, the resistance of anti-EGFR therapy in CRC was driven by low EREG expression, aberrant genetic mutation and signal pathway alterations. Additionally, EREG overexpression in non-small cell lung cancer (NSCLC) is anticipated to be a therapeutic target for EGFR-tyrosine kinase inhibitor (EGFR-TKI). However, recent findings indicate that EREG derived from macrophages promotes NSCLC cell resistance to EGFR-TKI treatment. The emerging events of EREG-mediated tumor promotion signals are generated by autocrine and paracrine loops that arise from tumor epithelial cells, fibroblasts, and macrophages in the tumor microenvironment (TME). The TME is a crucial element for the development of various cancer types and drug resistance. The regulation of EREG/EGFR pathways depends on distinct oncogenic driver mutations and cell contexts that allows specific pharmacological targeting alone or combinational treatment for tailored therapy. Novel strategies targeting EREG/EGFR, tumor-associated macrophages, and alternative activation oncoproteins are under development or undergoing clinical trials. In this review, we summarize the clinical outcomes of EREG expression and the interaction of this ligand in the TME. The EREG/EGFR pathway may be a potential target and may be combined with other driver mutation targets to combat specific cancers.
Collapse
Affiliation(s)
- Wan-Li Cheng
- Division of Cardiovascular Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan;
- Division of Cardiovascular Surgery, Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Po-Hao Feng
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; (P.-H.F.); (K.-Y.L.); (K.-Y.C.); (W.-L.S.); (N.V.H.); (C.-S.L.)
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Kang-Yun Lee
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; (P.-H.F.); (K.-Y.L.); (K.-Y.C.); (W.-L.S.); (N.V.H.); (C.-S.L.)
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Kuan-Yuan Chen
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; (P.-H.F.); (K.-Y.L.); (K.-Y.C.); (W.-L.S.); (N.V.H.); (C.-S.L.)
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Wei-Lun Sun
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; (P.-H.F.); (K.-Y.L.); (K.-Y.C.); (W.-L.S.); (N.V.H.); (C.-S.L.)
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Nguyen Van Hiep
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; (P.-H.F.); (K.-Y.L.); (K.-Y.C.); (W.-L.S.); (N.V.H.); (C.-S.L.)
- International PhD Program in Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Ching-Shan Luo
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; (P.-H.F.); (K.-Y.L.); (K.-Y.C.); (W.-L.S.); (N.V.H.); (C.-S.L.)
| | - Sheng-Ming Wu
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; (P.-H.F.); (K.-Y.L.); (K.-Y.C.); (W.-L.S.); (N.V.H.); (C.-S.L.)
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence:
| |
Collapse
|
11
|
Bai R, Chen X, Song W, Tian H, Cui J. Therapeutic exploration of uncommon EGFR exon 20 insertion mutations in advanced non-small cell lung cancer: breaking through brambles and thorns. J Cancer Res Clin Oncol 2021; 148:163-176. [PMID: 34698913 DOI: 10.1007/s00432-021-03840-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/18/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND EGFR exon 20 insertion (EGFR ex20ins) mutations account for about 10-12% of all EGFR-mutated tumors, which are usually associated with primary drug resistance to conventional EGFR-TKI therapy and worse survival outcomes, and are currently a major problem for clinicians in clinical management. In recent years, with the rapid improvement of sequencing technology and careful review of clinical data, investigators have gained a deeper understanding and clearer cognition of the clinicopathological features and molecular mechanisms of these EGFR ex20ins mutations. PURPOSE The aim of this study was to systemically review the molecular structure and clinical characteristics of EGFR ex20ins mutations, and focus on summarizing the latest data of emerging therapies (including novel small-molecule EGFR-TKI drugs, specific monoclonal antibodies, novel drugs targeting other mechanisms, and immunotherapy) for those patients. CONCLUSION Advances in overcoming these systemic challenges have greatly accelerated the development of new drugs targeting EGFR ex20ins, and are committed to designing more rational combination therapies to overcome or delay the emergence of drug resistance, ultimately improve the prognosis of such uncommon mutant populations.
Collapse
Affiliation(s)
- Rilan Bai
- Cancer Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Xiao Chen
- Cancer Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Wei Song
- Cancer Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Huimin Tian
- Cancer Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Jiuwei Cui
- Cancer Center, The First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
12
|
Zhu L, Wang Y, Lv W, Wu X, Sheng H, He C, Hu J. Schizandrin A can inhibit non‑small cell lung cancer cell proliferation by inducing cell cycle arrest, apoptosis and autophagy. Int J Mol Med 2021; 48:214. [PMID: 34643254 PMCID: PMC8522958 DOI: 10.3892/ijmm.2021.5047] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 09/09/2021] [Indexed: 12/25/2022] Open
Abstract
Schizandrin A (SchA) can be extracted from the vine plant Schisandra chinensis and has been reported to confer various biologically active properties. However, its potential biological effects on non‑small cell lung cancer (NSCLC) remain unknown. Therefore, the present study aims to address this issue. NSCLC and normal lung epithelial cell lines were first treated with SchA. Cell viability and proliferation were measured using CellTiter‑Glo Assay and colony formation assays, respectively. PI staining was used to measure cell cycle distribution. Cell cycle‑related proteins p53, p21, cyclin D1, CDK4, CDK6, cyclin E1, cyclin E2, CDK2 and DNA damage‑related protein SOX4 were detected by western blot analysis. Annexin V‑FITC/PI staining, DNA electrophoresis and Hoechst 33342/PI dual staining were used to detect apoptosis. JC‑1 and DCFH‑DA fluorescent dyes were used to measure the mitochondrial membrane potential and reactive oxygen species concentrations, respectively. Apoptosis‑related proteins caspase‑3, cleaved caspase‑3, poly(ADP‑ribose) polymerase (PARP), cleaved PARP, BimEL, BimL, BimS, Bcl2, Bax, caspase‑9 and cleaved caspas‑9 were measured by western blot analysis. Dansylcadaverine was used to detect the presence of the acidic lysosomal vesicles. The expression levels of the autophagy‑related proteins LC3‑I/II, p62/SQSTM and AMPKα activation were measured using western blot analysis. In addition, the autophagy inhibitor 3‑methyladenine was used to inhibit autophagy. SchA treatment was found to reduce NSCLC cell viability whilst inhibiting cell proliferation. Low concentrations of SchA (10‑20 µM) mainly induced G1/S‑phase cell cycle arrest. By contrast, as the concentration of SchA used increases (20‑50 µM), cells underwent apoptosis and G2/M‑phase cell cycle a13rrest. As the treatment concentration of SchA increased from 0 to 50 µM, the expression of p53 and SOX4 protein also concomitantly increased, but the expression of p21 protein was increased by 10 µM SchA and decreased by higher concentrations (20‑50 µM). In addition, the mRNA and protein expression levels of Bcl‑like 11 (Bim)EL, BimL and BimS increased following SchA application. SchA induced the accumulation of acidic vesicles and induced a marked increase in the expression of LC3‑II protein, suggsting that SchA activated the autophagy pathway. However, the expression of the p62 protein was found to be increased by SchA, suggesting that p62 was not degraded during the autophagic flux. The 3‑methyladenine exerted no notable effects on SchA‑induced apoptosis. Taken together, results from the present study suggest that SchA exerted inhibitory effects on NSCLC physiology by inducing cell cycle arrest and apoptosis. In addition, SchA partially induced autophagy, which did not result in any cytoprotective effects.
Collapse
Affiliation(s)
- Linhai Zhu
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Ying Wang
- Operating Room, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Wang Lv
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Xiao Wu
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Hongxu Sheng
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Cheng He
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Jian Hu
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
13
|
Cha JE, Bae WY, Choi JS, Lee SH, Jeong JW. Angiogenic activities are increased via upregulation of HIF-1α expression in gefitinib-resistant non-small cell lung carcinoma cells. Oncol Lett 2021; 22:671. [PMID: 34345296 PMCID: PMC8323004 DOI: 10.3892/ol.2021.12932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/30/2021] [Indexed: 12/24/2022] Open
Abstract
Epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) have been used to treat patients with non-small cell lung cancer (NSCLC) and activating EGFR mutations; however, the emergence of secondary mutations in EGFR or the acquisition of resistance to EGFR-TKIs can develop and is involved in clinical failure. Since angiogenesis is associated with tumor progression and the blockade of antitumor drugs, inhibition of angiogenesis could be a rational strategy for developing anticancer drugs combined with EGFR-TKIs to treat patients with NSCLC. The signaling pathway mediated by hypoxia-inducible factor-1 (HIF-1) is essential for tumor angiogenesis. The present study aimed to identify the dependence of gefitinib resistance on HIF-1α activity using angiogenesis assays, western blot analysis, colony formation assay, xenograft tumor mouse model and immunohistochemical analysis of tumor tissues. In the NSCLC cell lines, HIF-1α protein expression levels and hypoxia-induced angiogenic activities were found to be increased. In a xenograft mouse tumor model, tumor tissues derived from gefitinib-resistant PC9 cells showed increased protein expression of HIF-1α and angiogenesis within the tumors. Furthermore, inhibition of HIF-1α suppressed resistance to gefitinib, whereas overexpression of HIF-1α increased resistance to gefitinib. The results from the present study provides evidence that HIF-1α was associated with the acquisition of resistance to gefitinib and suggested that inhibiting HIF-1α alleviated gefitinib resistance in NSCLC cell lines.
Collapse
Affiliation(s)
- Jeong Eun Cha
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Woom-Yee Bae
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea.,Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jae-Sun Choi
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea.,Medical Science Research Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seung Hyeun Lee
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Joo-Won Jeong
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea.,Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
14
|
Yoshizawa T, Uchibori K, Araki M, Matsumoto S, Ma B, Kanada R, Seto Y, Oh-Hara T, Koike S, Ariyasu R, Kitazono S, Ninomiya H, Takeuchi K, Yanagitani N, Takagi S, Kishi K, Fujita N, Okuno Y, Nishio M, Katayama R. Microsecond-timescale MD simulation of EGFR minor mutation predicts the structural flexibility of EGFR kinase core that reflects EGFR inhibitor sensitivity. NPJ Precis Oncol 2021; 5:32. [PMID: 33863983 PMCID: PMC8052404 DOI: 10.1038/s41698-021-00170-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 03/10/2021] [Indexed: 12/30/2022] Open
Abstract
Approximately 15–30% of patients with lung cancer harbor mutations in the EGFR gene. Major EGFR mutations (>90% of EGFR-mutated lung cancer) are highly sensitive to EGFR tyrosine kinase inhibitors (TKIs). Many uncommon EGFR mutations have been identified, but little is known regarding their characteristics, activation, and sensitivity to various EGFR-TKIs, including allosteric inhibitors. We encountered a case harboring an EGFR-L747P mutation, originally misdiagnosed with EGFR-del19 mutation using a routine diagnostic EGFR mutation test, which was resistant to EGFR-TKI gefitinib. Using this minor mutation and common EGFR-activating mutations, we performed the binding free energy calculations and microsecond-timescale molecular dynamic (MD) simulations, revealing that the L747P mutation considerably stabilizes the active conformation through a salt-bridge formation between K745 and E762. We further revealed why several EGFR inhibitors, including the allosteric inhibitor, were ineffective. Our computational structural analysis strategy would be beneficial for future drug development targeting the EGFR minor mutations.
Collapse
Affiliation(s)
- Takahiro Yoshizawa
- Div. of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto-ku, Tokyo, Japan.,Department of Thoracic Medical Oncology, the Cancer Institute Hospital, Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto-ku, Tokyo, Japan.,Division of Respiratory Medicine, Toho University School of Medicine, 6-11-1, Omorinishi, Ota-ku, Tokyo, Japan.,Department of Clinical Oncology, Toho University School of Medicine, 6-11-1, Omorinishi, Ota-ku, Tokyo, Japan
| | - Ken Uchibori
- Div. of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto-ku, Tokyo, Japan.,Department of Thoracic Medical Oncology, the Cancer Institute Hospital, Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto-ku, Tokyo, Japan
| | - Mitsugu Araki
- Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, Japan
| | - Shigeyuki Matsumoto
- Medical Sciences Innovation Hub Program, RIKEN Cluster for Science, Technology and Innovation Hub, Kanagawa, Japan
| | - Biao Ma
- Research and Development Group for In Silico Drug Discovery, Center for Cluster Development and Coordination (CCD), Foundation for Biomedical Research and Innovation at Kobe (FBRI), Hyogo, Japan
| | - Ryo Kanada
- Medical Sciences Innovation Hub Program, RIKEN Cluster for Science, Technology and Innovation Hub, Kanagawa, Japan
| | - Yosuke Seto
- Div. of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto-ku, Tokyo, Japan
| | - Tomoko Oh-Hara
- Div. of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto-ku, Tokyo, Japan
| | - Sumie Koike
- Div. of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto-ku, Tokyo, Japan
| | - Ryo Ariyasu
- Department of Thoracic Medical Oncology, the Cancer Institute Hospital, Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto-ku, Tokyo, Japan
| | - Satoru Kitazono
- Department of Thoracic Medical Oncology, the Cancer Institute Hospital, Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto-ku, Tokyo, Japan
| | - Hironori Ninomiya
- Division of Pathology, Cancer Institute, , Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto-ku, Tokyo, Japan
| | - Kengo Takeuchi
- Division of Pathology, Cancer Institute, , Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto-ku, Tokyo, Japan
| | - Noriko Yanagitani
- Department of Thoracic Medical Oncology, the Cancer Institute Hospital, Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto-ku, Tokyo, Japan
| | - Satoshi Takagi
- Div. of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto-ku, Tokyo, Japan
| | - Kazuma Kishi
- Division of Respiratory Medicine, Toho University School of Medicine, 6-11-1, Omorinishi, Ota-ku, Tokyo, Japan.,Department of Clinical Oncology, Toho University School of Medicine, 6-11-1, Omorinishi, Ota-ku, Tokyo, Japan
| | - Naoya Fujita
- Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto-ku, Tokyo, Japan
| | - Yasushi Okuno
- Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, Japan
| | - Makoto Nishio
- Department of Thoracic Medical Oncology, the Cancer Institute Hospital, Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto-ku, Tokyo, Japan.
| | - Ryohei Katayama
- Div. of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto-ku, Tokyo, Japan.
| |
Collapse
|
15
|
Du Z, Brown BP, Kim S, Ferguson D, Pavlick DC, Jayakumaran G, Benayed R, Gallant JN, Zhang YK, Yan Y, Red-Brewer M, Ali SM, Schrock AB, Zehir A, Ladanyi M, Smith AW, Meiler J, Lovly CM. Structure-function analysis of oncogenic EGFR Kinase Domain Duplication reveals insights into activation and a potential approach for therapeutic targeting. Nat Commun 2021; 12:1382. [PMID: 33654076 PMCID: PMC7925532 DOI: 10.1038/s41467-021-21613-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 01/28/2021] [Indexed: 02/07/2023] Open
Abstract
Mechanistic understanding of oncogenic variants facilitates the development and optimization of treatment strategies. We recently identified in-frame, tandem duplication of EGFR exons 18 - 25, which causes EGFR Kinase Domain Duplication (EGFR-KDD). Here, we characterize the prevalence of ERBB family KDDs across multiple human cancers and evaluate the functional biochemistry of EGFR-KDD as it relates to pathogenesis and potential therapeutic intervention. We provide computational and experimental evidence that EGFR-KDD functions by forming asymmetric EGF-independent intra-molecular and EGF-dependent inter-molecular dimers. Time-resolved fluorescence microscopy and co-immunoprecipitation reveals EGFR-KDD can form ligand-dependent inter-molecular homo- and hetero-dimers/multimers. Furthermore, we show that inhibition of EGFR-KDD activity is maximally achieved by blocking both intra- and inter-molecular dimerization. Collectively, our findings define a previously unrecognized model of EGFR dimerization, providing important insights for the understanding of EGFR activation mechanisms and informing personalized treatment of patients with tumors harboring EGFR-KDD. Finally, we establish ERBB KDDs as recurrent oncogenic events in multiple cancers.
Collapse
Affiliation(s)
- Zhenfang Du
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Benjamin P Brown
- Chemical and Physical Biology Program, Vanderbilt University, Nashville, TN, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
| | - Soyeon Kim
- Department of Chemistry, University of Akron, Akron, OH, USA
| | - Donna Ferguson
- Department of Molecular Pathology, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | | | - Gowtham Jayakumaran
- Department of Molecular Pathology, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Ryma Benayed
- Department of Molecular Pathology, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Jean-Nicolas Gallant
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yun-Kai Zhang
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yingjun Yan
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Monica Red-Brewer
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Siraj M Ali
- Foundation Medicine, Inc., Cambridge, MA, USA
| | | | - Ahmet Zehir
- Department of Molecular Pathology, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Marc Ladanyi
- Department of Molecular Pathology, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Adam W Smith
- Department of Chemistry, University of Akron, Akron, OH, USA
| | - Jens Meiler
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA.
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA.
- Institute for Drug Discovery, Leipzig University Medical School, Leipzig, Germany.
| | - Christine M Lovly
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
16
|
Watanabe S, Goto Y, Yasuda H, Kohno T, Motoi N, Ohe Y, Nishikawa H, Kobayashi SS, Kuwano K, Togashi Y. HSP90 inhibition overcomes EGFR amplification-induced resistance to third-generation EGFR-TKIs. Thorac Cancer 2021; 12:631-642. [PMID: 33471376 PMCID: PMC7919131 DOI: 10.1111/1759-7714.13839] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Patients with non-small cell lung cancer (NSCLC) harboring activating EGFR mutations are sensitive to epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) but inevitably develop resistance to the inhibitors mostly through acquisition of the secondary T790M mutation. Although third-generation EGFR-TKIs overcome this resistance by selectively inhibiting EGFR with EGFR-TKI-sensitizing and T790M mutations, acquired resistance to third-generation EGFR-TKIs invariably develops. METHODS Next-generation sequencing (NGS) and fluorescence in situ hybridization (FISH) analysis were performed in an EGFR T790M-mutated NSCLC patient who had progressed after a third-generation EGFR-TKI, TAS-121. EGFR-mutated cell lines were subjected to a cell proliferation assay and western blotting analysis with EGFR-TKIs and a heat shock protein 90 (HSP90) inhibitor. RESULTS NGS and FISH analysis revealed EGFR amplification in the resistant cancer cells. While EGFR L858R/T90M-mutated cell line was sensitive to osimertinib or TAS-121 in vitro, EGFR-overexpressing cell lines displayed resistance to these EGFR-TKIs. Western blot analysis showed that EGFR phosphorylation and overexpression of EGFR in cell lines was not suppressed by third-generation EGFR-TKIs. In contrast, an HSP90 inhibitor reduced total and phosphorylated EGFR and inhibited the proliferation of resistant cell lines. CONCLUSIONS EGFR amplification confers resistance to third-generation EGFR-TKIs which can be overcome by HSP90 inhibition. The results provide a preclinical rationale for the use of HSP90 inhibitors to overcome EGFR amplification-mediated resistance.
Collapse
Affiliation(s)
- Sho Watanabe
- Division of Cancer ImmunologyExploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer CenterChibaJapan
- Department of Thoracic OncologyNational Cancer Center HospitalTokyoJapan
- Department of Respiratory MedicineJikei University of MedicineTokyoJapan
| | - Yasushi Goto
- Department of Thoracic OncologyNational Cancer Center HospitalTokyoJapan
| | - Hiroyuki Yasuda
- Division of Pulmonary Medicine, Department of MedicineKeio University, School of MedicineTokyoJapan
| | - Takashi Kohno
- Genome BiologyExploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer CenterChibaJapan
| | - Noriko Motoi
- Pathology and Clinical LaboratoriesNational Cancer Center HospitalTokyoJapan
| | - Yuichiro Ohe
- Department of Thoracic OncologyNational Cancer Center HospitalTokyoJapan
| | - Hiroyoshi Nishikawa
- Division of Cancer ImmunologyExploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer CenterChibaJapan
| | - Susumu S. Kobayashi
- Translational Genomics, Research InstituteExploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer CenterChibaJapan
- Department of MedicineBeth Israel Deaconess Medical CenterBostonMassachusettsUSA
| | - Kazuyoshi Kuwano
- Department of Respiratory MedicineJikei University of MedicineTokyoJapan
| | - Yosuke Togashi
- Division of Cancer ImmunologyExploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer CenterChibaJapan
| |
Collapse
|
17
|
Singh SS, Dahal A, Shrestha L, Jois SD. Genotype Driven Therapy for Non-Small Cell Lung Cancer: Resistance, Pan Inhibitors and Immunotherapy. Curr Med Chem 2020; 27:5274-5316. [PMID: 30854949 DOI: 10.2174/0929867326666190222183219] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 01/25/2019] [Accepted: 02/14/2019] [Indexed: 12/14/2022]
Abstract
Eighty-five percent of patients with lung cancer present with Non-small Cell Lung Cancer (NSCLC). Targeted therapy approaches are promising treatments for lung cancer. However, despite the development of targeted therapies using Tyrosine Kinase Inhibitors (TKI) as well as monoclonal antibodies, the five-year relative survival rate for lung cancer patients is still only 18%, and patients inevitably become resistant to therapy. Mutations in Kirsten Ras Sarcoma viral homolog (KRAS) and epidermal growth factor receptor (EGFR) are the two most common genetic events in lung adenocarcinoma; they account for 25% and 20% of cases, respectively. Anaplastic Lymphoma Kinase (ALK) is a transmembrane receptor tyrosine kinase, and ALK rearrangements are responsible for 3-7% of NSCLC, predominantly of the adenocarcinoma subtype, and occur in a mutually exclusive manner with KRAS and EGFR mutations. Among drug-resistant NSCLC patients, nearly half exhibit the T790M mutation in exon 20 of EGFR. This review focuses on some basic aspects of molecules involved in NSCLC, the development of resistance to treatments in NSCLC, and advances in lung cancer therapy in the past ten years. Some recent developments such as PD-1-PD-L1 checkpoint-based immunotherapy for NSCLC are also covered.
Collapse
Affiliation(s)
- Sitanshu S Singh
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe LA 71201, United States
| | - Achyut Dahal
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe LA 71201, United States
| | - Leeza Shrestha
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe LA 71201, United States
| | - Seetharama D Jois
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe LA 71201, United States
| |
Collapse
|
18
|
Shipunova VO, Komedchikova EN, Kotelnikova PA, Zelepukin IV, Schulga AA, Proshkina GM, Shramova EI, Kutscher HL, Telegin GB, Kabashin AV, Prasad PN, Deyev SM. Dual Regioselective Targeting the Same Receptor in Nanoparticle-Mediated Combination Immuno/Chemotherapy for Enhanced Image-Guided Cancer Treatment. ACS NANO 2020; 14:12781-12795. [PMID: 32935975 DOI: 10.1021/acsnano.0c03421] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
When combined with immunotherapy, image-guided targeted delivery of chemotherapeutic agents is a promising direction for combination cancer theranostics, but this approach has so far produced only limited success due to a lack of molecular targets on the cell surface and low therapeutic index of conventional chemotherapy drugs. Here, we demonstrate a synergistic strategy of combination immuno/chemotherapy in conditions of dual regioselective targeting, implying vectoring of two distinct binding sites of a single oncomarker (here, HER2) with theranostic compounds having a different mechanism of action. We use: (i) PLGA nanoformulation, loaded with an imaging diagnostic fluorescent dye (Nile Red) and a chemotherapeutic drug (doxorubicin), and functionalized with affibody ZHER2:342 (8 kDa); (ii) bifunctional genetically engineered DARP-LoPE (42 kDa) immunotoxin comprising of a low-immunogenic modification of therapeutic Pseudomonas exotoxin A (LoPE) and a scaffold targeting protein, DARPin9.29 (14 kDa). According to the proposed strategy, the first chemotherapeutic nanoagent is targeted by the affibody to subdomain III and IV of HER2 with 60-fold specificity compared with nontargeted particles, while the second immunotoxin is effectively targeted by DARPin molecule to subdomain I of HER2. We demonstrate that this dual targeting strategy can enhance anticancer therapy of HER2-positive cells with a very strong synergy, which made possible 1000-fold decrease of effective drug concentration in vitro and a significant enhancement of HER2 cancer therapy compared to monotherapy in vivo. Moreover, this therapeutic combination prevented the appearance of secondary tumor nodes. Thus, the suggested synergistic strategy utilizing dual targeting of the same oncomarker could give rise to efficient methods for aggressive tumors treatment.
Collapse
Affiliation(s)
- Victoria O Shipunova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russia
- MEPhI (Moscow Engineering Physics Institute), Institute of Engineering Physics for Biomedicine (PhysBio), 31 Kashirskoe Shosse, Moscow 115409, Russia
| | - Elena N Komedchikova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russia
| | - Polina A Kotelnikova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russia
| | - Ivan V Zelepukin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russia
- MEPhI (Moscow Engineering Physics Institute), Institute of Engineering Physics for Biomedicine (PhysBio), 31 Kashirskoe Shosse, Moscow 115409, Russia
| | - Alexey A Schulga
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russia
| | - Galina M Proshkina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russia
| | - Elena I Shramova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russia
| | - Hilliard L Kutscher
- Institute for Lasers, Photonics and Biophotonics, University at Buffalo, 428 Natural Science Complex, Buffalo, New York 14260-3000, United States
- Department of Medicine, University at Buffalo, 875 Ellicott Street, Buffalo, New York 14203, United States
- Department of Anesthesiology, University at Buffalo, 77 Goodell Street, Suite 550, Buffalo, New York 14203, United States
| | - Georgij B Telegin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russia
| | - Andrei V Kabashin
- MEPhI (Moscow Engineering Physics Institute), Institute of Engineering Physics for Biomedicine (PhysBio), 31 Kashirskoe Shosse, Moscow 115409, Russia
- Aix Marseille University, CNRS, LP3, Campus de Luminy-case 917, 13288, Marseille Cedex 9, France
| | - Paras N Prasad
- MEPhI (Moscow Engineering Physics Institute), Institute of Engineering Physics for Biomedicine (PhysBio), 31 Kashirskoe Shosse, Moscow 115409, Russia
- Institute for Lasers, Photonics and Biophotonics, University at Buffalo, 428 Natural Science Complex, Buffalo, New York 14260-3000, United States
| | - Sergey M Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russia
- MEPhI (Moscow Engineering Physics Institute), Institute of Engineering Physics for Biomedicine (PhysBio), 31 Kashirskoe Shosse, Moscow 115409, Russia
| |
Collapse
|
19
|
Chan M, Huang W, Wang J, Liu R, Hsiao M. Next-Generation Cancer-Specific Hybrid Theranostic Nanomaterials: MAGE-A3 NIR Persistent Luminescence Nanoparticles Conjugated to Afatinib for In Situ Suppression of Lung Adenocarcinoma Growth and Metastasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1903741. [PMID: 32382487 PMCID: PMC7201263 DOI: 10.1002/advs.201903741] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 05/19/2023]
Abstract
The rate of lung cancer has gradually increased in recent years, with an average annual increase of 15%. Afatinib (AFT) plays a key role in preventing non-small cell lung carcinoma (NSCLC) growth and spread. To increase the efficiency of drug loading and NSCLC cell tracking, near infrared-persistent luminescence nanomaterials (NIR PLNs), a silica shell-assisted synthetic route for mono-dispersal, are developed and used in the nanovehicle. After optimizing their physical and chemical properties, the NIR PLNs are able to absorb light energy and emit NIR luminescence for several hours. In this research, NIR PLNs are functionalized for drug-carrying capabilities. Effective accumulation of target drugs, such as AFT, using PLN nanomaterials can lead to unique anticancer therapeutic benefits (AFT-PLN). To minimize side effects and increase drug accumulation, nanomaterials with targeting abilities are used instead of simple drugs to inhibit the growth of tumor cells. Thus, the specific targeting aptamer, MAGE-A3 (MAp) is identified, and the PLN to increase its targeting ability (AFT-PLN@MAp) accordingly modified. The advancement of nanoscale techniques in the field of lung cancer is urgently needed; this research presents a plausible diagnostic strategy and a novel method for therapeutic administration.
Collapse
Affiliation(s)
| | - Wen‐Tse Huang
- Department of ChemistryNational Taiwan UniversityTaipei106Taiwan
| | - Jing Wang
- Ministry of Education Key Laboratory of Bioinorganic and Synthetic ChemistryState Key Laboratory of Optoelectronic Materials and TechnologiesSchool of ChemistrySun Yat‐Sen UniversityGuangzhouGuangdong510275China
| | - Ru‐Shi Liu
- Department of ChemistryNational Taiwan UniversityTaipei106Taiwan
- Department of Mechanical EngineeringGraduate Institute of Manufacturing TechnologyNational Taipei University of TechnologyTaipei106Taiwan
| | - Michael Hsiao
- Genomics Research CenterAcademia SinicaTaipei115Taiwan
- Department of BiochemistryCollege of MedicineKaohsiung Medical UniversityKaohsiung807Taiwan
| |
Collapse
|
20
|
Dual EGFR blockade with cetuximab and erlotinib combined with anti-VEGF antibody bevacizumab in advanced solid tumors: a phase 1 dose escalation triplet combination trial. Exp Hematol Oncol 2020; 9:7. [PMID: 32337094 PMCID: PMC7171918 DOI: 10.1186/s40164-020-00159-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 02/21/2020] [Indexed: 12/13/2022] Open
Abstract
Background Angiogenesis and activation of the epidermal growth factor (EGFR) pathway play an essential role in tumor proliferation and metastasis. Targeting angiogenesis or EGFR alone does not yield adequate tumor control in most solid tumors. Overcoming intrinsic and/or acquired resistance may need a doublet or triplet therapy strategy. Herein, we report the safety and feasibility of dual EGFR blockade with EGFR monoclonal antibody and EGFR tyrosine kinase inhibitor combined with anti-VEGF antibody in advanced solid tumors. Methods We conducted a phase I study combining erlotinib, cetuximab, and bevacizumab. Patients with advanced or metastatic solid tumors (excluding colorectal and non-small cell lung cancers) were analyzed for safety, toxicity profile, and response. Anti-tumor activity was evaluated per response evaluation criteria in solid tumors (RECIST 1.0). Results Thirty-six patients received treatment on a range of dose-levels. The most frequent tumor types enrolled were cervical (n = 10), head and neck squamous cell (n = 10), and follicular thyroid (n = 4) cancers. The most common treatment-related grade ≥ 2 adverse events were rash (56%), hypomagnesemia (17%), pruritus (11%), diarrhea (8%), and tumor-related bleeding (8%). Seventeen of 19 patients (89%) treated at the maximum tolerated dose did not present treatment-related dose-limiting toxicity. Fifteen (63%) of the 24 evaluable patients achieved a disease control (stable disease ≥ 4 months (n = 14) and partial response (n = 1). The median number of prior lines of therapies was 3 (range 1–10). Conclusions The triplet combination of erlotinib, cetuximab, and bevacizumab was well tolerated, conferring clinical benefit in heavily pretreated patients. Future studies are warranted with second or third-generation EGFR tyrosine kinase triplet combinations in the EGFR pathway aberrant patients. Trial Registration: ClinicalTrials.gov Identifier: NCT00543504. Sponsor(s): National Cancer Institute (NCI), MD Anderson Cancer Center
Collapse
|
21
|
Starrett JH, Guernet AA, Cuomo ME, Poels KE, van Alderwerelt van Rosenburgh IK, Nagelberg A, Farnsworth D, Price KS, Khan H, Ashtekar KD, Gaefele M, Ayeni D, Stewart TF, Kuhlmann A, Kaech SM, Unni AM, Homer R, Lockwood WW, Michor F, Goldberg SB, Lemmon MA, Smith PD, Cross DAE, Politi K. Drug Sensitivity and Allele Specificity of First-Line Osimertinib Resistance EGFR Mutations. Cancer Res 2020; 80:2017-2030. [PMID: 32193290 DOI: 10.1158/0008-5472.can-19-3819] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/06/2019] [Accepted: 03/09/2020] [Indexed: 12/21/2022]
Abstract
Osimertinib, a mutant-specific third-generation EGFR tyrosine kinase inhibitor, is emerging as the preferred first-line therapy for EGFR-mutant lung cancer, yet resistance inevitably develops in patients. We modeled acquired resistance to osimertinib in transgenic mouse models of EGFRL858R -induced lung adenocarcinoma and found that it is mediated largely through secondary mutations in EGFR-either C797S or L718V/Q. Analysis of circulating free DNA data from patients revealed that L718Q/V mutations almost always occur in the context of an L858R driver mutation. Therapeutic testing in mice revealed that both erlotinib and afatinib caused regression of osimertinib-resistant C797S-containing tumors, whereas only afatinib was effective on L718Q mutant tumors. Combination first-line osimertinib plus erlotinib treatment prevented the emergence of secondary mutations in EGFR. These findings highlight how knowledge of the specific characteristics of resistance mutations is important for determining potential subsequent treatment approaches and suggest strategies to overcome or prevent osimertinib resistance in vivo. SIGNIFICANCE: This study provides insight into the biological and molecular properties of osimertinib resistance EGFR mutations and evaluates therapeutic strategies to overcome resistance. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/10/2017/F1.large.jpg.
Collapse
Affiliation(s)
| | - Alexis A Guernet
- Discovery Biology, Discovery Sciences, R&D Biopharmaceuticals, AstraZeneca, Cambridge, United Kingdom
| | - Maria Emanuela Cuomo
- Discovery Biology, Discovery Sciences, R&D Biopharmaceuticals, AstraZeneca, Cambridge, United Kingdom
| | - Kamrine E Poels
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts; and Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Iris K van Alderwerelt van Rosenburgh
- Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut
- Cancer Biology Institute, Yale School of Medicine, New Haven, Connecticut
| | - Amy Nagelberg
- Department of Integrative Oncology, British Columbia Cancer and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dylan Farnsworth
- Department of Integrative Oncology, British Columbia Cancer and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Hina Khan
- Warren Alpert Medical School, Brown University, Providence, Rhode Island; and Lifespan Cancer Institute, Providence, Rhode Island
| | - Kumar Dilip Ashtekar
- Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut
- Cancer Biology Institute, Yale School of Medicine, New Haven, Connecticut
| | | | - Deborah Ayeni
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
| | - Tyler F Stewart
- Department of Medicine (Section of Medical Oncology), Yale School of Medicine, New Haven, Connecticut
| | - Alexandra Kuhlmann
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut
| | - Susan M Kaech
- NOMIS Center for Immunobiology and Microbial Pathogenesis, The Salk Institute, La Jolla, California
| | - Arun M Unni
- Meyer Cancer Center, Weill Cornell Medicine, New York, New York
| | - Robert Homer
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
- Pathology and Laboratory Medicine Service, VA CT HealthCare System, West Haven, Connecticut
| | - William W Lockwood
- Department of Integrative Oncology, British Columbia Cancer and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Franziska Michor
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts; and Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts; Center for Cancer Evolution, Dana-Farber Cancer Institute, Boston, Massachusetts; The Broad Institute of Harvard and MIT, Cambridge, Massachusetts; and The Ludwig Center at Harvard, Boston, Massachusetts
| | - Sarah B Goldberg
- Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut
- Department of Medicine (Section of Medical Oncology), Yale School of Medicine, New Haven, Connecticut
| | - Mark A Lemmon
- Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut
- Cancer Biology Institute, Yale School of Medicine, New Haven, Connecticut
- Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut
| | - Paul D Smith
- R&D Oncology, AstraZeneca, Cambridge, United Kingdom
| | | | - Katerina Politi
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut.
- Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut
- Department of Medicine (Section of Medical Oncology), Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
22
|
Zhou W, Zhang W, Han B. [Studies and Progress of EGFR exon 20 Insertion Mutation in Non-small Cell Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2020; 23:118-126. [PMID: 32093456 PMCID: PMC7049789 DOI: 10.3779/j.issn.1009-3419.2020.02.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Lung cancer has the highest morbidity and mortality among malignant tumors worldwidely. Targeted therapy related to non-small cell lung cancer (NSCLC) is the research hotspot in recent year. The emergence of epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) has brought a huge change in the treatment of patients with EGFR mutation. The patients with EGFR exon20 insertion are specific cohort in NSCLC. Reviewing the clinical researches to EGFR exon20 insertion mutation positive NSCLC, as well as summarizing character, testing methods and treatment, will provide a help for clinical application, bringing more benefits for patients at the same time.
Collapse
Affiliation(s)
- Wensheng Zhou
- Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, China.,Department of Pulmonary Disease, Shanghai Chest Hospital, Shanghai, 200030, China
| | - Wei Zhang
- Department of Pulmonary Disease, Shanghai Chest Hospital, Shanghai, 200030, China
| | - Baohui Han
- Department of Pulmonary Disease, Shanghai Chest Hospital, Shanghai, 200030, China
| |
Collapse
|
23
|
Hong B, Wen Y, Ying T. Recent Progress on Neutralizing Antibodies against Hepatitis B Virus and its Implications. Infect Disord Drug Targets 2020; 19:213-223. [PMID: 29952267 DOI: 10.2174/1871526518666180628122400] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 05/13/2018] [Accepted: 06/22/2018] [Indexed: 01/22/2023]
Abstract
BACKGROUND Hepatitis B virus (HBV) infection remains a global health problem. As "cure" for chronic hepatitis B is of current priority, hepatitis B immunoglobulin (HBIG) has been utilized for several decades to provide post-exposure prophylaxis. In recent years, a number of monoclonal antibodies (mAbs) targeting HBV have been developed and demonstrated with high affinity, specificity, and neutralizing potency. OBJECTIVE HBV neutralizing antibodies may play a potentially significant role in the search for an HBV cure. In this review, we will summarize the recent progress in developing HBV-neutralizing antibodies, describing their characteristics and potential clinical applications. RESULTS AND CONCLUSION HBV neutralizing antibodies could be a promising alternative in the prevention and treatment of HBV infection. More importantly, global collaboration and coordinated approaches are thus needed to facilitate the development of novel therapies for HBV infection.
Collapse
Affiliation(s)
- Binbin Hong
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.,Central Laboratory, the Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
| | - Yumei Wen
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Tianlei Ying
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
24
|
Ivanova E, Kuraguchi M, Xu M, Portell AJ, Taus L, Diala I, Lalani AS, Choi J, Chambers ES, Li S, Liu S, Chen T, Barbie TU, Oxnard GR, Haworth JJ, Wong KK, Dahlberg SE, Aref AA, Barbie DA, Bahcall M, Paweletz CP, Jänne PA. Use of Ex Vivo Patient-Derived Tumor Organotypic Spheroids to Identify Combination Therapies for HER2 Mutant Non-Small Cell Lung Cancer. Clin Cancer Res 2020; 26:2393-2403. [PMID: 32034078 DOI: 10.1158/1078-0432.ccr-19-1844] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 12/30/2019] [Accepted: 02/04/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Evaluating drug responses using primary patient-derived cells ex vivo represents a potentially rapid and efficient approach to screening for new treatment approaches. Here, we sought to identify neratinib combinations in HER2 mutant non-small cell lung cancer (NSCLC) patient xenograft-derived organotypic spheroids (XDOTS) using a short-term ex vivo system. EXPERIMENTAL DESIGN We generated two HER2-mutant NSCLC PDX models [DFCI359 (HER2 exon19 755_757LREdelinsRP) and DFCI315 (HER2 exon20 V777_G778insGSP)] and used the PDX tumors to generate XDOTS. Tumor spheroids were grown in a microfluidic device and treated ex vivo with neratinib-based drug combinations. Live/dead quantification was performed by dual-labeling deconvolution fluorescence microscopy. The most efficacious ex vivo combination was subsequently validated in vivo using the DFCI359 and DFCI315 PDXs and a HER2 YVMA genetically engineered mouse model. RESULTS Both neratinib and afatinib, but not gefitinib, induced cell death in DFCI359 XDOTS. The combinations of neratinib/trastuzumab and neratinib/temsirolimus enhanced the therapeutic benefit of neratinib alone in DFCI315 and DFCI359. The combination of neratinib and trastuzumab in vivo was more effective compared with single-agent neratinib or trastuzumab and was associated with more robust inhibition of HER2 and downstream signaling. CONCLUSIONS The XDOTS platform can be used to evaluate therapies and therapeutic combinations ex vivo using PDX tumors. This approach may accelerate the identification and clinical development of therapies for targets with no or few existing models and/or therapies.
Collapse
Affiliation(s)
- Elena Ivanova
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Belfer Center for Applied Cancer Science, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Mari Kuraguchi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Belfer Center for Applied Cancer Science, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Man Xu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Belfer Center for Applied Cancer Science, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Andrew J Portell
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Belfer Center for Applied Cancer Science, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Luke Taus
- Belfer Center for Applied Cancer Science, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Irmina Diala
- Puma Biotechnology Inc., Los Angeles, California
| | | | - Jihyun Choi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Emily S Chambers
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Shuai Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Shengwu Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Ting Chen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Thanh U Barbie
- Department of Surgery, Brigham and Women's Hospital, Boston, Massachusetts
| | - Geoffrey R Oxnard
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Lowe Center for Thoracic Oncology, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Jacob J Haworth
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Kwok-Kin Wong
- Department of Medicine, Division of Hematology and Medical Oncology, New York University Langone Medical Center, New York, New York
| | - Suzanne E Dahlberg
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Amir A Aref
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - David A Barbie
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Belfer Center for Applied Cancer Science, Dana Farber Cancer Institute, Boston, Massachusetts.,Lowe Center for Thoracic Oncology, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Magda Bahcall
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Belfer Center for Applied Cancer Science, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Cloud P Paweletz
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts. .,Belfer Center for Applied Cancer Science, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Pasi A Jänne
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts. .,Belfer Center for Applied Cancer Science, Dana Farber Cancer Institute, Boston, Massachusetts.,Lowe Center for Thoracic Oncology, Dana Farber Cancer Institute, Boston, Massachusetts
| |
Collapse
|
25
|
Xu Q, Long Q, Zhu D, Fu D, Zhang B, Han L, Qian M, Guo J, Xu J, Cao L, Chin YE, Coppé J, Lam EW, Campisi J, Sun Y. Targeting amphiregulin (AREG) derived from senescent stromal cells diminishes cancer resistance and averts programmed cell death 1 ligand (PD-L1)-mediated immunosuppression. Aging Cell 2019; 18:e13027. [PMID: 31493351 PMCID: PMC6826133 DOI: 10.1111/acel.13027] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 07/29/2019] [Accepted: 08/04/2019] [Indexed: 12/14/2022] Open
Abstract
Aging is characterized by a progressive loss of physiological integrity, while cancer represents one of the primary pathological factors that severely threaten human lifespan and healthspan. In clinical oncology, drug resistance limits the efficacy of most anticancer treatments, and identification of major mechanisms remains a key to solve this challenging issue. Here, we highlight the multifaceted senescence-associated secretory phenotype (SASP), which comprises numerous soluble factors including amphiregulin (AREG). Production of AREG is triggered by DNA damage to stromal cells, which passively enter senescence in the tumor microenvironment (TME), a process that remarkably enhances cancer malignancy including acquired resistance mediated by EGFR. Furthermore, paracrine AREG induces programmed cell death 1 ligand (PD-L1) expression in recipient cancer cells and creates an immunosuppressive TME via immune checkpoint activation against cytotoxic lymphocytes. Targeting AREG not only minimized chemoresistance of cancer cells, but also restored immunocompetency when combined with classical chemotherapy in humanized animals. Our study underscores the potential of in vivo SASP in driving the TME-mediated drug resistance and shaping an immunosuppressive niche, and provides the proof of principle of targeting major SASP factors to improve therapeutic outcome in cancer medicine, the success of which can substantially reduce aging-related morbidity and mortality.
Collapse
Affiliation(s)
- Qixia Xu
- Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine and Shanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
| | - Qilai Long
- Department of Urology, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Dexiang Zhu
- Department of General Surgery, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Da Fu
- Central Laboratory for Medical Research, Shanghai Tenth People’s HospitalTongji University School of MedicineShanghaiChina
| | - Boyi Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of SciencesChinese Academy of SciencesShanghaiChina
| | - Liu Han
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of SciencesChinese Academy of SciencesShanghaiChina
| | - Min Qian
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of SciencesChinese Academy of SciencesShanghaiChina
| | - Jianming Guo
- Department of Urology, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Jianmin Xu
- Department of General Surgery, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Liu Cao
- Key Laboratory of Medical Cell BiologyChina Medical UniversityShenyangChina
| | - Y. Eugene Chin
- Institute of Biology and Medical SciencesSoochow University Medical CollegeSuzhouJiangsuChina
| | - Jean‐Philippe Coppé
- Department of Laboratory Medicine, Helen Diller Family Comprehensive Cancer CenterUniversity of California San FranciscoCAUSA
| | - Eric W.‐F. Lam
- Department of Surgery and CancerImperial College LondonLondonUK
| | - Judith Campisi
- Buck Institute for Research on AgingNovatoCAUSA
- Lawrence Berkeley National LaboratoryLife Sciences DivisionBerkeleyCAUSA
| | - Yu Sun
- Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine and Shanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of SciencesChinese Academy of SciencesShanghaiChina
- Department of Medicine and VAPSHCSUniversity of WashingtonSeattleWAUSA
| |
Collapse
|
26
|
Kwon Y, Kim M, Jung HS, Kim Y, Jeoung D. Targeting Autophagy for Overcoming Resistance to Anti-EGFR Treatments. Cancers (Basel) 2019; 11:cancers11091374. [PMID: 31527477 PMCID: PMC6769649 DOI: 10.3390/cancers11091374] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/30/2019] [Accepted: 09/10/2019] [Indexed: 12/19/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) plays critical roles in cell proliferation, tumorigenesis, and anti-cancer drug resistance. Overexpression and somatic mutations of EGFR result in enhanced cancer cell survival. Therefore, EGFR can be a target for the development of anti-cancer therapy. Patients with cancers, including non-small cell lung cancers (NSCLC), have been shown to response to EGFR-tyrosine kinase inhibitors (EGFR-TKIs) and anti-EGFR antibodies. However, resistance to these anti-EGFR treatments has developed. Autophagy has emerged as a potential mechanism involved in the acquired resistance to anti-EGFR treatments. Anti-EGFR treatments can induce autophagy and result in resistance to anti-EGFR treatments. Autophagy is a programmed catabolic process stimulated by various stimuli. It promotes cellular survival under these stress conditions. Under normal conditions, EGFR-activated phosphoinositide 3-kinase (PI3K)/AKT serine/threonine kinase (AKT)/mammalian target of rapamycin (mTOR) signaling inhibits autophagy while EGFR/rat sarcoma viral oncogene homolog (RAS)/mitogen-activated protein kinase kinase (MEK)/mitogen-activated protein kinase (MAPK) signaling promotes autophagy. Thus, targeting autophagy may overcome resistance to anti-EGFR treatments. Inhibitors targeting autophagy and EGFR signaling have been under development. In this review, we discuss crosstalk between EGFR signaling and autophagy. We also assess whether autophagy inhibition, along with anti-EGFR treatments, might represent a promising approach to overcome resistance to anti-EGFR treatments in various cancers. In addition, we discuss new developments concerning anti-autophagy therapeutics for overcoming resistance to anti-EGFR treatments in various cancers.
Collapse
Affiliation(s)
- Yoojung Kwon
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chunchon 24341, Korea.
| | - Misun Kim
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chunchon 24341, Korea.
| | - Hyun Suk Jung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chunchon 24341, Korea.
| | - Youngmi Kim
- Institute of New Frontier Research, College of Medicine, Hallym University, Chunchon 24251, Korea.
| | - Dooil Jeoung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chunchon 24341, Korea.
| |
Collapse
|
27
|
Thomas R, Weihua Z. Rethink of EGFR in Cancer With Its Kinase Independent Function on Board. Front Oncol 2019; 9:800. [PMID: 31508364 PMCID: PMC6716122 DOI: 10.3389/fonc.2019.00800] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 08/06/2019] [Indexed: 12/23/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) is one of most potent oncogenes that are commonly altered in cancers. As a receptor tyrosine kinase, EGFR's kinase activity has been serving as the primary target for developing cancer therapeutics, namely the EGFR inhibitors including small molecules targeting its ATP binding pocket and monoclonal antibodies targeting its ligand binding domains. EGFR inhibitors have produced impressive therapeutic benefits to responsive types of cancers. However, acquired and innate resistances have precluded current anti-EGFR agents from offering sustainable benefits to initially responsive cancers and benefits to EGFR-positive cancers that are innately resistant. Recent years have witnessed a realization that EGFR possesses kinase-independent (KID) pro-survival functions in cancer cells. This new knowledge has offered a different angle of understanding of EGFR in cancer and opened a new avenue of targeting EGFR for cancer therapy. There are already many excellent reviews on the role of EGFR with a focus on its kinase-dependent functions and mechanisms of resistance to EGFR targeted therapies. The present opinion aims to initiate a fresh discussion about the function of EGFR in cancer cells by laying out some unanswered questions pertaining to EGFR in cancer cells, by rethinking the unmet therapeutic challenges from a view of EGFR's KID function, and by proposing novel approaches to target the KID functions of EGFR for cancer treatment.
Collapse
Affiliation(s)
- Rintu Thomas
- Department of Biology and Biochemistry, College of Natural Science and Mathematics, University of Houston, Houston, TX, United States
| | - Zhang Weihua
- Department of Biology and Biochemistry, College of Natural Science and Mathematics, University of Houston, Houston, TX, United States
| |
Collapse
|
28
|
Brown BP, Zhang YK, Westover D, Yan Y, Qiao H, Huang V, Du Z, Smith JA, Ross JS, Miller VA, Ali S, Bazhenova L, Schrock AB, Meiler J, Lovly CM. On-target Resistance to the Mutant-Selective EGFR Inhibitor Osimertinib Can Develop in an Allele-Specific Manner Dependent on the Original EGFR-Activating Mutation. Clin Cancer Res 2019; 25:3341-3351. [PMID: 30796031 PMCID: PMC6548651 DOI: 10.1158/1078-0432.ccr-18-3829] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/18/2019] [Accepted: 02/14/2019] [Indexed: 01/10/2023]
Abstract
PURPOSE The third-generation EGFR inhibitor, osimertinib, is the first mutant-selective inhibitor that has received regulatory approval for the treatment of patients with EGFR-mutant lung cancer. Despite the development of highly selective third-generation inhibitors, acquired resistance remains a significant clinical challenge. Recently, we and others have identified a novel osimertinib resistance mutation, G724S, which was not predicted in in vitro screens. Here, we investigate how G724S confers resistance to osimertinib.Experimental Design: We combine structure-based predictive modeling of G724S in combination with the 2 most common EGFR-activating mutations, exon 19 deletion (Ex19Del) and L858R, with in vitro drug-response models and patient genomic profiling. RESULTS Our simulations suggest that the G724S mutation selectively reduces osimertinib-binding affinity in the context of Ex19Del. Consistent with our simulations, cell lines transduced with Ex19Del/G724S demonstrate resistance to osimertinib, whereas cells transduced with L858R/G724S are sensitive to osimertinib. Subsequent clinical genomic profiling data further suggest G724S occurs with Ex19Del but not L858R. Furthermore, we demonstrate that Ex19Del/G724S retains sensitivity to afatinib, but not to erlotinib, suggesting a possible therapy for patients at the time of disease relapse. CONCLUSIONS Altogether, these data suggest that G724S is an allele-specific resistance mutation emerging in the context of Ex19Del but not L858R. Our results fundamentally reframe the problem of targeted therapy resistance from one focused on the "drug-resistance mutation" pair to one focused on the "activating mutation-drug-resistance mutation" trio. This has broad implications across clinical oncology.
Collapse
Affiliation(s)
- Benjamin P. Brown
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA.,Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
| | - Yun-Kai Zhang
- Department of Medicine - Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - David Westover
- Department of Medicine - Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Yingjun Yan
- Department of Medicine - Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Huan Qiao
- Department of Medicine - Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Vincent Huang
- Department of Medicine - Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Zhenfang Du
- Department of Medicine - Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jarrod A. Smith
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA.,Department of Biochemistry, Vanderbilt University, Nashville, TN, USA
| | | | | | - Siraj Ali
- Foundation Medicine, Inc., Cambridge, MA, USA
| | | | | | - Jens Meiler
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee. .,Center for Structural Biology, Vanderbilt University, Nashville, Tennessee.,Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Christine M. Lovly
- Department of Medicine - Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA., Co-corresponding authors: Christine M. Lovly, MD, PhD, 2220 Pierce Avenue, 659 Preston Research Building, Nashville, TN 37232-6307, Phone: 615-936-3457, and Jens Meiler, PhD, Center for Structural Biology, 465 21st Ave South, BIOSCI/MRBIII, Room 5144B, Nashville, TN 37232-8725 USA, Phone: 615 936 5662,
| |
Collapse
|
29
|
Zhang T, Wan B, Zhao Y, Li C, Liu H, Lv T, Zhan P, Song Y. Treatment of uncommon EGFR mutations in non-small cell lung cancer: new evidence and treatment. Transl Lung Cancer Res 2019; 8:302-316. [PMID: 31367543 PMCID: PMC6626855 DOI: 10.21037/tlcr.2019.04.12] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/16/2019] [Indexed: 12/26/2022]
Abstract
Sensitizing mutations in epidermal growth factor receptor (EGFR) are associated with positive responses to anti-EGFR-targeted therapy, leading to a new era of treatment for non-small cell lung cancer (NSCLC). Exon 19 deletions and exon 21 L858R substitutions are the most common mutations, accounting for approximately 90% mutations in NSCLC; these are termed classic mutations and result in high sensitivity to tyrosine kinase inhibitors (TKIs). Other EGFR mutations are termed uncommon EGFR mutations, of which G719X, S768I, L861Q, exon 20 insertions, and complex mutations are the most frequent. G719X, S768I, and L861Q are point mutations and those that exist with complex mutations are sensitive to first-generation TKIs. A prospective analysis demonstrated that afatinib, a second-generation TKI, led to a better prognosis in some patients with NSCLC compared to first-generation TKIs. Chemotherapy used to be the traditional choice for patients carrying exon 20 insertions; however, with the development of novel targeted drugs, the role of chemotherapy is changing. Tremendous progress has also been made in clinical trials on immunotherapy treatment of uncommon EGFR mutations. The treatment for patients with NSCLC harboring uncommon EGFR mutations remains a subject of debate and the sensitivity of uncommon EGFR mutations to TKIs is still unclear. Here, we summarized recent data in the literature and provide an overview of the clinical characteristics, incidence, and outcomes of patients harboring G719X, S768I, L861Q, exon 20 insertions, and complex mutations who were treated with TKIs, chemotherapy, or immunotherapy.
Collapse
Affiliation(s)
- Tianli Zhang
- Department of Respiratory Medicine, Jinling Hospital, Medical School of Southeast University, Nanjing 210002, China
| | - Bing Wan
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 210002, China
| | - Yuan Zhao
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Chuling Li
- Department of Respiratory Medicine, Jinling Hospital, Jinling Clinical College of Nanjing Medical University, Nanjing 210002, China
| | - Hongbing Liu
- Department of Respiratory Medicine, Jinling Hospital, Medical School of Southeast University, Nanjing 210002, China
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
- Department of Respiratory Medicine, Jinling Hospital, Jinling Clinical College of Nanjing Medical University, Nanjing 210002, China
| | - Tangfeng Lv
- Department of Respiratory Medicine, Jinling Hospital, Medical School of Southeast University, Nanjing 210002, China
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
- Department of Respiratory Medicine, Jinling Hospital, Jinling Clinical College of Nanjing Medical University, Nanjing 210002, China
| | - Ping Zhan
- Department of Respiratory Medicine, Jinling Hospital, Medical School of Southeast University, Nanjing 210002, China
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
- Department of Respiratory Medicine, Jinling Hospital, Jinling Clinical College of Nanjing Medical University, Nanjing 210002, China
| | - Yong Song
- Department of Respiratory Medicine, Jinling Hospital, Medical School of Southeast University, Nanjing 210002, China
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
- Department of Respiratory Medicine, Jinling Hospital, Jinling Clinical College of Nanjing Medical University, Nanjing 210002, China
| |
Collapse
|
30
|
Yoon BW, Kim JH, Lee SH, Choi CM, Rho JK, Yoon S, Lee DH, Kim SW, Jang TW, Lee JC. Comparison of T790M Acquisition Between Patients Treated with Afatinib and Gefitinib as First-Line Therapy: Retrospective Propensity Score Matching Analysis. Transl Oncol 2019; 12:852-858. [PMID: 31030101 PMCID: PMC6484288 DOI: 10.1016/j.tranon.2019.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/01/2019] [Indexed: 01/17/2023] Open
Abstract
Afatinib, a second-generation, irreversible pan-HER inhibitor, shows better suppression of T790M-positive lung cancer cells than gefitinib in preclinical studies. However, whether the effect of afatinib on T790M acquisition differs from that of gefitinib when used clinically as first-line therapy remains unclear. To reaffirm the preclinical efficacy of afatinib on T790M-positive lung cancer cells, H1975 cells and established PC-9 cells resistant to gefitinib and erlotinib by T790M were used. In total, 398 patients with second biopsy at progression with stage IIIB/IV non–small cell lung cancer with EGFR mutation, treated with afatinib or gefitinib as first-line therapy, were retrospectively reviewed. Propensity score matching was used to balance covariates. Afatinib inhibited the growth of lung cancer cells with low T790M allele frequencies, which are resistant to gefitinib, but not those with high T790M allele frequencies. Afatinib and gefitinib showed similar efficacy in terms of progression-free survival (PFS) (11.5 vs 13.4 months, P = .08) and overall survival (OS) (29.3 vs 28.5 months, P = .76). T790M patients had better PFS and OS than those without T790M. There was no significant difference in the cumulative T790M acquisition ratio over time between afatinib and gefitinib (48.8% vs 59.3%, P = .317). The median time to acquire T790M was 12.9 months for afatinib and 15.7 months for gefitinib (P = .342). Although afatinib inhibited the growth of lung cancer cells with low T790M allele frequencies in preclinical studies, this could not be translated into clinical efficacy in terms of lowering the rate or delaying the time of T790M acquisition.
Collapse
Affiliation(s)
- Byung Woo Yoon
- Department of Oncology, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, Republic of Korea
| | - Jae Hoon Kim
- Department of Internal Medicine, Kosin University Gospel Hospital, Busan, Republic of Korea
| | - Seung Hyeon Lee
- Department of Internal Medicine, Kyung Hee University, School of Medicine, Seoul, Republic of Korea
| | - Chang-Min Choi
- Department of Oncology, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, Republic of Korea
| | - Jin Kyung Rho
- Department of Convergence Medicine, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, Republic of Korea
| | - Shinkyo Yoon
- Department of Oncology, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, Republic of Korea
| | - Dae Ho Lee
- Department of Oncology, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, Republic of Korea
| | - Sang-We Kim
- Department of Oncology, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, Republic of Korea
| | - Tae-Won Jang
- Department of Internal Medicine, Kosin University Gospel Hospital, Busan, Republic of Korea.
| | - Jae Cheol Lee
- Department of Oncology, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, Republic of Korea.
| |
Collapse
|
31
|
Misra P, Singh S. Role of cytokines in combinatorial immunotherapeutics of non-small cell lung cancer through systems perspective. Cancer Med 2019; 8:1976-1995. [PMID: 30997737 PMCID: PMC6536974 DOI: 10.1002/cam4.2112] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 02/22/2019] [Accepted: 03/07/2019] [Indexed: 12/21/2022] Open
Abstract
Lung cancer is the leading cause of deaths related to cancer and accounts for more than a million deaths per year. Various new strategies have been developed and adapted for treatment; still the survival for 5 years is just 16% in patients with non‐small cell lung cancer (NSCLC). Most of these strategies to combat NSCLC whether it is a drug molecule or immunotherapy/vaccine candidate require a big cost and time. Integration of computational modeling with systems biology has opened new avenues for understanding complex cancer biology. Resolving the complex interactions of various pathways and their crosstalk leading to oncogenic changes could identify new therapeutic targets with lesser cost and time. Herein, this review provides an overview of various aspects of NSCLC along with available strategies for its cure concluding with our insight into how systems approach could serve as a therapeutic intervention dissecting the immunologic parameters and cross talk between various pathways involved.
Collapse
Affiliation(s)
- Pragya Misra
- National Centre for Cell ScienceSP Pune University CampusPuneIndia
| | - Shailza Singh
- National Centre for Cell ScienceSP Pune University CampusPuneIndia
| |
Collapse
|
32
|
Jones RA, Franks SE, Moorehead RA. Comparative mRNA and miRNA transcriptome analysis of a mouse model of IGFIR-driven lung cancer. PLoS One 2018; 13:e0206948. [PMID: 30412601 PMCID: PMC6226179 DOI: 10.1371/journal.pone.0206948] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/21/2018] [Indexed: 01/18/2023] Open
Abstract
Mouse models of cancer play an important role in elucidating the molecular mechanisms that contribute to tumorigenesis. The extent to which these models resemble one another and their human counterparts at the molecular level is critical in understanding tumorigenesis. In this study, we carried out a comparative gene expression analysis to generate a detailed molecular portrait of a transgenic mouse model of IGFIR-driven lung cancer. IGFIR-driven tumors displayed a strong resemblance with established mouse models of lung adenocarcinoma, particularly EGFR-driven models highlighted by elevated levels of the EGFR ligands Ereg and Areg. Cross-species analysis revealed a shared increase in human lung adenocarcinoma markers including Nkx2.1 and Napsa as well as alterations in a subset of genes with oncogenic and tumor suppressive properties such as Aurka, Ret, Klf4 and Lats2. Integrated miRNA and mRNA analysis in IGFIR-driven tumors identified interaction pairs with roles in ErbB signaling while cross-species analysis revealed coordinated expression of a subset of conserved miRNAs and their targets including miR-21-5p (Reck, Timp3 and Tgfbr3). Overall, these findings support the use of SPC-IGFIR mice as a model of human lung adenocarcinoma and provide a comprehensive knowledge base to dissect the molecular pathogenesis of tumor initiation and progression.
Collapse
Affiliation(s)
- Robert A. Jones
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Sarah E. Franks
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Roger A. Moorehead
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
33
|
Li YL, Hu X, Li QY, Wang F, Zhang B, Ding K, Tan BQ, Lin NM, Zhang C. Shikonin sensitizes wild‑type EGFR NSCLC cells to erlotinib and gefitinib therapy. Mol Med Rep 2018; 18:3882-3890. [PMID: 30106133 PMCID: PMC6131653 DOI: 10.3892/mmr.2018.9347] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 07/19/2018] [Indexed: 12/11/2022] Open
Abstract
As patients with non-small cell lung cancer (NSCLC) and wild-type epidermal growth factor receptor (EGFR) are resistant to treatment with erlotinib or gefitinib, potential chemosensitizers are required to potentiate wild-type EGFR NSCLC cells to erlotinib/gefitinib treatment. The present study reported that shikonin could sensitize the anticancer activity of erlotinib/gefitinib in wild-type EGFR NSCLC cells. Furthermore, shikonin could potentiate mitochondrial-mediated apoptosis induced by erlotinib/gefitinib in wild-type EGFR NSCLC cells. In addition, the present study demonstrated that shikonin could induce apoptosis by activating reactive oxygen species (ROS)-mediated endoplasmic reticulum (ER) stress, and that erlotinib/gefitinib may also induce ER stress in wild-type EGFR NSCLC cells; however, shikonin plus erlotinib/gefitinib was more effective in activating ER stress than either agent alone. This indicated that ROS-mediated ER stress may be associated with enhanced mitochondrial apoptosis induced by shikonin plus erlotinib/gefitinib. In addition, shikonin may promote the transition of cytoprotective ER stress-inducing EGFR-tyrosine kinase inhibitor tolerance to apoptosis-promoting ER stress. Furthermore, shikonin may enhance the anti-NSCLC activity of erlotinib/gefitinib in vivo. The data of the present study indicated that shikonin may be a potential sensitizer to enhance the anti-cancer efficacy of erlotinib/gefitinib in wild-type EGFR NSCLC cells resistant to erlotinib/gefitinib treatment.
Collapse
Affiliation(s)
- Yang-Ling Li
- Department of Clinical Pharmacology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Xiu Hu
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang 310015, P.R. China
| | - Qing-Yu Li
- Department of Clinical Pharmacology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Fei Wang
- Department of Clinical Pharmacology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Bo Zhang
- Hangzhou Translational Medicine Research Center, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Ke Ding
- Department of Clinical Pharmacology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Bi-Qin Tan
- Department of Clinical Pharmacology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Neng-Ming Lin
- Department of Clinical Pharmacology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Chong Zhang
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang 310015, P.R. China
| |
Collapse
|
34
|
Doyle HA, Koski RA, Bonafé N, Bruck RA, Tagliatela SM, Gee RJ, Mamula MJ. Epidermal growth factor receptor peptide vaccination induces cross-reactive immunity to human EGFR, HER2, and HER3. Cancer Immunol Immunother 2018; 67:1559-1569. [PMID: 30056598 DOI: 10.1007/s00262-018-2218-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 07/24/2018] [Indexed: 12/13/2022]
Abstract
Current treatments for tumors expressing epidermal growth factor receptor (EGFR) include anti-EGFR monoclonal antibodies, often used in conjunction with the standard chemotherapy, radiation therapy, or other EGFR inhibitors. While monoclonal antibody treatment is efficacious in many patients, drawbacks include its high cost of treatment and side effects associated with multiple drug infusions. As an alternative to monoclonal antibody treatments, we have focused on peptide-based vaccination to trigger natural anti-tumor antibodies. Here, we demonstrate that peptides based on a region of the EGFR extracellular domain IV break immune tolerance to EGFR and elicit anti-tumor immunity. Mice immunized with isoforms of EGFR peptide p580-598 generated anti-EGFR antibody and T-cell responses. Iso-aspartyl (iso-Asp)-modified EGFR p580 immune sera inhibit in vitro growth of EGFR overexpressing human A431 tumor cells, as well as promote antibody-dependent cell-mediated cytotoxicity (ADCC). Antibodies induced by Asp and iso-Asp p580 bound homologous regions of the EGFR family members HER2 and HER3. EGFR p580 immune sera also inhibited the growth of the human tumor cell line MDA-MB-453 that expresses HER2 but not EGFR. Asp and iso-Asp EGFR p580 induced antibodies were also able to inhibit the in vivo growth of EGFR-expressing tumors. These data demonstrate that EGFR peptides from a region of the EGFR extracellular domain IV promote anti-tumor immunity, tumor cell killing, and antibodies that are cross reactive with ErbB family members.
Collapse
Affiliation(s)
- Hester A Doyle
- Section of Rheumatology, Yale University School of Medicine, P.O. Box 208031, New Haven, CT, 06520-8031, USA
| | | | | | - Ross A Bruck
- Section of Rheumatology, Yale University School of Medicine, P.O. Box 208031, New Haven, CT, 06520-8031, USA
| | - Stephanie M Tagliatela
- Section of Rheumatology, Yale University School of Medicine, P.O. Box 208031, New Haven, CT, 06520-8031, USA
| | - Renelle J Gee
- Section of Rheumatology, Yale University School of Medicine, P.O. Box 208031, New Haven, CT, 06520-8031, USA
| | - Mark J Mamula
- Section of Rheumatology, Yale University School of Medicine, P.O. Box 208031, New Haven, CT, 06520-8031, USA.
| |
Collapse
|
35
|
Yu CH, Chou CC, Tu HF, Huang WC, Ho YY, Khoo KH, Lee MS, Chang GD. Antibody-assisted target identification reveals afatinib, an EGFR covalent inhibitor, down-regulating ribonucleotide reductase. Oncotarget 2018; 9:21512-21529. [PMID: 29765556 PMCID: PMC5940374 DOI: 10.18632/oncotarget.25177] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 04/05/2018] [Indexed: 01/14/2023] Open
Abstract
Afatinib, used for the first-line treatment of non-small-cell lung carcinoma (NSCLC) patients with distinct epidermal growth factor receptor (EGFR) mutations, inactivates EGFR by mimicking ATP structure and forming a covalent adduct with EGFR. We developed a method to unravel potential targets of afatinib in NSCLC cells through immunoprecipitation of afatinib-labeling proteins with anti-afatinib antiserum and mass spectrometry analysis. Ribonucleotide reductase (RNR) is one of target proteins of afatinib revealed by this method. Treatment of afatinib at 10-100 nM potently inhibited intracellular RNR activity in an in vitro assay using permeabilized PC-9 cells (formerly known as PC-14). PC-9 cells treated with 10 μM afatinib displayed elevated markers of DNA damage. Long-term treatment of therapeutic concentrations of afatinib in PC-9 cells caused significant decrease in protein levels of RNR subunit M2 at 1-10 nM and RNR subunit M1 at 100 nM. EGFR-null Chinese hamster ovary (CHO) cells treated with afatinib also showed similar effects. Afatinib repressed the upregulation of RNR subunit M2 induced by gemcitabine. Covalent modification with afatinib resulting in inhibition and protein downregulation of RNR underscores the therapeutic and off-target effects of afatinib. Afatinib may serve as a lead compound of chemotherapeutic drugs targeting RNR. This method can be widely used in the identification of potential targets of other covalent drugs.
Collapse
Affiliation(s)
- Cheng-Han Yu
- Graduate Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Chi-Chi Chou
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Hsin-Fang Tu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Wei-Chieh Huang
- Graduate Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Ya-Yeh Ho
- Graduate Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Kay-Hooi Khoo
- Graduate Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 10617, Taiwan.,Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Ming-Shyue Lee
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Geen-Dong Chang
- Graduate Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
36
|
Mountzios G. Making progress in epidermal growth factor receptor (EGFR)-mutant non-small cell lung cancer by surpassing resistance: third-generation EGFR tyrosine kinase inhibitors (EGFR-TKIs). ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:140. [PMID: 29862229 DOI: 10.21037/atm.2017.10.04] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) represent the standard of care for advanced non-small cell lung cancer (NSCLC) patients whose tumours harbor an activating EGFR mutation. Unfortunately, resistance to first- and second-generation EGFR-TKIs inevitably occurs in all patients with EGFR-mutant disease approximately within a year of treatment. At least half of these cases are attributed to the emergence of a secondary mutation in exon 20 of the EGFR gene, namely the T790M mutation. Third-generation EGFR-TKIs, including osimertinib and rociletinib, target this epigenic mutation, thus re-sensitizing cancer cells to EGFR-TKI inhibition. Osimertinib to date represents the standard of care in EGFR-mutant tumors after failure of first-line EGFR-TKIs by over-performing platinum-based chemotherapy in the recently reported AURA-3 randomized phase III clinical trial. The aim of this review is to describe the different treatment strategies that have been developed to reverse resistance to first- and second-line EGFR-TKIs, the corresponding mechanisms of resistance and the development of novel-generation EGFR-TKIs. We also discuss the challenge posed by the implementation of third-generation EGFR-TKIs earlier in the course of the disease in first-line treatment of EGFR-mutant NSCLC.
Collapse
Affiliation(s)
- Giannis Mountzios
- Department of Medical Oncology, University of Athens School of Medicine, Athens, Greece
| |
Collapse
|
37
|
EGFR-targeted therapy results in dramatic early lung tumor regression accompanied by imaging response and immune infiltration in EGFR mutant transgenic mouse models. Oncotarget 2018; 7:54137-54156. [PMID: 27494838 PMCID: PMC5338915 DOI: 10.18632/oncotarget.11021] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 07/22/2016] [Indexed: 01/21/2023] Open
Abstract
Lung adenocarcinoma patients harboring kinase domain mutations in Epidermal growth factor receptor (EGFR) have significant clinical benefit from EGFR-targeted tyrosine kinase inhibitors (TKIs). Although a majority of patients experience clinical symptomatic benefit immediately, an objective response can only be demonstrated after 6-8 weeks of treatment. Evaluation of patient response by imaging shows that 30-40% of patients do not respond due to intrinsic resistance to these TKIs. We investigated immediate-early effects of EGFR-TKI treatment in mutant EGFR-driven transgenic mouse models by FDG-PET and MRI and correlated the effects on the tumor and the tumor microenvironment. Within 24 hours of erlotinib treatment we saw approximately 65% tumor regression in mice with TKI-sensitive EGFRL858R lung adenocarcinoma. However, mice with EGFRL858R/T790M-driven tumors did not respond to either erlotinib or afatinib monotherapy, but did show a significant tumor response to afatinib-cetuximab combination treatment. The imaging responses correlated with the inhibition of downstream EGFR signaling, increased apoptosis, and decreased proliferation in the tumor tissues. In EGFRL858R-driven tumors, we saw a significant increase in CD45+ leukocytes, NK cells, dendritic cells, macrophages and lymphocytes, particularly CD8+ T cells. In response to erlotinib, these dendritic cells and macrophages had significantly higher MHC class II expression, indicating increased antigen-presenting capabilities. Together, results of our study provide novel insight into the immediate-early therapeutic response to EGFR TKIs in vivo.
Collapse
|
38
|
Mancini M, Gal H, Gaborit N, Mazzeo L, Romaniello D, Salame TM, Lindzen M, Mahlknecht G, Enuka Y, Burton DG, Roth L, Noronha A, Marrocco I, Adreka D, Altstadter RE, Bousquet E, Downward J, Maraver A, Krizhanovsky V, Yarden Y. An oligoclonal antibody durably overcomes resistance of lung cancer to third-generation EGFR inhibitors. EMBO Mol Med 2018; 10:294-308. [PMID: 29212784 PMCID: PMC5801506 DOI: 10.15252/emmm.201708076] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 10/23/2017] [Accepted: 10/30/2017] [Indexed: 02/05/2023] Open
Abstract
Epidermal growth factor receptor (EGFR) mutations identify patients with lung cancer who derive benefit from kinase inhibitors. However, most patients eventually develop resistance, primarily due to the T790M second-site mutation. Irreversible inhibitors (e.g., osimertinib/AZD9291) inhibit T790M-EGFR, but several mechanisms, including a third-site mutation, C797S, confer renewed resistance. We previously reported that a triple mixture of monoclonal antibodies, 3×mAbs, simultaneously targeting EGFR, HER2, and HER3, inhibits T790M-expressing tumors. We now report that 3×mAbs, including a triplet containing cetuximab and trastuzumab, inhibits C797S-expressing tumors. Unlike osimertinib, which induces apoptosis, 3×mAbs promotes degradation of the three receptors and induces cellular senescence. Consistent with distinct mechanisms, treatments combining 3×mAbs plus sub-inhibitory doses of osimertinib synergistically and persistently eliminated tumors. Thus, oligoclonal antibodies, either alone or in combination with kinase inhibitors, might preempt repeated cycles of treatment and rapid emergence of resistance.
Collapse
Affiliation(s)
- Maicol Mancini
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Hilah Gal
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Nadège Gaborit
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Luigi Mazzeo
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Donatella Romaniello
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Tomer Meir Salame
- Department of Biological Services, Weizmann Institute of Science, Rehovot, Israel
| | - Moshit Lindzen
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Georg Mahlknecht
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Yehoshua Enuka
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Dominick Ga Burton
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Lee Roth
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Ashish Noronha
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Ilaria Marrocco
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Dan Adreka
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | | | - Emilie Bousquet
- Oncogenic Pathways in Lung Cancer, Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Montpellier Cedex 5, France
| | - Julian Downward
- Signal Transduction Laboratory, Francis Crick Institute, London, UK
- Lung Cancer Group, The Institute of Cancer Research, London, UK
| | - Antonio Maraver
- Oncogenic Pathways in Lung Cancer, Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Montpellier Cedex 5, France
| | - Valery Krizhanovsky
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Yosef Yarden
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
39
|
Della Corte CM, Malapelle U, Vigliar E, Pepe F, Troncone G, Ciaramella V, Troiani T, Martinelli E, Belli V, Ciardiello F, Morgillo F. Efficacy of continuous EGFR-inhibition and role of Hedgehog in EGFR acquired resistance in human lung cancer cells with activating mutation of EGFR. Oncotarget 2018; 8:23020-23032. [PMID: 28416737 PMCID: PMC5410282 DOI: 10.18632/oncotarget.15479] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 02/08/2017] [Indexed: 01/09/2023] Open
Abstract
Purpose The aim of this work was to investigate the efficacy of sequential treatment with first-, second- and third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors and the mechanisms of acquired resistance occurring during the sequential use of these inhibitors. Experimental design We developed an in vivo model of acquired resistance to EGFR-inhibitors by treating nude mice xenografted with HCC827, a human non-small-cell lung cancer (NSCLC) cell line harboring EGFR activating mutation, with a sequence of first-generation EGFR tyrosine kinase inhibitors (EGFR-TKIs) (erlotinib and gefitinib), of second-generation EGFR-TKI (afatinib) plus/minus the anti-EGFR monoclonal antibody cetuximab, and of third-generation EGFR-TKI (osimertinib). Results HCC827-derived xenografts and with acquired resistance to EGFR-inhibitors were sensitive to the sequential use of first-, second- and third-generation EGFR-TKIs. Continuous EGFR inhibition of first-generation resistant tumors by sequential treatment with afatinib plus/minus cetuximab, followed by osimertinib, represented an effective therapeutic strategy in this model. Whereas T790M resistance mutation was not detected, a major mechanism of acquired resistance was the activation of components of the Hedgehog (Hh) pathway. This phenomenon was accompanied by epithelial-to-mesenchymal transition. Cell lines established in vitro from gefitinib-, or afatinib- or osimertinib-resistant tumors showed metastatic properties and maintained EGFR-TKIs resistance in vitro, that was reverted by the combined blockade of Hh, with the selective SMO inhibitor sonidegib, and EGFR. Conclusions EGFR-mutant NSCLC can benefit from continuous treatment with EGFR-inhibitors, indepenently from mechanisms of resistance. In a complex and heterogenous scenario, Hh showed an important role in mediating resistance to EGFR-inhibitors through the induction of mesenchymal properties.
Collapse
Affiliation(s)
- Carminia Maria Della Corte
- Oncologia Medica, Dipartimento Medico-Chirurgico di Internistica Clinica e Sperimentale "F. Magrassi e A. Lanzara," Università degli studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Umberto Malapelle
- Dipartimento di Sanità Pubblica, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Elena Vigliar
- Dipartimento di Sanità Pubblica, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Francesco Pepe
- Dipartimento di Sanità Pubblica, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Giancarlo Troncone
- Dipartimento di Sanità Pubblica, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Vincenza Ciaramella
- Oncologia Medica, Dipartimento Medico-Chirurgico di Internistica Clinica e Sperimentale "F. Magrassi e A. Lanzara," Università degli studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Teresa Troiani
- Oncologia Medica, Dipartimento Medico-Chirurgico di Internistica Clinica e Sperimentale "F. Magrassi e A. Lanzara," Università degli studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Erika Martinelli
- Oncologia Medica, Dipartimento Medico-Chirurgico di Internistica Clinica e Sperimentale "F. Magrassi e A. Lanzara," Università degli studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Valentina Belli
- Oncologia Medica, Dipartimento Medico-Chirurgico di Internistica Clinica e Sperimentale "F. Magrassi e A. Lanzara," Università degli studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Fortunato Ciardiello
- Oncologia Medica, Dipartimento Medico-Chirurgico di Internistica Clinica e Sperimentale "F. Magrassi e A. Lanzara," Università degli studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Floriana Morgillo
- Oncologia Medica, Dipartimento Medico-Chirurgico di Internistica Clinica e Sperimentale "F. Magrassi e A. Lanzara," Università degli studi della Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
40
|
Abstract
Afatinib (BIBW 2992, US: GilotrifTM, other countries: Giotrif©) is an irreversible blocker of the ErbB family, acting at the tyrosine kinases of these proteins. In 2013, it was approved by the FDA and the EMA for the treatment of adults with advanced, EGFR mutation-positive non-small-cell lung cancer. Further investigations for the treatment of many other tumors with afatinib, e.g., HNSCC and breast cancer, are ongoing.
Collapse
Affiliation(s)
- Helga Wecker
- Department of Haematology, Oncology and Stem Cell Transplantation, University Medical Centre Freiburg, and Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Cornelius F Waller
- Department of Haematology, Oncology and Stem Cell Transplantation, University Medical Centre Freiburg, and Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany.
| |
Collapse
|
41
|
NRF2 Regulates HER1 Signaling Pathway to Modulate the Sensitivity of Ovarian Cancer Cells to Lapatinib and Erlotinib. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:1864578. [PMID: 29410730 PMCID: PMC5749283 DOI: 10.1155/2017/1864578] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 09/09/2017] [Accepted: 10/16/2017] [Indexed: 12/24/2022]
Abstract
NF-E2-related factor 2 (NRF2) regulates the transcription of a battery of metabolic and cytoprotective genes. NRF2 and epidermal growth factor receptors (EGFRs/HERs) are regulators of cellular proliferation and determinants of cancer initiation and progression. NRF2 and HERs confer cancers with resistance to several therapeutic agents. Nevertheless, there is limited understanding of the regulation of HER expression and activation and the link between NRF2 and HER signalling pathways. We show that NRF2 regulates both basal and inducible expression of HER1, as treatment of ovarian cancer cells (PEO1, OVCAR3, and SKOV3) with NRF2 activator tBHQ inducing HER1, while inhibition of NRF2 by siRNA knockdown or with retinoid represses HER1. Furthermore, treatment of cells with tBHQ increased total and phosphorylated NRF2, HER1, and AKT levels and compromised the cytotoxic effect of lapatinib or erlotinib. Treatment with siRNA or retinoid antagonised the effect of tBHQ on NRF2 and HER1 levels and enhanced the sensitivity of ovarian cancer cells to lapatinib or erlotinib. Pharmacological or genetic inhibition of NRF2 and/or treatment with lapatinib or erlotinib elevated cellular ROS and depleted glutathione. This extends the understanding of NRF2 and its regulation of HER family receptors and opens a strategic target for improving cancer therapy.
Collapse
|
42
|
Xu J, Wang J, Zhang S. Mechanisms of resistance to irreversible epidermal growth factor receptor tyrosine kinase inhibitors and therapeutic strategies in non-small cell lung cancer. Oncotarget 2017; 8:90557-90578. [PMID: 29163853 PMCID: PMC5685774 DOI: 10.18632/oncotarget.21164] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 08/28/2017] [Indexed: 11/25/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) T790M mutation is the most frequent mechanism which accounts for about 60% of acquired resistance to first-generation EGFR tyrosine kinase inhibitors (TKIs) in non-small cell lung cancer (NSCLC) patients harboring EGFR activating mutations. Irreversible EGFR-TKIs which include the second-generation and third-generation EGFR-TKIs are developed to overcome T790M mediated resistance. The second-generation EGFR-TKIs inhibit the wide type (WT) EGFR combined with dose-limiting toxicity which limits its application in clinics, while the development of third-generation EGFR-TKIs brings inspiring efficacy either in vitro or in vivo. The acquired resistance, however, will also occur and limit their response. Understanding the mechanisms of resistance to irreversible EGFR-TKIs plays an important role in the choice of subsequent treatment. In this review, we show the currently known mechanisms of resistance which can be summarized as EGFR dependent and independent mechanisms and potential therapeutic strategies to irreversible EGFR-TKIs.
Collapse
Affiliation(s)
- Jing Xu
- Department of Medical Oncology, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Jinghui Wang
- Department of Medical Oncology, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Shucai Zhang
- Department of Medical Oncology, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
43
|
Ko B, Paucar D, Halmos B. EGFR T790M: revealing the secrets of a gatekeeper. LUNG CANCER (AUCKLAND, N.Z.) 2017; 8:147-159. [PMID: 29070957 PMCID: PMC5640399 DOI: 10.2147/lctt.s117944] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Non-small-cell lung cancers that harbor activating mutations in the EGFR gene represent an important molecularly defined subset of lung cancer. Despite dramatic initial responses with first- and second-generation EGFR-directed tyrosine-kinase inhibitors (TKIs) against these cancers, the development of a dominant and frequent resistance mechanism through a threonine-methionine amino acid substitution at position 790 (T790M) of EGFR has limited the long-term efficacy of these targeted therapies. This "gatekeeper" EGFR T790M alteration remains the only validated and relevant second-site resistance mutation for EGFR, allowing for focused research to understand and overcome EGFR T790M-mediated resistance. The current review focuses on EGFR T790M by discussing mechanisms of resistance mediated by EGFR T790M, reviewing development of novel third-generation EGFR TKIs targeting EGFR T790M, and highlighting current research on overcoming resistance to third-generation EGFR T790M TKIs.
Collapse
Affiliation(s)
- Brian Ko
- Department of Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, New York, NY, USA
| | - Daniel Paucar
- Department of Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, New York, NY, USA
| | - Balazs Halmos
- Department of Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, New York, NY, USA
| |
Collapse
|
44
|
Hu Y, Alden RS, Odegaard JI, Fairclough SR, Chen R, Heng J, Feeney N, Nagy RJ, Shah J, Ulrich B, Gutierrez M, Lanman RB, Garber JE, Paweletz CP, Oxnard GR. Discrimination of Germline EGFR T790M Mutations in Plasma Cell-Free DNA Allows Study of Prevalence Across 31,414 Cancer Patients. Clin Cancer Res 2017; 23:7351-7359. [PMID: 28947568 DOI: 10.1158/1078-0432.ccr-17-1745] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/08/2017] [Accepted: 09/18/2017] [Indexed: 12/21/2022]
Abstract
Purpose: Plasma cell-free DNA (cfDNA) analysis is increasingly used clinically for cancer genotyping, but may lead to incidental identification of germline-risk alleles. We studied EGFR T790M mutations in non-small cell lung cancer (NSCLC) toward the aim of discriminating germline and cancer-derived variants within cfDNA.Experimental Design: Patients with EGFR-mutant NSCLC, some with known germline EGFR T790M, underwent plasma genotyping. Separately, deidentified genomic data and buffy coat specimens from a clinical plasma next-generation sequencing (NGS) laboratory were reviewed and tested.Results: In patients with germline T790M mutations, the T790M allelic fraction (AF) in cfDNA approximates 50%, higher than that of EGFR driver mutations. Review of plasma NGS results reveals three groups of variants: a low-AF tumor group, a heterozygous group (∼50% AF), and a homozygous group (∼100% AF). As the EGFR driver mutation AF increases, the distribution of the heterozygous group changes, suggesting increased copy number variation from increased tumor content. Excluding cases with high copy number variation, mutations can be differentiated into somatic variants and incidentally identified germline variants. We then developed a bioinformatic algorithm to distinguish germline and somatic mutations; blinded validation in 21 cases confirmed a 100% positive predictive value for predicting germline T790M. Querying a database of 31,414 patients with plasma NGS, we identified 48 with germline T790M, 43 with nonsquamous NSCLC (P < 0.0001).Conclusions: With appropriate bioinformatics, plasma genotyping can accurately predict the presence of incidentally detected germline risk alleles. This finding in patients indicates a need for genetic counseling and confirmatory germline testing. Clin Cancer Res; 23(23); 7351-9. ©2017 AACR.
Collapse
Affiliation(s)
- Yuebi Hu
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Ryan S Alden
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | | | - Ruthia Chen
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jennifer Heng
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Nora Feeney
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | - Jayshree Shah
- John Theurer Cancer Center, Hackensack Meridian Health, Hackensack, New Jersey
| | - Bryan Ulrich
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Martin Gutierrez
- John Theurer Cancer Center, Hackensack Meridian Health, Hackensack, New Jersey
| | | | - Judy E Garber
- Center for Cancer Genetics and Prevention, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Cloud P Paweletz
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Geoffrey R Oxnard
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
| |
Collapse
|
45
|
A randomized, phase II study of gefitinib alone versus nimotuzumab plus gefitinib after platinum-based chemotherapy in advanced non-small cell lung cancer (KCSG LU12-01). Oncotarget 2017; 8:15943-15951. [PMID: 27823977 PMCID: PMC5362536 DOI: 10.18632/oncotarget.13056] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 10/26/2016] [Indexed: 12/11/2022] Open
Abstract
We aimed to evaluate the efficacy of dual inhibition of epidermal growth factor receptor (EGFR) with nimotuzumab (EGFR monoclonal antibody) plus gefitinib (EGFR-tyrosine kinase inhibitor) in advanced non-small cell lung cancer (NSCLC) after platinum-based chemotherapy. An open label, randomized, phase II trial was conducted at 6 centers; 160 patients were randomized (1:1) to either gefitinib alone or nimotuzumab (200 mg, i.v. weekly) plus gefitinib (250 mg p.o. daily) until disease progression or intolerable toxicity. The primary endpoint was progression-free survival (PFS) at 3 months. Of the total 160 enrolled patients, 155 (77: gefitinib, 78: nimotuzumab plus gefitinib) received at least one dose and could be evaluated for efficacy and toxicity. The majority had adenocarcinoma (65.2%) and ECOG performance status of 0 to 1 (83.5%). The median follow-up was 22.1 months, and the PFS rate at 3 months was 48.1% in gefitinib and 37.2% in nimotuzumab plus gefitinib (P = not significant, NS). The median PFS and OS were 2.8 and 13.2 months in gefitinib and 2.0 and 14.0 months in nimotuzumab plus gefitinib. Combined treatment was not associated with superior PFS to gefitinib alone in patients with EGFR mutation (13.5 vs. 10.2 months in gefitinib alone, P=NS) or those with wild-type EGFR (0.9 vs. 2.0 months in gefitinib alone, P=NS). Combined treatment did not increase EGFR inhibition-related adverse events with manageable toxicities. The dual inhibition of EGFR with nimotuzumab plus gefitinib was not associated with better outcomes than gefitinib alone as a second-line treatment of advanced NSCLC (NCT01498562).
Collapse
|
46
|
Ma L, Wang DD, Zou B, Yan H. An Eigen-Binding Site Based Method for the Analysis of Anti-EGFR Drug Resistance in Lung Cancer Treatment. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2017; 14:1187-1194. [PMID: 27187970 DOI: 10.1109/tcbb.2016.2568184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We explore the drug resistance mechanism in non-small cell lung cancer treatment by characterizing the drug-binding site of a protein mutant based on local surface and energy features. These features are transformed to an eigen-binding site space and used for drug resistance level prediction and analysis.
Collapse
|
47
|
Liao BC, Lin CC, Yang JCH. Novel EGFR Inhibitors in Non-small Cell Lung Cancer: Current Status of Afatinib. Curr Oncol Rep 2017; 19:4. [PMID: 28138934 DOI: 10.1007/s11912-017-0560-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Afatinib, a second-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor, has been approved worldwide as a first-line treatment for advanced non-small cell lung cancer (NSCLC) that harbors activating EGFR mutations. Here, we have reviewed the recent clinical developments in the treatment of lung cancer using afatinib. Emerging data have revealed the overall survival benefit of first-line afatinib therapy in patients with advanced EGFR del19-positive NSCLC. Phase III studies of afatinib have shown the effectiveness of afatinib as a second-line treatment for advanced lung squamous cell carcinoma, as well as the benefit of continuing afatinib therapy in combination with cytotoxic chemotherapy for advanced NSCLC after the occurrence of disease progression in patients who are receiving afatinib monotherapy. Therapeutic benefits of afatinib have also been reported in studies of patients with central nervous system metastasis and patients with HER2 mutation. The utility of afatinib-based combination therapies is being investigated in ongoing research.
Collapse
Affiliation(s)
- Bin-Chi Liao
- Department of Oncology, National Taiwan University Hospital, 7, Chung-Shan South Road, Taipei, Taiwan.,National Taiwan University Cancer Center, College of Medicine, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chia-Chi Lin
- Department of Oncology, National Taiwan University Hospital, 7, Chung-Shan South Road, Taipei, Taiwan.,Department of Urology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - James Chih-Hsin Yang
- Department of Oncology, National Taiwan University Hospital, 7, Chung-Shan South Road, Taipei, Taiwan. .,National Taiwan University Cancer Center, College of Medicine, National Taiwan University, Taipei, Taiwan. .,Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan. .,Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
48
|
Provencio M, Torrente M, Calvo V, Gutiérrez L, Pérez-Callejo D, Pérez-Barrios C, Barquín M, Royuela A, Rodriguez-Alfonso B, Sotelo M, Cruz-Bermúdez JL, Mendez M, Cruz-Bermúdez A, Romero A. Dynamic circulating tumor DNA quantificaton for the individualization of non-small-cell lung cancer patients treatment. Oncotarget 2017; 8:60291-60298. [PMID: 28947971 PMCID: PMC5601139 DOI: 10.18632/oncotarget.20016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 07/25/2017] [Indexed: 12/04/2022] Open
Abstract
Background Liquid biopsy has evolved from being a promising line to becoming a validated approach for biomarker testing. However, its utility for individualization of therapy has been scarcely reported. In this study, we show how monitoring levels of EGFR mutation in plasma can be useful for the individualization of treatment. Results Longitudinal EGFR mutation levels in plasma always correlated with tumor response ascertained by RECIST criteria. Moreover, decreasing EGFR mutation levels were detected in all patients benefiting from locoregional radiotherapy, whereas the opposite occurred when a patient progressed soon after radiotherapy treatment. Similarly, increasing EGFR mutation levels anticipated disease progression after TKI dose reduction, discontinuation of treatment, or reduced bioavailability due to drug interactions. In addition, EGFR mutation levels were useful to monitor treatment outcome of new therapies and constituted a decisive factor when the clinical situation of the patient did not correlate with responses ascertained by radiologist. Finally, our results indicate that cancer associated body fluids (pleural, pericardial or cerebrospinal fluid) are certainly a suitable source for biomarker testing that can extend EGFR mutation detection to biofluids other than blood. Materials and Methods A total of 180 serial plasma samples from 18 non-small-cell lung cancer patients who carried an activating EGFR mutation were investigated by digital PCR. Conclusions Monitoring levels of EGFR mutation in plasma allows resolving doubts that frequently arise in daily clinical practice and constitutes a major step towards achieving personalized medicine.
Collapse
Affiliation(s)
- Mariano Provencio
- Medical Oncology Department, Hospital Universitario Puerta de Hierro-Majadahonda, Majadahonda, Spain
| | - María Torrente
- Medical Oncology Department, Hospital Universitario Puerta de Hierro-Majadahonda, Majadahonda, Spain
| | - Virgina Calvo
- Medical Oncology Department, Hospital Universitario Puerta de Hierro-Majadahonda, Majadahonda, Spain
| | - Lourdes Gutiérrez
- Medical Oncology Department, Hospital Universitario Puerta de Hierro-Majadahonda, Majadahonda, Spain
| | - David Pérez-Callejo
- Medical Oncology Department, Hospital Universitario Puerta de Hierro-Majadahonda, Majadahonda, Spain
| | - Clara Pérez-Barrios
- Molecular Oncology Laboratory, Biomedical Sciences Research Institute, Hospital Universitario Puerta de Hierro-Majadahonda, Majadahonda, Spain
| | - Miguel Barquín
- Molecular Oncology Laboratory, Biomedical Sciences Research Institute, Hospital Universitario Puerta de Hierro-Majadahonda, Majadahonda, Spain
| | - Ana Royuela
- Biostatistics Department, Biomedical Sciences Research Institute, Hospital Universitario Puerta de Hierro-Majadahonda, Majadahonda, Spain
| | - Begoña Rodriguez-Alfonso
- Nuclear Medicine Department, Hospital Universitario Puerta de Hierro-Majadahonda, Majadahonda, Spain
| | - Miguel Sotelo
- Medical Oncology Department, Hospital Infanta Cristina, Parla, Spain
| | - Juan Luis Cruz-Bermúdez
- Information Technologies Department, Hospital Universidad Politécnica de Madrid, Madrid, Spain
| | - Miriam Mendez
- Medical Oncology Department, Hospital Universitario Puerta de Hierro-Majadahonda, Majadahonda, Spain
| | - Alberto Cruz-Bermúdez
- Medical Oncology Department, Hospital Universitario Puerta de Hierro-Majadahonda, Majadahonda, Spain
| | - Atocha Romero
- Medical Oncology Department, Hospital Universitario Puerta de Hierro-Majadahonda, Majadahonda, Spain.,Molecular Oncology Laboratory, Biomedical Sciences Research Institute, Hospital Universitario Puerta de Hierro-Majadahonda, Majadahonda, Spain
| |
Collapse
|
49
|
Kazaz SN, Öztop İ. Treatment After First-Generation Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor Resistance in Non-Small-Cell Lung Cancer. Turk Thorac J 2017; 18:66-71. [PMID: 29404164 DOI: 10.5152/turkthoracj.2017.16042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 04/20/2017] [Indexed: 12/30/2022]
Abstract
Systemic treatment is the basic treatment approach to advanced-stage non-small-cell lung cancer (NSCLC), and chemotherapy and targeted treatments are commonly employed in these patients. Recently, positive results achieved with immunotherapy have led to a growing number of treatment options and prolonged survival time. Today, specific tyrosine kinase inhibitors (TKIs), such as erlotinib, gefitinib, and afatinib, which target the epidermal growth factor receptor (EGFR), and the TKI crizotinib, which targets anaplastic lymphoma kinase gene rearrangement, have become the standard treatment among targeted therapies for patients with sensitive molecular anomalies. However, resistance develops against all these agents after a while. Numerous genetic mutations, T790M+ in particular, have been identified as resistance mechanisms against EGFR-TKIs, and researchers are developing specific inhibitors against them. Among those inhibitors, third-generation EGFR-TKIs such as osimertinib and rociletinib have gained prominence due to their high level of effectiveness and low toxicity profile. Besides, systemic chemotherapy and immunotherapy are proper alternatives. A second biopsy during the progression stage and better clarification of the mechanisms causing secondary resistance will enable more successful treatments in the future.
Collapse
Affiliation(s)
- Seher Nazlı Kazaz
- Department of Medical Oncology, University of Health Science Kanuni Training and Research Hospital, Trabzon, Turkey
| | - İlhan Öztop
- Department of Medical Oncology, Dokuz Eylül University School of Medicine, İzmir, Turkey
| |
Collapse
|
50
|
Pool M, de Boer HR, Hooge MNLD, van Vugt MA, de Vries EG. Harnessing Integrative Omics to Facilitate Molecular Imaging of the Human Epidermal Growth Factor Receptor Family for Precision Medicine. Theranostics 2017; 7:2111-2133. [PMID: 28638489 PMCID: PMC5479290 DOI: 10.7150/thno.17934] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 03/02/2017] [Indexed: 12/13/2022] Open
Abstract
Cancer is a growing problem worldwide. The cause of death in cancer patients is often due to treatment-resistant metastatic disease. Many molecularly targeted anticancer drugs have been developed against 'oncogenic driver' pathways. However, these treatments are usually only effective in properly selected patients. Resistance to molecularly targeted drugs through selective pressure on acquired mutations or molecular rewiring can hinder their effectiveness. This review summarizes how molecular imaging techniques can potentially facilitate the optimal implementation of targeted agents. Using the human epidermal growth factor receptor (HER) family as a model in (pre)clinical studies, we illustrate how molecular imaging may be employed to characterize whole body target expression as well as monitor drug effectiveness and the emergence of tumor resistance. We further discuss how an integrative omics discovery platform could guide the selection of 'effect sensors' - new molecular imaging targets - which are dynamic markers that indicate treatment effectiveness or resistance.
Collapse
Affiliation(s)
- Martin Pool
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - H. Rudolf de Boer
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marjolijn N. Lub-de Hooge
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marcel A.T.M. van Vugt
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Elisabeth G.E. de Vries
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|