1
|
Lanna A. Unexpected links between cancer and telomere state. Semin Cancer Biol 2025; 110:46-55. [PMID: 39952372 DOI: 10.1016/j.semcancer.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 01/05/2025] [Accepted: 01/22/2025] [Indexed: 02/17/2025]
Abstract
Eukaryotes possess chromosome ends known as telomeres. As telomeres shorten, organisms age, a process defined as senescence. Although uncontrolled telomere lengthening has been naturally connected with cancer developments and immortalized state, many cancers are instead characterized by extremely short, genomically unstable telomeres that may hide cancer cells from immune attack. By contrast, other malignancies feature extremely long telomeres due to absence of 'shelterin' end cap protecting factors. The reason for rampant telomere extension in these cancers had remained elusive. Hence, while telomerase supports tumor progression and escape in cancers with very short telomeres, it is possible that different - transfer based or alternative - lengthening pathways be involved in the early stage of tumorigenesis, when telomere length is intact. In this Review, I hereby discuss recent discoveries in the field of telomeres and highlight unexpected links connecting cancer and telomere state. We hope these parallelisms may inform new therapies to eradicate cancers.
Collapse
Affiliation(s)
- Alessio Lanna
- Sentcell UK laboratories, Tuscany Life Sciences, GSK Vaccine Campus, Siena, Italy; University College London, Division of Medicine, London, United Kingdom; Monte-Carlo, Principality of Monaco, France.
| |
Collapse
|
2
|
Afsar A, Zhang L. Putative Molecular Mechanisms Underpinning the Inverse Roles of Mitochondrial Respiration and Heme Function in Lung Cancer and Alzheimer's Disease. BIOLOGY 2024; 13:185. [PMID: 38534454 DOI: 10.3390/biology13030185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/01/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024]
Abstract
Mitochondria are the powerhouse of the cell. Mitochondria serve as the major source of oxidative stress. Impaired mitochondria produce less adenosine triphosphate (ATP) but generate more reactive oxygen species (ROS), which could be a major factor in the oxidative imbalance observed in Alzheimer's disease (AD). Well-balanced mitochondrial respiration is important for the proper functioning of cells and human health. Indeed, recent research has shown that elevated mitochondrial respiration underlies the development and therapy resistance of many types of cancer, whereas diminished mitochondrial respiration is linked to the pathogenesis of AD. Mitochondria govern several activities that are known to be changed in lung cancer, the largest cause of cancer-related mortality worldwide. Because of the significant dependence of lung cancer cells on mitochondrial respiration, numerous studies demonstrated that blocking mitochondrial activity is a potent strategy to treat lung cancer. Heme is a central factor in mitochondrial respiration/oxidative phosphorylation (OXPHOS), and its association with cancer is the subject of increased research in recent years. In neural cells, heme is a key component in mitochondrial respiration and the production of ATP. Here, we review the role of impaired heme metabolism in the etiology of AD. We discuss the numerous mitochondrial effects that may contribute to AD and cancer. In addition to emphasizing the significance of heme in the development of both AD and cancer, this review also identifies some possible biological connections between the development of the two diseases. This review explores shared biological mechanisms (Pin1, Wnt, and p53 signaling) in cancer and AD. In cancer, these mechanisms drive cell proliferation and tumorigenic functions, while in AD, they lead to cell death. Understanding these mechanisms may help advance treatments for both conditions. This review discusses precise information regarding common risk factors, such as aging, obesity, diabetes, and tobacco usage.
Collapse
Affiliation(s)
- Atefeh Afsar
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Li Zhang
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX 75080, USA
| |
Collapse
|
3
|
Liao P, Yan B, Wang C, Lei P. Telomeres: Dysfunction, Maintenance, Aging and Cancer. Aging Dis 2023; 15:2595-2631. [PMID: 38270117 PMCID: PMC11567242 DOI: 10.14336/ad.2023.1128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/28/2023] [Indexed: 01/26/2024] Open
Abstract
Aging has emerged at the forefront of scientific research due to the growing social and economic costs associated with the growing aging global population. The defining features of aging involve a variety of molecular processes and cellular systems, which are interconnected and collaboratively contribute to the aging process. Herein, we analyze how telomere dysfunction potentially amplifies or accelerates the molecular and biochemical mechanisms underpinning each feature of aging and contributes to the emergence of age-associated illnesses, including cancer and neurodegeneration, via the perspective of telomere biology. Furthermore, the recently identified novel mechanistic actions for telomere maintenance offer a fresh viewpoint and approach to the management of telomeres and associated disorders. Telomeres and the defining features of aging are intimately related, which has implications for therapeutic and preventive approaches to slow aging and reduce the prevalence of age-related disorders.
Collapse
Affiliation(s)
- Pan Liao
- The School of Medicine, Nankai University, Tianjin, China.
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China.
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China.
| | - Bo Yan
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China.
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China.
| | - Conglin Wang
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China.
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China.
| | - Ping Lei
- The School of Medicine, Nankai University, Tianjin, China.
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China.
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
4
|
De Felice B, Montanino C, Pinelli C, Nacca M, De Luca P. A novel Telomerase activity and microRNA-21 upregulation identified in a family with Palmoplantar keratoderma. Gene 2023:147600. [PMID: 37419429 DOI: 10.1016/j.gene.2023.147600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 06/11/2023] [Accepted: 06/29/2023] [Indexed: 07/09/2023]
Abstract
Palmoplantar keratoderma is a set of skin diseases with hyperkeratotic thickening of palms and soles which are characteristic of these heterogeneous group of keratinization disorders. Various genetic mutations, autosomal dominant or recessive, have been identified which may triggerpalmoplantar keratoderma, as KRT9 (Keratin 9), KRT1 (Keratin1), AQP5 (Aquaporin), SERPINB 7 (serine protease inhibitor). The identification of causal mutations is extremely important for the correct diagnosis. Here, we report the case of a family affected from Palmoplantar keratoderma caused by autosomal dominant KRT1 mutations (Unna-Thost disease). Telomerase activation and hTERT expression take a part in the process of cell proliferation and inflammation and microRNAs, as microRNA-21, are emerging as drivers in the regulation of telomerase activity. Here, the patients underwent KRT1 analysis genetic sequence, telomerase activity and miR-21 expression. Beside histopathology assay was performed. The patients presented thickening of the skin on soles of the feet and the palms of the hands, KRT1mutations and showed high expression levels of hTERT and hTR, the gene encoding for the telomeric subunits, and miR-21 (fold change >1.5 and p value =0.043), explicating the aberrant proliferation of epidermal layer and the inflammatory state characterizing palmoplantar keratoderma.
Collapse
Affiliation(s)
- Bruna De Felice
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DISTABIF), University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy.
| | - Concetta Montanino
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DISTABIF), University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
| | - Claudia Pinelli
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DISTABIF), University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
| | - Massimo Nacca
- University Hospital Sant'Anna e San Sebastiano, Via Palasciano, 81100 Caserta, Italy
| | - Pasquale De Luca
- Department RIMAR, Sequencing and Molecular Analyses Center, Stazione Zoologica Anton Dohrn, Napoli, Italy
| |
Collapse
|
5
|
de Bardet JC, Cardentey CR, González BL, Patrone D, Mulet IL, Siniscalco D, Robinson-Agramonte MDLA. Cell Immortalization: In Vivo Molecular Bases and In Vitro Techniques for Obtention. BIOTECH 2023; 12:14. [PMID: 36810441 PMCID: PMC9944833 DOI: 10.3390/biotech12010014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Somatic human cells can divide a finite number of times, a phenomenon known as the Hayflick limit. It is based on the progressive erosion of the telomeric ends each time the cell completes a replicative cycle. Given this problem, researchers need cell lines that do not enter the senescence phase after a certain number of divisions. In this way, more lasting studies can be carried out over time and avoid the tedious work involved in performing cell passes to fresh media. However, some cells have a high replicative potential, such as embryonic stem cells and cancer cells. To accomplish this, these cells express the enzyme telomerase or activate the mechanisms of alternative telomere elongation, which favors the maintenance of the length of their stable telomeres. Researchers have been able to develop cell immortalization technology by studying the cellular and molecular bases of both mechanisms and the genes involved in the control of the cell cycle. Through it, cells with infinite replicative capacity are obtained. To obtain them, viral oncogenes/oncoproteins, myc genes, ectopic expression of telomerase, and the manipulation of genes that regulate the cell cycle, such as p53 and Rb, have been used.
Collapse
Affiliation(s)
- Javier Curi de Bardet
- Department of Neurobiology, International Center for Neurological Restoration, Havana 11300, Cuba
| | | | - Belkis López González
- Department of Allergy, Calixto Garcia General University Hospital, Havana 10400, Cuba
| | - Deanira Patrone
- Department of Experimental Medicine, Division of Molecular Biology, Biotechnology and Histology, University of Campania, 80138 Naples, Italy
| | | | - Dario Siniscalco
- Department of Experimental Medicine, Division of Molecular Biology, Biotechnology and Histology, University of Campania, 80138 Naples, Italy
| | | |
Collapse
|
6
|
Du M, Zhang S, Liu X, Xu C, Zhang X. Nondiploid cancer cells: Stress, tolerance and therapeutic inspirations. Biochim Biophys Acta Rev Cancer 2022; 1877:188794. [PMID: 36075287 DOI: 10.1016/j.bbcan.2022.188794] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 11/19/2022]
Abstract
Aberrant ploidy status is a prominent characteristic in malignant neoplasms. Approximately 90% of solid tumors and 75% of haematopoietic malignancies contain aneuploidy cells, and 30%-60% of tumors undergo whole-genome doubling, indicating that nondiploidy might be a prevalent genomic aberration in cancer. Although the role of aneuploid and polyploid cells in cancer remains to be elucidated, recent studies have suggested that nondiploid cells might be a dangerous minority that severely challenges cancer management. Ploidy shifts cause multiple fitness coasts for cancer cells, mainly including genomic, proteotoxic, metabolic and immune stresses. However, nondiploid comprises a well-adopted subpopulation, with many tolerance mechanisms evident in cells along with ploidy shifts. Aneuploid and polyploid cells elegantly maintain an autonomous balance between the stress and tolerance during adaptive evolution in cancer. Breaking the balance might provide some inspiration for ploidy-selective cancer therapy and alleviation of ploidy-related chemoresistance. To understand of the complex role and therapeutic potential of nondiploid cells better, we reviewed the survival stresses and adaptive tolerances within nondiploid cancer cells and summarized therapeutic ploidy-selective alterations for potential use in developing future cancer therapy.
Collapse
Affiliation(s)
- Ming Du
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, People's Republic of China
| | - Shuo Zhang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, People's Republic of China
| | - Xiaoxia Liu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, People's Republic of China
| | - Congjian Xu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, People's Republic of China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, People's Republic of China.
| | - Xiaoyan Zhang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, People's Republic of China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, People's Republic of China.
| |
Collapse
|
7
|
Sahm V, Maurer C, Baumeister T, Anand A, Strangmann J, Schmid RM, Wang TC, Quante M. Telomere shortening accelerates tumor initiation in the L2-IL1B mouse model of Barrett esophagus and emerges as a possible biomarker. Oncotarget 2022; 13:347-359. [PMID: 35178191 PMCID: PMC8842791 DOI: 10.18632/oncotarget.28198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 02/07/2022] [Indexed: 11/30/2022] Open
Abstract
Barrett’s esophagus (BE) is a precursor of the esophageal adenocarcinoma (EAC). BE- development and its progression to cancer is associated with gastroesophageal reflux disease. However, there is currently no molecular risk prediction model that accurately identifies patients at high risk for EAC. Here, we investigated the impact of shortened telomeres in a mouse model for Barrett esophagus (L2-IL1B). The L2-IL1B mouse model is characterized by IL-1β-mediated inflammation, which leads to a Barrett-like metaplasia in the transition zone between the squamous forestomach and glandular cardia/stomach. Telomere shortening was achieved by mTERC knockout. In the second generation (G2) of mTERC knockout L2-IL1B.mTERC−/− G2 mice exhibited telomere dysfunction with significantly shorter telomeres as measured by qFISH compared to L2-IL1B mice, correlating with stronger DNA damage in the form of phosphorylation of H2AX (γH2AX). Macroscopically, tumor area along the squamocolumnar junction (SCJ) was increased in L2-IL1B.mTERC−/− G2 mice, along with increased histopathological dysplasia. In vitro studies indicated increased organoid formation capacity in BE tissue from L2-IL1B.mTERC−/− G2 mice. In addition, pilot studies of human BE-, dysplasia- and EAC tissue samples confirmed that BE epithelial cells with or without dysplasia (LGD) had shorter telomeres compared to gastric cardia tissue. Of note, differentiated goblet cells retained longer telomeres than columnar lined BE epithelium. In conclusion, our studies suggest that shortened telomeres are functionally important for tumor development in a mouse model of BE and are associated with proliferating columnar epithelium in human BE. We propose that shortened telomeres should be evaluated further as a possible biomarker of cancer risk in BE patients.
Collapse
Affiliation(s)
- Vincenz Sahm
- II Medizinische Klinik, Technische Universität München, Munich, Germany
| | - Carlo Maurer
- II Medizinische Klinik, Technische Universität München, Munich, Germany
| | - Theresa Baumeister
- II Medizinische Klinik, Technische Universität München, Munich, Germany
- Klinik für Innere Medizin II, Universitätsklinikum Freiburg, Freiburg, Germany
| | - Akanksha Anand
- II Medizinische Klinik, Technische Universität München, Munich, Germany
| | - Julia Strangmann
- II Medizinische Klinik, Technische Universität München, Munich, Germany
- Klinik für Innere Medizin II, Universitätsklinikum Freiburg, Freiburg, Germany
| | - Roland M. Schmid
- II Medizinische Klinik, Technische Universität München, Munich, Germany
| | - Timothy C. Wang
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Michael Quante
- II Medizinische Klinik, Technische Universität München, Munich, Germany
- Klinik für Innere Medizin II, Universitätsklinikum Freiburg, Freiburg, Germany
| |
Collapse
|
8
|
Miner AE, Graves JS. What telomeres teach us about MS. Mult Scler Relat Disord 2021; 54:103084. [PMID: 34371369 DOI: 10.1016/j.msard.2021.103084] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/14/2021] [Accepted: 06/09/2021] [Indexed: 02/03/2023]
Abstract
While the precise mechanisms driving progressive forms of MS are not fully understood, patient age has clear impact on disease phenotype. The very young with MS have high relapse rates and virtually no progressive disease, whereas older patients tend to experience more rapid disability accumulation with few relapses. Defining a patient's biological age may offer more precision in determining the role of aging processes in MS phenotype and pathophysiology than just working with an individual's birthdate. The most well recognized measurement of an individual's "biological clock" is telomere length (TL). While TL may differ across tissue types in an individual, most cells TL correlate well with leukocyte TL (LTL), which is the most common biomarker used for aging. LTL has been associated with risk for aging related diseases and most recently with higher levels of disability and brain atrophy in people living with MS. LTL explains 15% of the overall association of chronological age with MS disability level. While LTL may be used just as a biomarker of overall somatic aging processes, triggering of the DNA damage response by telomere attrition leads to senescence pathways that are likely highly relevant to a chronic autoimmune disease. Considering reproductive aging factors, particularly ovarian aging in women, which correlates with LTL and oocyte telomere length, may complement measurements of somatic aging in understanding MS progression. The key to stopping non-relapse related progression in MS might lie in targeting pathways related to biological aging effects on the immune and nervous systems.
Collapse
Affiliation(s)
- Annalise E Miner
- Department of Neurosciences, University of California, San Diego, USA
| | - Jennifer S Graves
- Department of Neurosciences, University of California, San Diego, USA.
| |
Collapse
|
9
|
Molecular Genetics in Neuroblastoma Prognosis. CHILDREN-BASEL 2021; 8:children8060456. [PMID: 34072462 PMCID: PMC8226597 DOI: 10.3390/children8060456] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/23/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022]
Abstract
In recent years, much research has been carried out to identify the biological and genetic characteristics of the neuroblastoma (NB) tumor in order to precisely define the prognostic subgroups for improving treatment stratification. This review will describe the major genetic features and the recent scientific advances, focusing on their impact on diagnosis, prognosis, and therapeutic solutions in NB clinical management.
Collapse
|
10
|
Chakravarti D, LaBella KA, DePinho RA. Telomeres: history, health, and hallmarks of aging. Cell 2021; 184:306-322. [PMID: 33450206 DOI: 10.1016/j.cell.2020.12.028] [Citation(s) in RCA: 321] [Impact Index Per Article: 80.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 02/06/2023]
Abstract
The escalating social and economic burden of an aging world population has placed aging research at center stage. The hallmarks of aging comprise diverse molecular mechanisms and cellular systems that are interrelated and act in concert to drive the aging process. Here, through the lens of telomere biology, we examine how telomere dysfunction may amplify or drive molecular biological processes underlying each hallmark of aging and contribute to development of age-related diseases such as neurodegeneration and cancer. The intimate link of telomeres to aging hallmarks informs preventive and therapeutic interventions designed to attenuate aging itself and reduce the incidence of age-associated diseases.
Collapse
Affiliation(s)
- Deepavali Chakravarti
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kyle A LaBella
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ronald A DePinho
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
11
|
Zou K, Wang S, Wang P, Duan X, Yang Y, Yazdi MD, Stowell J, Wang Y, Yao W, Wang W. Estimations of benchmark dose for urinary metabolites of coke oven emissions among workers. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 273:116434. [PMID: 33517169 DOI: 10.1016/j.envpol.2021.116434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 12/20/2020] [Accepted: 01/02/2021] [Indexed: 06/12/2023]
Abstract
Coke oven emissions (COEs), usually composed of polycyclic aromatic hydrocarbons (PAHs) and so on, may alter the relative telomere length of exposed workers and have been linked with adverse health events. However, the relevant biological exposure limits of COEs exposure has not been evaluated from telomere damage. The purpose of this study is to estimate benchmark dose (BMD) of urinary PAHs metabolites from COEs exposure based on telomere damage with RTL as a biomarker. A total of 544 exposed workers and 238 controls were recruited for participation. High-performance liquid chromatography and qPCR were used to detect concentrations of urinary mono-hydroxylated PAHs and relative telomere length in peripheral blood leukocytes for all subjects. The benchmark dose approach was used to estimate benchmark dose (BMD) and its lower 95% confidence limit (BMDL) of urinary OH-PAHs of COEs exposure based on telomere damage. Our results showed that telomere length in the exposure group (0.75 (0.51, 1.08)) was shorter than that in the control group (1.05 (0.76,1.44))(P < 0.05), and a dose-response relationship was shown between telomere damage and both 1-hydroxypyrene and 3-hydroxyphenanthrene in urine. The BMDL of urinary 1-hydroxypyrene from the optimal model for telomere damage was 1.96, 0.40, and 1.01 (μmol/mol creatinine) for the total, males, and females group, respectively. For 3-hydroxyphenanthrene, the BMDL was 0.94, 0.33, and 0.49 (μmol/mol creatinine) for the total, males, and females. These results contribute to our understanding of telomere damage induced by COEs exposure and provide a reference for setting potential biological exposure limits.
Collapse
Affiliation(s)
- Kaili Zou
- Department of Occupational Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Sihua Wang
- Department of Occupational Health, Henan Institute of Occupational Health, Zhengzhou, 450052, China
| | - Pengpeng Wang
- Department of Occupational Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiaoran Duan
- Department of Occupational Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Yongli Yang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Mahdieh Danesh Yazdi
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, 02115, USA
| | - Jennifer Stowell
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA
| | - Yanbin Wang
- Department of Safety Management Office, Anyang Iron and Steel Group Corporation, Anyang, 455000, China
| | - Wu Yao
- Department of Occupational Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Wei Wang
- Department of Occupational Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China; The Key Laboratory of Nanomedicine and Health Inspection of Zhengzhou, Zhengzhou, 450001, China.
| |
Collapse
|
12
|
in der Stroth L, Tharehalli U, Günes C, Lechel A. Telomeres and Telomerase in the Development of Liver Cancer. Cancers (Basel) 2020; 12:E2048. [PMID: 32722302 PMCID: PMC7464754 DOI: 10.3390/cancers12082048] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/16/2020] [Accepted: 07/22/2020] [Indexed: 02/07/2023] Open
Abstract
Liver cancer is one of the most common cancer types worldwide and the fourth leading cause of cancer-related death. Liver carcinoma is distinguished by a high heterogeneity in pathogenesis, histopathology and biological behavior. Dysregulated signaling pathways and various gene mutations are frequent in hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (iCCA), which represent the two most common types of liver tumors. Both tumor types are characterized by telomere shortening and reactivation of telomerase during carcinogenesis. Continuous cell proliferation, e.g., by oncogenic mutations, can cause extensive telomere shortening in the absence of sufficient telomerase activity, leading to dysfunctional telomeres and genome instability by breakage-fusion-bridge cycles, which induce senescence or apoptosis as a tumor suppressor mechanism. Telomerase reactivation is required to stabilize telomere functionality and for tumor cell survival, representing a genetic risk factor for the development of liver cirrhosis and liver carcinoma. Therefore, telomeres and telomerase could be useful targets in hepatocarcinogenesis. Here, we review similarities and differences between HCC and iCCA in telomere biology.
Collapse
Affiliation(s)
- Lena in der Stroth
- Department of Internal Medicine I, University Hospital Ulm, 89081 Ulm, Germany; (L.i.d.S.); (U.T.)
| | - Umesh Tharehalli
- Department of Internal Medicine I, University Hospital Ulm, 89081 Ulm, Germany; (L.i.d.S.); (U.T.)
| | - Cagatay Günes
- Department of Urology, University Hospital Ulm, 89081 Ulm, Germany;
| | - André Lechel
- Department of Internal Medicine I, University Hospital Ulm, 89081 Ulm, Germany; (L.i.d.S.); (U.T.)
| |
Collapse
|
13
|
Lex K, Maia Gil M, Lopes-Bastos B, Figueira M, Marzullo M, Giannetti K, Carvalho T, Ferreira MG. Telomere shortening produces an inflammatory environment that increases tumor incidence in zebrafish. Proc Natl Acad Sci U S A 2020; 117:15066-15074. [PMID: 32554492 PMCID: PMC7334448 DOI: 10.1073/pnas.1920049117] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cancer incidence increases exponentially with age when human telomeres are shorter. Similarly, telomerase reverse transcriptase (tert) mutant zebrafish have premature short telomeres and anticipate cancer incidence to younger ages. However, because short telomeres constitute a road block to cell proliferation, telomere shortening is currently viewed as a tumor suppressor mechanism and should protect from cancer. This conundrum is not fully understood. In our current study, we report that telomere shortening promotes cancer in a noncell autonomous manner. Using zebrafish chimeras, we show increased incidence of invasive melanoma when wild-type (WT) tumors are generated in tert mutant zebrafish. Tissues adjacent to melanoma lesions (skin) and distant organs (intestine) in tert mutants exhibited higher levels of senescence and inflammation. In addition, we transferred second generation (G2) tert blastula cells into WT to produce embryo chimeras. Cells with very short telomeres induced increased tumor necrosis factor1-α (TNF1-α) expression and senescence in larval tissues in a noncell autonomous manner, creating an inflammatory environment. Considering that inflammation is protumorigenic, we transplanted melanoma-derived cells into G2 tert zebrafish embryos and observed that tissue environment with short telomeres leads to increased tumor development. To test if inflammation was necessary for this effect, we treated melanoma transplants with nonsteroid anti-inflammatory drugs and show that higher melanoma dissemination can be averted. Thus, apart from the cell autonomous role of short telomeres in contributing to genome instability, we propose that telomere shortening with age causes systemic chronic inflammation leading to increased tumor incidence.
Collapse
Affiliation(s)
- Kirsten Lex
- Telomere and Genome Stability Laboratory, Instituto Gulbenkian de Ciência, 2781-901 Oeiras, Portugal
| | - Mariana Maia Gil
- Telomere and Genome Stability Laboratory, Instituto Gulbenkian de Ciência, 2781-901 Oeiras, Portugal
| | - Bruno Lopes-Bastos
- Telomere and Genome Stability Laboratory, Instituto Gulbenkian de Ciência, 2781-901 Oeiras, Portugal
- Institute for Research on Cancer and Aging of Nice (IRCAN), Université Côte d'Azur, UMR7284 U1081 UNS, 06107 Nice, France
| | - Margarida Figueira
- Telomere and Genome Stability Laboratory, Instituto Gulbenkian de Ciência, 2781-901 Oeiras, Portugal
| | - Marta Marzullo
- Telomere and Genome Stability Laboratory, Instituto Gulbenkian de Ciência, 2781-901 Oeiras, Portugal
| | - Kety Giannetti
- Telomere and Genome Stability Laboratory, Instituto Gulbenkian de Ciência, 2781-901 Oeiras, Portugal
| | - Tânia Carvalho
- Champalimaud Centre for the Unknown, Champalimaud Foundation, Av Brasilia, 1400-038 Lisbon, Portugal
| | - Miguel Godinho Ferreira
- Telomere and Genome Stability Laboratory, Instituto Gulbenkian de Ciência, 2781-901 Oeiras, Portugal;
- Institute for Research on Cancer and Aging of Nice (IRCAN), Université Côte d'Azur, UMR7284 U1081 UNS, 06107 Nice, France
| |
Collapse
|
14
|
The role of telomeres and telomerase in cirrhosis and liver cancer. Nat Rev Gastroenterol Hepatol 2019; 16:544-558. [PMID: 31253940 DOI: 10.1038/s41575-019-0165-3] [Citation(s) in RCA: 279] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/21/2019] [Indexed: 12/12/2022]
Abstract
Telomerase is a key enzyme for cell survival that prevents telomere shortening and the subsequent cellular senescence that is observed after many rounds of cell division. In contrast, inactivation of telomerase is observed in most cells of the adult liver. Absence of telomerase activity and shortening of telomeres has been implicated in hepatocyte senescence and the development of cirrhosis, a chronic liver disease that can lead to hepatocellular carcinoma (HCC) development. During hepatocarcinogenesis, telomerase reactivation is required to enable the uncontrolled cell proliferation that leads to malignant transformation and HCC development. Part of the telomerase complex, telomerase reverse transcriptase, is encoded by TERT, and several mechanisms of telomerase reactivation have been described in HCC that include somatic TERT promoter mutations, TERT amplification, TERT translocation and viral insertion into the TERT gene. An understanding of the role of telomeres and telomerase in HCC development is important to develop future targeted therapies and improve survival of this disease. In this Review, the roles of telomeres and telomerase in liver carcinogenesis are discussed, in addition to their potential translation to clinical practice as biomarkers and therapeutic targets.
Collapse
|
15
|
Duan X, Yang Y, Zhang D, Wang S, Feng X, Wang T, Wang P, Ding M, Zhang H, Liu B, Wei W, Yao W, Cui L, Zhou X, Wang W. Genetic polymorphisms, mRNA expression levels of telomere-binding proteins, and associates with telomere damage in PAHs-Exposure workers. CHEMOSPHERE 2019; 231:442-449. [PMID: 31146136 DOI: 10.1016/j.chemosphere.2019.05.134] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/13/2019] [Accepted: 05/16/2019] [Indexed: 06/09/2023]
Abstract
Coke oven emissions (COEs), confirmed human carcinogens, are mainly composed of polycyclic aromatic hydrocarbons (PAHs). Telomere shortening in blood leukocytes has been associated with COEs, and polymorphisms in metabolic enzymes. However, the relationship between polymorphisms in telomere related genes and telomere shortening in COEs exposed workers has never been evaluated. Therefore, we measured telomere length and mRNA expression levels of telomere-binding proteins (TBPs) by qPCR method in leucocyte from 544 COEs exposed workers and 238 office staffs (referents). Flight mass spectrometry was used to perform the genotyping of selected functional and susceptible SNPs. The results showed that the telomere length in the exposure group 0.75(0.51,1.08) was significantly shorter than that in the control group 1.05(0.76,1.44) (P < 0.001). The mRNA expression levels of TPP1, TERF1 and TERF2 genes in the exposure group were significantly lower than those in the control group (P < 0.05), the mRNA expression level of POT1 in the exposure group was significantly higher than that in the control group (P < 0.05). We used the wild homozygous genotype as a reference, subjects carrying TERT rs2736109 AA, TERT rs3215401 CC and TERT rs2736100 GT + GG genotypes had significantly longer telomere length in the exposure group (P < 0.05). In conclusion, the workers exposed to COEs had shorter telomere length, which was regulated by the TPP1, TERF1, TERF2 and POT1 genes expression levels, and the gene polymorphisms of TERT gene were associated with the telomere length among PAHs-exposure workers.
Collapse
Affiliation(s)
- Xiaoran Duan
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, Henan, China; Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Yongli Yang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Daping Zhang
- Department of Cardiology, Huaihe Hospital of Henan University, Kaifeng, 475000, Henan, China
| | - Sihua Wang
- Department of Occupational Health, Henan Institute for Occupational Medicine, Zhengzhou, 450052, Henan, China
| | - Xiaolei Feng
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Tuanwei Wang
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Pengpeng Wang
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Mingcui Ding
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Hui Zhang
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Bin Liu
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Wan Wei
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Wu Yao
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Liuxin Cui
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Xiaoshan Zhou
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Wei Wang
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
16
|
Ferrara-Romeo I, Martínez P, Blasco MA. Mice lacking RAP1 show early onset and higher rates of DEN-induced hepatocellular carcinomas in female mice. PLoS One 2018; 13:e0204909. [PMID: 30307978 PMCID: PMC6187989 DOI: 10.1371/journal.pone.0204909] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 09/17/2018] [Indexed: 02/07/2023] Open
Abstract
RAP1, a component of the telomere-protective shelterin complex, has been shown to have both telomeric and non-telomeric roles. In the liver, RAP1 is involved in the regulation of metabolic transcriptional programs. RAP1-deficient mice develop obesity and hepatic steatosis, these phenotypes being more severe in females than in males. As hepatic steatosis and obesity have been related to increased liver cancer in mice and humans, we set out to address whether RAP1 deficiency resulted in increased liver cancer upon chemical liver carcinogenesis. We found that Rap1-/- females were more susceptible to DEN-induced liver damage and hepatocellular carcinoma (HCC). DEN-treated Rap1-/- female livers showed an earlier onset of both premalignant and malignant liver lesions, which were characterized by increased abundance of γH2AX-positive cells, increased proliferation and shorter telomeres. These findings highlight an important role for RAP1 in protection from liver damage and liver cancer.
Collapse
Affiliation(s)
- Iole Ferrara-Romeo
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, Spain
| | - Paula Martínez
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, Spain
| | - Maria A. Blasco
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, Spain
- * E-mail:
| |
Collapse
|
17
|
Olmer R, Engels L, Usman A, Menke S, Malik MNH, Pessler F, Göhring G, Bornhorst D, Bolten S, Abdelilah-Seyfried S, Scheper T, Kempf H, Zweigerdt R, Martin U. Differentiation of Human Pluripotent Stem Cells into Functional Endothelial Cells in Scalable Suspension Culture. Stem Cell Reports 2018; 10:1657-1672. [PMID: 29681541 PMCID: PMC5995343 DOI: 10.1016/j.stemcr.2018.03.017] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 03/20/2018] [Accepted: 03/20/2018] [Indexed: 12/11/2022] Open
Abstract
Endothelial cells (ECs) are involved in a variety of cellular responses. As multifunctional components of vascular structures, endothelial (progenitor) cells have been utilized in cellular therapies and are required as an important cellular component of engineered tissue constructs and in vitro disease models. Although primary ECs from different sources are readily isolated and expanded, cell quantity and quality in terms of functionality and karyotype stability is limited. ECs derived from human induced pluripotent stem cells (hiPSCs) represent an alternative and potentially superior cell source, but traditional culture approaches and 2D differentiation protocols hardly allow for production of large cell numbers. Aiming at the production of ECs, we have developed a robust approach for efficient endothelial differentiation of hiPSCs in scalable suspension culture. The established protocol results in relevant numbers of ECs for regenerative approaches and industrial applications that show in vitro proliferation capacity and a high degree of chromosomal stability.
Efficient generation of hiPSC-derived ECs in scalable suspension culture High degree of chromosomal stability of hiPSC-ECs after in vitro expansion Generation of relevant numbers of hiPSC-ECs for regenerative approaches
Collapse
Affiliation(s)
- Ruth Olmer
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, Carl-Neuberg-Str.1, 30625 Hannover, Germany; REBIRTH-Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), 30625 Hannover, Germany
| | - Lena Engels
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, Carl-Neuberg-Str.1, 30625 Hannover, Germany; REBIRTH-Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany
| | - Abdulai Usman
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, Carl-Neuberg-Str.1, 30625 Hannover, Germany; REBIRTH-Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), 30625 Hannover, Germany
| | - Sandra Menke
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, Carl-Neuberg-Str.1, 30625 Hannover, Germany; REBIRTH-Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), 30625 Hannover, Germany
| | - Muhammad Nasir Hayat Malik
- TWINCORE Centre for Experimental and Clinical Infection Research, 30625 Hannover, Germany; Helmholtz-Centre for Infection Research Braunschweig, 38124 Braunschweig, Germany; Centre for Individualised Infection Medicine, 30625 Hannover, Germany
| | - Frank Pessler
- TWINCORE Centre for Experimental and Clinical Infection Research, 30625 Hannover, Germany; Helmholtz-Centre for Infection Research Braunschweig, 38124 Braunschweig, Germany; Centre for Individualised Infection Medicine, 30625 Hannover, Germany
| | - Gudrun Göhring
- Institute of Cell and Molecular Pathology, Hannover Medical School, 30625 Hannover, Germany
| | - Dorothee Bornhorst
- REBIRTH-Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany; Institute of Molecular Biology, Hannover Medical School, 30625 Hannover, Germany
| | - Svenja Bolten
- REBIRTH-Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany; Institute of Biochemistry and Biology, Potsdam University, Karl-Liebknecht-Straße 24-25, 14476 Potsdam, Germany
| | - Salim Abdelilah-Seyfried
- Institute of Molecular Biology, Hannover Medical School, 30625 Hannover, Germany; Institute of Biochemistry and Biology, Potsdam University, Karl-Liebknecht-Straße 24-25, 14476 Potsdam, Germany
| | - Thomas Scheper
- REBIRTH-Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany; Institute for Technical Chemistry, Leibniz University Hannover, 30167 Hannover, Germany
| | - Henning Kempf
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, Carl-Neuberg-Str.1, 30625 Hannover, Germany; REBIRTH-Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany
| | - Robert Zweigerdt
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, Carl-Neuberg-Str.1, 30625 Hannover, Germany; REBIRTH-Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany
| | - Ulrich Martin
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, Carl-Neuberg-Str.1, 30625 Hannover, Germany; REBIRTH-Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), 30625 Hannover, Germany.
| |
Collapse
|
18
|
Yu W, Qin X, Jin Y, Li Y, Santiskulvong C, Vu V, Zeng G, Zhang Z, Chow M, Rao J. Tianshengyuan-1 (TSY-1) regulates cellular Telomerase activity by methylation of TERT promoter. Oncotarget 2018; 8:7977-7988. [PMID: 28002788 PMCID: PMC5352375 DOI: 10.18632/oncotarget.13939] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/24/2016] [Indexed: 01/11/2023] Open
Abstract
Telomere and Telomerase have recently been explored as anti-aging and anti-cancer drug targets with only limited success. Previously we showed that the Chinese herbal medicine Tianshengyuan-1 (TSY-1), an agent used to treat bone marrow deficiency, has a profound effect on stimulating Telomerase activity in hematopoietic cells. Here, the mechanism of TSY-1 on cellular Telomerase activity was further investigated using HL60, a promyelocytic leukemia cell line, normal peripheral blood mononuclear cells, and CD34+ hematopoietic stem cells derived from umbilical cord blood. TSY-1 increases Telomerase activity in normal peripheral blood mononuclear cells and CD34+ hematopoietic stem cells with innately low Telomerase activity but decreases Telomerase activity in HL60 cells with high intrinsic Telomerase activity, both in a dose-response manner. Gene profiling analysis identified Telomerase reverse transcriptase (TERT) as the potential target gene associated with the TSY-1 effect, which was verified by both RT-PCR and western blot analysis. The β-galactosidase reporter staining assay showed that the effect of TSY-1 on Telomerase activity correlates with cell senescence. TSY-1 induced hypomethylation within TERT core promoter in HL60 cells but induced hypermethylation within TERT core promoter in normal peripheral blood mononuclear cells and CD34+ hematopoietic stem cells. TSY-1 appears to affect the Telomerase activity in different cell lines differently and the effect is associated with TERT expression, possibly via the methylation of TERT promoter.
Collapse
Affiliation(s)
- Weibo Yu
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | - Xiaotian Qin
- Beijing Boyuantaihe Biological Technology Co., Ltd., Beijing, China
| | - Yusheng Jin
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | - Yawei Li
- Beijing Boyuantaihe Biological Technology Co., Ltd., Beijing, China
| | | | - Victor Vu
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | - Gang Zeng
- Department of Urology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA.,Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA, USA
| | - Zuofeng Zhang
- Department of Epidemiology, School of Public Health, University of California at Los Angeles, Los Angeles, CA, USA
| | - Michelle Chow
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | - Jianyu Rao
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA.,Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
19
|
Gunes C, Avila AI, Rudolph KL. Telomeres in cancer. Differentiation 2017; 99:41-50. [PMID: 29291448 DOI: 10.1016/j.diff.2017.12.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/19/2017] [Accepted: 12/20/2017] [Indexed: 02/07/2023]
Abstract
Telomere shortening as a consequence of cell divisions during aging and chronic diseases associates with an increased cancer risk. Experimental data revealed that telomere shortening results in telomere dysfunction, which in turn affects tumorigenesis in two ways. First, telomere dysfunction suppresses tumor progression by the activation of DNA damage checkpoints, which induce cell cycle arrest (senescence) or apoptosis, as well as by inducing metabolic compromise and activation of immune responses directed against senescent cells. Second, telomere dysfunction promotes tumorigenesis by inducing chromosomal instability in tumor initiating cells, by inhibiting proliferative competition of non-transformed cells, and possibly, also by influencing tumor cell plasticity. The tumor promoting effects of telomere dysfunction are context dependent and require the loss of p53-dependent DNA damage checkpoints or other genetic modifiers that attenuate DNA damage responses possibly involving complex interactions of different genes. The activation of telomere stabilizing mechanisms appears as a subsequent step, which is required to enable immortal grotwh of emerging cancer cells. Here, we conceptually discuss our current knowledge and new, unpublished experimental data on telomere dependent influences on tumor initiation and progression.
Collapse
Affiliation(s)
| | - Alush Irene Avila
- Research Group on Stem Cell Aging, Leibniz Institute on Aging, Fritz Lipmann Institute (FLI), Beutenbergstr. 11, 07745 Jena, Germany
| | - K Lenhard Rudolph
- Research Group on Stem Cell Aging, Leibniz Institute on Aging, Fritz Lipmann Institute (FLI), Beutenbergstr. 11, 07745 Jena, Germany.
| |
Collapse
|
20
|
Martin U. Genome stability of programmed stem cell products. Adv Drug Deliv Rev 2017; 120:108-117. [PMID: 28917518 DOI: 10.1016/j.addr.2017.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/31/2017] [Accepted: 09/07/2017] [Indexed: 01/23/2023]
Abstract
Inherited and acquired genomic abnormalities are known to cause genetic diseases and contribute to cancer formation. Recent studies demonstrated a substantial mutational load in mouse and human embryonic and induced pluripotent stem cells (ESCs and iPSCs). Single nucleotide variants, copy number variations, and larger chromosomal abnormalities may influence the differentiation capacity of pluripotent stem cells and the functionality of their derivatives in disease modeling and drug screening, and are considered a serious risk for cellular therapies based on ESC or iPSC derivatives. This review discusses the types and origins of different genetic abnormalities in pluripotent stem cells, methods for their detection, and the mechanisms of development and enrichment during reprogramming and culture expansion.
Collapse
Affiliation(s)
- Ulrich Martin
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, REBIRTH Cluster of Excellence, German Center for Lung Research, Hannover Medical School, Germany.
| |
Collapse
|
21
|
Ofner R, Ritter C, Heidenreich B, Kumar R, Ugurel S, Schrama D, Becker JC. Distribution of TERT promoter mutations in primary and metastatic melanomas in Austrian patients. J Cancer Res Clin Oncol 2017; 143:613-617. [PMID: 27990595 DOI: 10.1007/s00432-016-2322-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 12/07/2016] [Indexed: 10/20/2022]
Abstract
BACKGROUND TERT promoter mutations were detected at high frequencies in several cancer types including melanoma. Previous reports showed that these recurrent mutations increase TERT gene expression and the use of TERT mutation status as prognostic factor was suggested. OBJECTIVES Here we screen a panel of 115 melanoma tumor samples from Austrian patients to evaluate the prevalence and distribution of TERT promoter mutations. The association with clinical and tumor characteristics and the effect on overall survival was analyzed. METHODS Genomic DNA from formalin-fixed paraffin-embedded tumor samples was isolated followed by PCR amplification, Sanger sequencing and statistical analysis. RESULTS We identified TERT promoter mutations in 63 of 115 (54.8%) tumor samples. No statistical significant difference in mutation frequency between primary (22/40 [55%]) and metastatic lesions (41/75 [54.7%]) was detected. BRAF-/NRAS-mutated tumors showed a higher frequency of TERT mutations (pT OR 2.24, 95% CI 0.56-9.02, p = 0.3) (met OR 2.74, 95% CI 0.98-7.66, p = 0.05). In primary melanoma, the presence of alterations in TERT was associated with the carrier status of a common single-nucleotide polymorphism rs2853669 (OR 4.55, CI 1.18-17.52, p = 0.03). In this patient cohort, TERT promoter mutations were not associated with clinical characteristics such as the presence of ulceration or Breslow thickness or showed an effect on overall survival. CONCLUSION Alterations in the TERT promoter region are one of the most frequent mutations in melanoma. Based on this analysis and preliminary evidence, prospective studies will be needed to evaluate the reliability of TERT promoter mutations as prognostic factors in melanoma.
Collapse
Affiliation(s)
- Richard Ofner
- Department of General Dermatology, Medical University Graz, Graz, Austria
| | - Cathrin Ritter
- Department of General Dermatology, Medical University Graz, Graz, Austria
- Translational Skin Cancer Research - TSCR, DKTK Partner Site Essen/Düsseldorf, German Cancer Research Consortium, University of Duisburg Essen, Universitätsstrasse 1, Essen, 45141, Germany
| | - Barbara Heidenreich
- Division of Molecular Genetic Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Rajiv Kumar
- Division of Molecular Genetic Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Selma Ugurel
- Department of Dermatology, University Hospital of Essen, Essen, Germany
| | - David Schrama
- Department of Dermatology, University Hospital of Würzburg, Würzburg, Germany
| | - Jürgen C Becker
- Department of General Dermatology, Medical University Graz, Graz, Austria.
- Translational Skin Cancer Research - TSCR, DKTK Partner Site Essen/Düsseldorf, German Cancer Research Consortium, University of Duisburg Essen, Universitätsstrasse 1, Essen, 45141, Germany.
- Department of Dermatology, University Hospital of Essen, Essen, Germany.
| |
Collapse
|
22
|
Sunpaweravong S, Sunpaweravong P, Sathitruangsak C, Mai S. Three-dimensional telomere architecture of esophageal squamous cell carcinoma: comparison of tumor and normal epithelial cells. Dis Esophagus 2016; 29:307-13. [PMID: 25625311 DOI: 10.1111/dote.12317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Telomeres are repetitive nucleotide sequences (TTAGGG)n located at the ends of chromosomes that function to preserve chromosomal integrity and prevent terminal end-to-end fusions. Telomere loss or dysfunction results in breakage-bridge-fusion cycles, aneuploidy, gene amplification and chromosomal rearrangements, which can lead to genomic instability and promote carcinogenesis. Evaluating the hypothesis that changes in telomeres contribute to the development of esophageal squamous cell carcinoma (ESCC) and to determine whether there are differences between young and old patients, we compared the three-dimensional (3D) nuclear telomere architecture in ESCC tumor cells with that of normal epithelial cells obtained from the same patient. Patients were equally divided by age into two groups, one comprising those less than 45 years of age and the other consisting of those over 80 years of age. Tumor and normal epithelial cells located at least 10 cm from the border of the tumor were biopsied in ESCC patients. Hematoxylin and eosin staining was performed for each sample to confirm and identify the cancer and normal epithelial cells. This study was based on quantitative 3D fluorescence in situ hybridization (Q-FISH), 3D imaging and 3D analysis of paraffin-embedded slides. The 3D telomere architecture data were computer analyzed using 100 nuclei per slide. The following were the main parameters compared: the number of signals (number of telomeres), signal intensity (telomere length), number of telomere aggregates, and nuclear volume. Tumor and normal epithelial samples from 16 patients were compared. The normal epithelial cells had more telomere signals and higher intensities than the tumor cells, with P-values of P < 0.0001 and P = 0.0078, respectively. There were no statistically significant differences in the numbers of telomere aggregates or the nuclear volumes between the tumor and normal epithelial cells. Secondary analyses examined the effects of age on 3D telomere architecture and found no statistically significant differences in any parameter tested between the young and old patients in either the tumor or epithelial cells. The 3D nuclear telomeric signature was able to detect differences in telomere architecture between the ESCC and normal epithelial tissues. However, there were no differences observed between the young and old patients.
Collapse
Affiliation(s)
- S Sunpaweravong
- Genomic Center for Cancer Research and Diagnosis, Manitoba Institute of Cell Biology, University of Manitoba, Winnipeg, Manitoba, Canada.,Department of Surgery, Faculty of Medicine, Prince of Songkla University, Songkla, Thailand
| | - P Sunpaweravong
- Genomic Center for Cancer Research and Diagnosis, Manitoba Institute of Cell Biology, University of Manitoba, Winnipeg, Manitoba, Canada.,Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkla, Thailand
| | - C Sathitruangsak
- Genomic Center for Cancer Research and Diagnosis, Manitoba Institute of Cell Biology, University of Manitoba, Winnipeg, Manitoba, Canada.,Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkla, Thailand
| | - S Mai
- Genomic Center for Cancer Research and Diagnosis, Manitoba Institute of Cell Biology, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
23
|
Beier F, Martinez P, Blasco MA. Chronic replicative stress induced by CCl4 in TRF1 knockout mice recapitulates the origin of large liver cell changes. J Hepatol 2015; 63:446-55. [PMID: 25819337 DOI: 10.1016/j.jhep.2015.03.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 03/01/2015] [Accepted: 03/04/2015] [Indexed: 12/04/2022]
Abstract
BACKGROUND & AIMS Large liver cell changes (LLCC) are characterized by pleomorphic large nuclei frequently found in liver diseases as chronic viral hepatitis and liver cirrhosis. The origin of this lesion remains cryptic, but the presence of LLCC is correlated with an increased risk of hepatocellular carcinoma. Telomeric repeat binding factor 1 (TRF1) is part of the shelterin complex and is essential for telomere protection. Ablation of TRF1 induces telomere fragility and fusions and chromosomal instability. METHODS In this study, we addressed the role of TRF1 in liver regeneration generating a mouse model with conditional deletion of TRF1 in the liver. RESULTS TRF1 deletion has no deleterious effects in liver and leads to increased ploidy of hepatocytes after 2/3 hepatectomy. Mice lacking TRF1 in the liver can survive for over one year without any evidence for altered liver function. Importantly, applying chronic replicative stress by frequent carbon tetrachloride (CCl4) injections, TRF1 deleted mice undergo ploidy changes consistent with endoreduplication and develop LLCC like lesions in the liver positive for p21, Cyclin D1 and PCNA as observed in humans. CONCLUSION In summary, we provide mechanistic insight into the role of TRF1 in liver regeneration and provide a mouse model recapitulating the clinical features of LLCC.
Collapse
Affiliation(s)
- Fabian Beier
- Telomere and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain; Department of Hematology, Oncology and Stem Cell Transplantation, University of Aachen, Aachen, Germany
| | - Paula Martinez
- Telomere and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Maria A Blasco
- Telomere and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
| |
Collapse
|
24
|
Wilson CL, Jurk D, Fullard N, Banks P, Page A, Luli S, Elsharkawy AM, Gieling RG, Chakraborty JB, Fox C, Richardson C, Callaghan K, Blair GE, Fox N, Lagnado A, Passos JF, Moore AJ, Smith GR, Tiniakos DG, Mann J, Oakley F, Mann DA. NFκB1 is a suppressor of neutrophil-driven hepatocellular carcinoma. Nat Commun 2015; 6:6818. [PMID: 25879839 PMCID: PMC4410629 DOI: 10.1038/ncomms7818] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 03/02/2015] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) develops on the background of chronic hepatitis.
Leukocytes found within the HCC microenvironment are implicated as regulators of
tumour growth. We show that diethylnitrosamine (DEN)-induced murine HCC is
attenuated by antibody-mediated depletion of hepatic neutrophils, the latter
stimulating hepatocellular ROS and telomere DNA damage. We additionally report a
previously unappreciated tumour suppressor function for hepatocellular nfkb1
operating via p50:p50 dimers and the co-repressor HDAC1. These anti-inflammatory
proteins combine to transcriptionally repress hepatic expression of a S100A8/9,
CXCL1 and CXCL2 neutrophil chemokine network. Loss of nfkb1 promotes
ageing-associated chronic liver disease (CLD), characterized by steatosis,
neutrophillia, fibrosis, hepatocyte telomere damage and HCC.
Nfkb1S340A/S340Amice carrying a mutation
designed to selectively disrupt p50:p50:HDAC1 complexes are more susceptible to HCC;
by contrast, mice lacking S100A9 express reduced neutrophil chemokines and are
protected from HCC. Inhibiting neutrophil accumulation in CLD or targeting their
tumour-promoting activities may offer therapeutic opportunities in HCC. The role of neutrophils in cancer development is not widely
appreciated. Here, the authors show that NF-κB-deficient hepatocytes
overproduce chemokines, leading to hepatocellular carcinoma due to excessive neutrophil
recruitment, and that neutrophil depletion prevents liver cancer in these
mice.
Collapse
Affiliation(s)
- C L Wilson
- Fibrosis Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - D Jurk
- Newcastle University Institute for Ageing and Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle Upon Tyne NE4 5PL, UK
| | - N Fullard
- Fibrosis Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - P Banks
- Fibrosis Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - A Page
- Fibrosis Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - S Luli
- Fibrosis Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - A M Elsharkawy
- Liver Unit, University Hospitals Birmingham, Birmingham B15 2TH, UK
| | - R G Gieling
- Hypoxia and Therapeutics Group, Manchester Pharmacy School, University of Manchester, Manchester M13 9PT, UK
| | - J Bagchi Chakraborty
- Department of Medicine, Immunology and Inflammation, Imperial College of Science, Technology and Medicine, Hammersmith Hospital, London W12 0NN, UK
| | - C Fox
- Fibrosis Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - C Richardson
- Centre for Behaviour and Evolution/Institute of Neuroscience, Medical School, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK
| | - K Callaghan
- Fibrosis Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - G E Blair
- Faculty of Biological Sciences, School of Molecular and Cellular Biology, University of Leeds, Garstang Building, Leeds LS2 9JT, UK
| | - N Fox
- Faculty of Biological Sciences, School of Molecular and Cellular Biology, University of Leeds, Garstang Building, Leeds LS2 9JT, UK
| | - A Lagnado
- Newcastle University Institute for Ageing and Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle Upon Tyne NE4 5PL, UK
| | - J F Passos
- Newcastle University Institute for Ageing and Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle Upon Tyne NE4 5PL, UK
| | - A J Moore
- Institute for Cell and Molecular Biosciences, Newcastle University, Catherine Cookson Building, Framlington Place, Newcastle Upon Tyne NE2 4HH, UK
| | - G R Smith
- Fibrosis Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - D G Tiniakos
- Fibrosis Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - J Mann
- Fibrosis Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - F Oakley
- Fibrosis Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - D A Mann
- Fibrosis Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
25
|
Sunami Y, von Figura G, Kleger A, Strnad P, Hüser N, Hartmann D. The role of telomeres in liver disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 125:159-72. [PMID: 24993702 DOI: 10.1016/b978-0-12-397898-1.00007-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Telomeres stabilize open chromosome ends and protect them against chromosomal end-to-end fusions, breakage, instability, and nonreciprocal translocations. Telomere dysfunction is known to lead to an impaired regenerative capacity of hepatocytes and an increased cirrhosis formation in the context of acute and chronic liver injury. In addition, telomere dysfunction and telomerase mutations have been associated with the induction of chromosomal instability and consequently with cirrhosis development and hepatocarcinogenesis. The identification of molecular mechanisms related to telomere dysfunction and telomerase activation might lead to new therapeutic strategies. In this chapter, we are reviewing the current knowledge about the importance of telomere dysfunction in liver diseases.
Collapse
Affiliation(s)
- Yoshiaki Sunami
- Department of General Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Guido von Figura
- Department of Internal Medicine II, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Alexander Kleger
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | - Pavel Strnad
- Department of Internal Medicine III and IZKF, University Hospital Aachen, Aachen, Germany
| | - Norbert Hüser
- Department of General Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Daniel Hartmann
- Department of General Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| |
Collapse
|
26
|
Zhou X, Zhu H, Lu J. PTEN and hTERT gene expression and the correlation with human hepatocellular carcinoma. Pathol Res Pract 2015; 211:316-9. [DOI: 10.1016/j.prp.2014.11.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 11/11/2014] [Indexed: 11/29/2022]
|
27
|
Abstract
Telomeres form protective caps at the ends of linear chromosomes to prevent nucleolytic degradation, end-to-end fusion, irregular recombination, and chromosomal instability. Telomeres are composed of repetitive DNA sequences (TTAGGG)n in humans, that are bound by specialized telomere binding proteins. Telomeres lose capping function in response to telomere shortening, which occurs during each division of cells that lack telomerase activity-the enzyme that can synthesize telomeres de novo. Telomeres have a dual role in cancer: telomere shortening can lead to induction of chromosomal instability and to the initiation of tumors, however, initiated tumors need to reactivate telomerase in order to stabilize chromosomes and to gain immortal growth capacity. In this review, we summarize current knowledge on the role of telomeres in the maintenance of chromosomal stability and carcinogenesis.
Collapse
|
28
|
Tanaka H, Beam MJ, Caruana K. The presence of telomere fusion in sporadic colon cancer independently of disease stage, TP53/KRAS mutation status, mean telomere length, and telomerase activity. Neoplasia 2014; 16:814-23. [PMID: 25379018 PMCID: PMC4212252 DOI: 10.1016/j.neo.2014.08.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 08/19/2014] [Accepted: 08/20/2014] [Indexed: 11/25/2022] Open
Abstract
Defects in telomere maintenance can result in telomere fusions that likely play a causative role in carcinogenesis by promoting genomic instability. However, this proposition remains to be fully understood in human colon carcinogenesis. In the present study, the temporal sequence of telomere dysfunction dynamics was delineated by analyzing telomere fusion, telomere length, telomerase activity, hotspot mutations in KRAS or BRAF, and TP53 of tissue samples obtained from 18 colon cancer patients. Our results revealed that both the deficiency of p53 and the shortening of mean telomere length were not necessary for producing telomere fusions in colon tissue. In five cases, telomere fusion was observed even in tissue adjacent to cancerous lesions, suggesting that genomic instability is initiated in pathologically non-cancerous lesions. The extent of mean telomere attrition increased with lymph node invasiveness of tumors, implying that mean telomere shortening correlates with colon cancer progression. Telomerase activity was relatively higher in most cancer tissues containing mutation(s) in KRAS or BRAF and/or TP53 compared to those without these hotspot mutations, suggesting that telomerase could become fully active at the late stage of colon cancer development. Interestingly, the majority of telomere fusion junctions in colon cancer appeared to be a chromatid-type containing chromosome 7q or 12q. In sum, this meticulous correlative study not only highlights the concept that telomere fusion is present in the early stages of cancer regardless of TP53/KRAS mutation status, mean telomere length, and telomerase activity, but also provides additional insights targeting key telomere fusion junctions which may have significant implications for colon cancer diagnoses.
Collapse
Affiliation(s)
- Hiromi Tanaka
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, IN, USA
| | - Matthew J Beam
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, IN, USA
| | - Kevin Caruana
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, IN, USA
| |
Collapse
|
29
|
CUI XING, WANG JUNQIANG, CAI ZHIGUO, WANG JINGYI, LIU KUI, CUI SIYUAN, ZHANG JIE, LUO YAQIN, WANG XIN, LI WEIWEI, JING JINGYAN. Complete sequence analysis of mitochondrial DNA and telomere length in aplastic anemia. Int J Mol Med 2014; 34:1309-14. [DOI: 10.3892/ijmm.2014.1898] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 08/06/2014] [Indexed: 11/06/2022] Open
|
30
|
Paviolo NS, Castrogiovanni DC, Bolzán AD. The radiomimetic compound streptonigrin induces persistent telomere dysfunction in mammalian cells. Mutat Res 2014; 760:16-23. [PMID: 24406867 DOI: 10.1016/j.mrfmmm.2013.11.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 11/07/2013] [Accepted: 11/24/2013] [Indexed: 06/03/2023]
Abstract
We analyzed the chromosomal aberrations involving telomeres in the progeny of mammalian cells exposed to the radiomimetic compound streptonigrin (SN) in order to determine if this antineoplastic drug induces long-term telomere instability. To this end, rat cells (ADIPO-P2 cell line, derived from adipose cells from Sprague-Dawley rat) were treated with a single concentration of SN (100ng/ml), and chromosomal aberrations were analyzed 18h and 10 and 15 days after treatment by using PNA-FISH with a pan-telomeric probe [Cy3-(CCCTAA)3] to detect (TTAGGG)n repeats. Cytogenetic analysis revealed a higher frequency of telomere dysfunction-related aberrations (additional telomeric FISH signals, extra-chromosomal telomeric FISH signals, and telomere FISH signal loss and duplications) in SN-exposed cultures vs. untreated cultures at every time points analyzed. The yield of SN-induced aberrations remained very similar at 18h, 10 days as well as 15 days after treatment. Thus, our data demonstrate that SN induces persistent telomere dysfunction in mammalian cells. Moreover, we found that the level of telomerase activity in SN-treated cells was significantly lower (up to 77%) than that of untreated control cells at each time points analyzed. This fact suggests that telomerase could be involved in SN-induced telomere dysfunction.
Collapse
Affiliation(s)
- Natalia S Paviolo
- Laboratorio de Citogenética y Mutagénesis, Instituto Multidisciplinario de Biología Celular (IMBICE, CCT-CONICET La Plata-CICPBA), C.C. 403, 1900 La Plata, Buenos Aires, Argentina
| | - Daniel C Castrogiovanni
- Laboratorio de Citogenética y Mutagénesis, Instituto Multidisciplinario de Biología Celular (IMBICE, CCT-CONICET La Plata-CICPBA), C.C. 403, 1900 La Plata, Buenos Aires, Argentina
| | - Alejandro D Bolzán
- Laboratorio de Citogenética y Mutagénesis, Instituto Multidisciplinario de Biología Celular (IMBICE, CCT-CONICET La Plata-CICPBA), C.C. 403, 1900 La Plata, Buenos Aires, Argentina.
| |
Collapse
|
31
|
Abstract
Telomere erosion may be counteracted by telomerase. Here we explored telomere length (TL) and telomerase activity (TA) in primary cutaneous T-cell lymphoma (CTCL) by using quantitative polymerase chain reaction and interphase quantitative fluorescence in situ hybridization assays. Samples from patients with Sézary syndrome (SS), transformed mycosis fungoides (T-MF), and cutaneous anaplastic large cell lymphoma were studied in parallel with corresponding cell lines to evaluate the relevance of TL and TA as target candidates for diagnostic and therapeutic purposes. Compared with controls, short telomeres were observed in aggressive CTCL subtypes such as SS and T-MF and were restricted to neoplastic cells in SS. While no genomic alteration of the hTERT (human telomerase catalytic subunit) locus was observed in patients' tumor cells, TA was detected. To understand the role of telomerase in CTCL, we manipulated its expression in CTCL cell lines. Telomerase inhibition rapidly impeded in vitro cell proliferation and led to cell death, while telomerase overexpression stimulated in vitro proliferation and clonogenicity properties and favored tumor development in immunodeficient mice. Our data indicate that, besides maintenance of TL, telomerase exerts additional functions in CTCL. Therefore, targeting these functions might represent an attractive therapeutic strategy, especially in aggressive CTCL.
Collapse
|
32
|
Aubert G. Telomere Dynamics and Aging. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 125:89-111. [DOI: 10.1016/b978-0-12-397898-1.00004-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
33
|
Pal J, Gold JS, Munshi NC, Shammas MA. Biology of telomeres: importance in etiology of esophageal cancer and as therapeutic target. Transl Res 2013; 162:364-70. [PMID: 24090770 PMCID: PMC3834232 DOI: 10.1016/j.trsl.2013.09.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 09/05/2013] [Accepted: 09/06/2013] [Indexed: 11/17/2022]
Abstract
The purpose of this review is to highlight the importance of telomeres, the mechanisms implicated in their maintenance, and their role in the etiology as well as the treatment of human esophageal cancer. We will also discuss the role of telomeres in the maintenance and preservation of genomic integrity, the consequences of telomere dysfunction, and the various factors that may affect telomere health in esophageal tissue predisposing it to oncogenesis. There has been growing evidence that telomeres, which can be affected by various intrinsic and extrinsic factors, contribute to genomic instability, oncogenesis, as well as proliferation of cancer cells. Telomeres are the protective DNA-protein complexes at chromosome ends. Telomeric DNA undergoes progressive shortening with age leading to cellular senescence and/or apoptosis. If senescence/apoptosis is prevented as a consequence of specific genomic changes, continued proliferation leads to very short (ie, dysfunctional) telomeres that can potentially cause genomic instability, thus, increasing the risk for activation of telomere maintenance mechanisms and oncogenesis. Like many other cancers, esophageal cancer cells have short telomeres and elevated telomerase, the enzyme that maintains telomeres in most cancer cells. Homologous recombination, which is implicated in the alternate pathway of telomere elongation, is also elevated in Barrett's-associated esophageal adenocarcinoma. Evidence from our laboratory indicates that both telomerase and homologous recombination contribute to telomere maintenance, DNA repair, and the ongoing survival of esophageal cancer cells. This indicates that telomere maintenance mechanisms may potentially be targeted to make esophageal cancer cells static. The rate at which telomeres in healthy cells shorten is determined by a number of intrinsic and extrinsic factors, including those associated with lifestyle. Avoidance of factors that may directly or indirectly injure esophageal tissue including its telomeric and other genomic DNA can not only reduce the risk of development of esophageal cancer but may also have positive impact on overall health and lifespan.
Collapse
Affiliation(s)
- Jagannath Pal
- Harvard (Dana Farber) Cancer Institute, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
| | - Jason S. Gold
- Harvard (Dana Farber) Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Brigham and Women’s Hospital, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
| | - Nikhil C. Munshi
- Harvard (Dana Farber) Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
| | - Masood A. Shammas
- Harvard (Dana Farber) Cancer Institute, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
| |
Collapse
|
34
|
El Idrissi M, Hervieu V, Merle P, Mortreux F, Wattel E. Cause-specific telomere factors deregulation in hepatocellular carcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2013; 32:64. [PMID: 24020493 PMCID: PMC3850108 DOI: 10.1186/1756-9966-32-64] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 08/22/2013] [Indexed: 12/25/2022]
Abstract
Background Among the numerous genetic defects associated with hepatocarcinogenesis, telomere abnormalities appear to play a role both in tumor promotion and maintenance. Telomeres, the chromosome extremities, are protected by specific proteins, the shelterin complex and by additional factors. Besides telomerase dysregulation, expression changes of these telomere factors have been observed in cancers. Methods Here, we tested the hypothesis that such dysregulation might occur in hepatocellular carcinoma (HCC) with specific patterns depending on the cause of HCC. We compared telomere length, telomerase activity (TA), hTERT and telomere genes expression using PCR and Western-blot analyses between non-cirrhotic liver, peritumoral cirrhotic tissue (40 samples) and cancerous tissue (40 samples) derived from 40 patients with HBV-, HCV-, or alcohol-related HCC. Results Alterations in TA, hTERT expression and telomere length between non-cirrhotic, cirrhotic, and tumor samples were not significantly influenced by the cause of HCC. In contrast, the expression pattern of hTR, shelterin, and non-shelterin telomere protective factors clearly distinguished the 3 causes of cirrhosis and HCC. For patients with HBV diseased liver, when compared with non-cirrhotic liver, the cirrhotic tissue underexpressed all shelterin and all but HMRE11A and RAD50 non-shelterin telomere factors. For HCV the expression level of POT1, RAP1, Ku80, and RAD50 was higher in cirrhotic than in non-cirrhotic liver samples without evidence for significant transcriptional change for the remaining genes. For alcohol-related liver diseases, the expression level of POT1, RAP1, TIN2, hMRE11A, hMRE11B, Ku70, Ku80, RAD50, TANK1, and PINX1 was higher in cirrhotic than in non-cirrhotic liver samples. For the 3 causes of HCC, there was no significant change in shelterin and non-shelterin gene expression between cirrhosis and HCC samples. Conclusions These results validate our hypotheses and demonstrate that cirrhosis and HCC add-up numerous telomere dysfunctions including numerous cause-specific changes that appear to occur early during the course of the disease.
Collapse
Affiliation(s)
- Manale El Idrissi
- UMR5239 Oncovirologie et Biothérapies, Faculté de Médecine Lyon Sud, ENS - HCL, Université Lyon 1, CNRS, Pierre Bénite, France.
| | | | | | | | | |
Collapse
|
35
|
Bernardes de Jesus B, Blasco MA. Telomerase at the intersection of cancer and aging. Trends Genet 2013; 29:513-20. [PMID: 23876621 DOI: 10.1016/j.tig.2013.06.007] [Citation(s) in RCA: 157] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 06/07/2013] [Accepted: 06/18/2013] [Indexed: 12/16/2022]
Abstract
Although cancer and aging have been studied as independent diseases, mounting evidence suggests that cancer is an aging-associated disease and that cancer and aging share many molecular pathways. In particular, recent studies validated telomerase activation as a potential therapeutic target for age-related diseases; in addition, abnormal telomerase expression and telomerase mutations have been associated with many different types of human tumor. Here, we revisit the connection between telomerase and cancer and aging in light of recent findings supporting a role for telomerase not only in telomere elongation, but also in metabolic fitness and Wnt activation. Understanding the physiological impact of telomerase regulation is fundamental given the therapeutic strategies that are being developed that involve telomerase modulation.
Collapse
Affiliation(s)
- Bruno Bernardes de Jesus
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, Madrid, E-28029, Spain
| | | |
Collapse
|
36
|
Mendelsohn AR, Larrick JW. Ectopic expression of telomerase safely increases health span and life span. Rejuvenation Res 2013; 15:435-8. [PMID: 22877566 DOI: 10.1089/rej.2012.1359] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The absence of telomerase from somatic cells of mammals has significant consequences for aging. First, it limits the number of potential cell divisions and in so doing sets limits on both life span and cancer cell proliferation. Second, shortened telomeres are known to result in physiological dysfunction, including playing a role in human diseases such as Werner syndrome and ataxia telangiectasia. Ectopic expression of the catalytic subunit of telomerase, telomerase reverse transcriptase (TERT), has been reported to extend life span by as much as 40% in cancer-resistant mice. On the other hand, ectopic expression of TERT promotes cancer in normal mice. However, transient induction of TERT by an astragalus-derived compound increases health span without an apparent increase in cancer incidence. Ectopic expression of TERT using adeno-associated virus serotype 9 (AAV9)-based gene therapy in adult mice increases both health span and life span without increasing cancer incidence. Available evidence suggests that increases in life span may require both elongated telomeres and the continuous presence of telomerase to stimulate the WNT/β-catenin signaling pathway. The recent observation that WNT/β-catenin signaling can stimulate TERT expression raises the possibility of a positive feedback loop between TERT and WNT/β-catenin. Such a positive feedback loop implies that safety must be carefully considered in the development of drugs that stimulate telomerase activity.
Collapse
|
37
|
Kannan N, Huda N, Tu L, Droumeva R, Aubert G, Chavez E, Brinkman R, Lansdorp P, Emerman J, Abe S, Eaves C, Gilley D. The luminal progenitor compartment of the normal human mammary gland constitutes a unique site of telomere dysfunction. Stem Cell Reports 2013; 1:28-37. [PMID: 24052939 PMCID: PMC3757746 DOI: 10.1016/j.stemcr.2013.04.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Revised: 04/24/2013] [Accepted: 04/25/2013] [Indexed: 01/21/2023] Open
Abstract
Telomeres are essential for genomic integrity, but little is known about their regulation in the normal human mammary gland. We now demonstrate that a phenotypically defined cell population enriched in luminal progenitors (LPs) is characterized by unusually short telomeres independently of donor age. Furthermore, we find that multiple DNA damage response proteins colocalize with telomeres in >95% of LPs but in <5% of basal cells. Paradoxically, 25% of LPs are still capable of exhibiting robust clonogenic activity in vitro. This may be partially explained by the elevated telomerase activity that was also seen only in LPs. Interestingly, this potential telomere salvage mechanism declines with age. Our findings thus reveal marked differences in the telomere biology of different subsets of primitive normal human mammary cells. The chronically dysfunctional telomeres unique to LPs have potentially important implications for normal mammary tissue homeostasis as well as the development of certain breast cancers.
Collapse
Affiliation(s)
- Nagarajan Kannan
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Nazmul Huda
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202-5251, USA
| | - LiRen Tu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202-5251, USA
| | - Radina Droumeva
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Geraldine Aubert
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Elizabeth Chavez
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Ryan R. Brinkman
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Peter Lansdorp
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, and University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Joanne Emerman
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Satoshi Abe
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202-5251, USA
| | - Connie Eaves
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
- Corresponding author
| | - David Gilley
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202-5251, USA
- Corresponding author
| |
Collapse
|
38
|
Jacobs JJL. Loss of telomere protection: consequences and opportunities. Front Oncol 2013; 3:88. [PMID: 23596571 PMCID: PMC3625723 DOI: 10.3389/fonc.2013.00088] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 04/02/2013] [Indexed: 01/22/2023] Open
Abstract
Telomeres are repetitive sequences at the natural ends of linear eukaryotic chromosomes that protect these from recognition as chromosome breaks. Their ability to do so critically depends on the binding of sufficient quantities of functional shelterin, a six-unit protein complex with specific and crucial roles in telomere maintenance and function. Insufficient telomere length, leading to insufficient concentration of shelterin at chromosome ends, or otherwise crippled shelterin function, causes telomere deprotection. While contributing to aging-related pathologies, loss of telomere protection can act as a barrier to tumorigenesis, as dysfunctional telomeres activate DNA-damage-like checkpoint responses that halt cell proliferation or trigger cell death. In addition, dysfunctional telomeres affect cancer development and progression by being a source of genomic instability. Reviewed here are the different approaches that are being undertaken to investigate the mammalian cellular response to telomere dysfunction and its consequences for cancer. Furthermore, it is discussed how current and future knowledge about the mechanisms underlying telomere damage responses might be applied for diagnostic purposes or therapeutic intervention.
Collapse
Affiliation(s)
- Jacqueline J L Jacobs
- Division of Molecular Oncology, The Netherlands Cancer Institute Amsterdam, Netherlands
| |
Collapse
|
39
|
Günes C, Rudolph KL. The role of telomeres in stem cells and cancer. Cell 2013; 152:390-3. [PMID: 23374336 DOI: 10.1016/j.cell.2013.01.010] [Citation(s) in RCA: 363] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 12/21/2012] [Accepted: 01/04/2013] [Indexed: 11/17/2022]
Abstract
Telomere shortening impairs proliferation of transformed cells but also leads to cancer initiation by inducing chromosomal instability. Here, we discuss recent developments in our understanding of the role of telomeres in replication stress and how telomerase expression in somatic stem cells may affect genome integrity control and carcinogenesis.
Collapse
Affiliation(s)
- Cagatay Günes
- Leibniz Institute for Age Research, Fritz Lipmann Institute, Beutenbergstrasse 11, 07745 Jena, Germany
| | | |
Collapse
|
40
|
Focus. J Hepatol 2013; 58:407-8. [PMID: 23247068 DOI: 10.1016/j.jhep.2012.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 12/11/2012] [Indexed: 12/04/2022]
|
41
|
Abstract
Key Points
Telomere length in MCL is variable but does not correlate with disease characteristics and survival.
Collapse
|
42
|
Glazko V, Glazko T. Sources of contradictions in the evaluation of population genetic consequences after the chernobyl disaster. Acta Naturae 2013; 5:47-62. [PMID: 23556130 PMCID: PMC3612825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The review covers the analysis of our own and published data pertaining to population and genetic consequences in various mammalian species under conditions of high levels of ionizing radiation as a result of the Chernobyl accident. The findings indicate that these conditions have promoted the reproduction of heterozygotes in polyloci spectra of molecular genetic markers and animals with a relatively increased stability of the chromosomal apparatus. The prospects of using the reproductive "success" of the carriers of these characteristics as an integral indicator of the selective influence of environmental stress factors are discussed.
Collapse
Affiliation(s)
- V.I. Glazko
- Russian State Agrarian University – Moscow Timiryazev Agricultural Academy, Timirjazevskaja Str., 49, Moscow, Russia, 127550
| | - T.T. Glazko
- Russian State Agrarian University – Moscow Timiryazev Agricultural Academy, Timirjazevskaja Str., 49, Moscow, Russia, 127550
| |
Collapse
|
43
|
Bernardes de Jesus B, Blasco MA. Potential of telomerase activation in extending health span and longevity. Curr Opin Cell Biol 2012; 24:739-43. [PMID: 23085234 DOI: 10.1016/j.ceb.2012.09.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 09/10/2012] [Accepted: 09/18/2012] [Indexed: 11/16/2022]
Abstract
The progressive increase in the elderly population worldwide has resulted in higher numbers of individuals affected by age-associated diseases, such as neurodegenerative and heart diseases, metabolic impairment, or cancer, with the subsequent burden for national health systems. Therapeutic interventions aimed to increase the quality of life at advanced age are visualized as important demands for the future, both at the level of individuals and society. Novel advances in telomerase function from several independent laboratories have resulted in potential new therapeutic strategies which appear as promising new venues to prevent cellular and tissue dysfunction and organismal decline, thereby increasing the so-called "health span". Here, we analyze these recent advances.
Collapse
Affiliation(s)
- Bruno Bernardes de Jesus
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, Madrid, E-28029, Spain
| | | |
Collapse
|
44
|
Ferrandon S, Saultier P, Carras J, Battiston-Montagne P, Alphonse G, Beuve M, Malleval C, Honnorat J, Slatter T, Hung N, Royds J, Rodriguez-Lafrasse C, Poncet D. Telomere profiling: toward glioblastoma personalized medicine. Mol Neurobiol 2012; 47:64-76. [PMID: 23065374 DOI: 10.1007/s12035-012-8363-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 10/01/2012] [Indexed: 02/03/2023]
Abstract
Despite a standard of care combining surgery, radiotherapy (RT), and temozolomide chemotherapy, the average overall survival (OS) of glioblastoma patients is only 15 months, and even far lower when the patient cannot benefit from this combination. Therefore, there is a strong need for new treatments, such as new irradiation techniques. Against this background, carbon ion hadrontherapy, a new kind of irradiation, leads to a greater biological response of the tumor, while minimizing adverse effects on healthy tissues in comparison with RT. As carbon ion hadrontherapy is restricted to RT-resistant patients, photon irradiation resistance biomarkers are needed. Long telomeres and high telomerase activity have been widely associated with photon radioresistance in other cancers. Moreover, telomere protection, telomere function, and telomere length (TL) also depend on the shelterin protein complex (TRF1, TRF2, TPP1, POT1, TIN2, and hRAP1). We thus decided to evaluate an enlarged telomeric status (TL, telomerase catalytic subunit, and the shelterin component expression level) as a potential radioresistance biomarker in vitro using cellular models and ex vivo using patient tumor biopsies. In addition, nothing was known about the role of telomeres in carbon ion response. We thus evaluated telomeric status after both types of irradiation. We report here a significant correlation between TL and the basal POT1 expression level and photon radioresistance, in vitro, and a significant increase in the OS of patients with long telomeres or a high POT1 level, in vivo. POT1 expression was predictive of patient response irrespective of the TL. Strikingly, these correlations were lost, in vitro, when considering carbon irradiation. We thus propose (1) a model of the implications of telomeric damage in the cell response to both types of irradiation and (2) assessment of the POT1 expression level and TL using patient tumor biopsies to identify radioresistant patients who could benefit from carbon hadrontherapy.
Collapse
Affiliation(s)
- Sylvain Ferrandon
- EMR3738, Cellular and Molecular Radiobiology Laboratory, Medicine Faculty, Lyon 1 University, 69921, Oullins Cedex 12, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Wanat JJ, Johnson FB. Telomere stability and carcinogenesis: an off-again, on-again relationship. J Clin Invest 2012; 122:1962-5. [PMID: 22622044 DOI: 10.1172/jci63979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Previous studies in mice have demonstrated antagonistic effects of telomerase loss on carcinogenesis. Telomere attrition can promote genome instability, thereby stimulating initiation of early-stage cancers, but can also inhibit tumorigenesis by promoting permanent cell growth arrest or death. Human cancers likely develop in cell lineages with low levels of telomerase, leading to telomere losses in early lesions, followed by subsequent activation of telomerase. Mouse models constitutively lacking telomerase have thus not addressed how telomere losses within telomerase-proficient cells have an impact on carcinogenesis. Using a novel transgenic mouse model, Begus-Nahrmann et al. demonstrate in this issue of the JCI that transient telomere dysfunction in telomerase-proficient animals is a potent stimulus of tumor formation.
Collapse
Affiliation(s)
- Jennifer J Wanat
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|