1
|
Xuan S, Ma Y, Zhou H, Gu S, Yao X, Zeng X. The implication of dendritic cells in lung diseases: Immunological role of toll-like receptor 4. Genes Dis 2024; 11:101007. [PMID: 39238498 PMCID: PMC11375267 DOI: 10.1016/j.gendis.2023.04.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 09/07/2024] Open
Abstract
The immune responses play a profound role in the progression of lung lesions in both infectious and non-infectious diseases. Dendritic cells, as the "frontline" immune cells responsible for antigen presentation, set up a bridge between innate and adaptive immunity in the course of these diseases. Among the receptors equipped in dendritic cells, Toll-like receptors are a group of specialized receptors as one type of pattern recognition receptors, capable of sensing environmental signals including invading pathogens and self-antigens. Toll-like receptor 4, a pivotal member of the Toll-like receptor family, was formerly recognized as a receptor sensitive to the outer membrane component lipopolysaccharide derived from Gram-negative bacteria, triggering the subsequent response. Moreover, its other essential roles in immune responses have drawn significant attention in the past decade. A better understanding of the implication of Toll-like receptor 4 in dendritic cells could contribute to the management of pulmonary diseases including pneumonia, pulmonary tuberculosis, asthma, acute lung injury, and lung cancer.
Collapse
Affiliation(s)
- Shurui Xuan
- Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Department of Respiratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, China
| | - Yuan Ma
- Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Honglei Zhou
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Shengwei Gu
- Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xin Yao
- Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xiaoning Zeng
- Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
2
|
Zhu S, Zhong S, Cheng K, Zhang LS, Bai JW, Cao Z, Wang S, Chen W, Cheng S, Ma L, Ling Z, Huang Y, Gu W, Sun X, Yi C, Zhao M, Liang S, Xu JF, Sun B, Zhang Y. Vitamin B6 regulates IL-33 homeostasis to alleviate type 2 inflammation. Cell Mol Immunol 2023; 20:794-807. [PMID: 37217797 PMCID: PMC10310729 DOI: 10.1038/s41423-023-01029-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/18/2023] [Indexed: 05/24/2023] Open
Abstract
Interleukin-33 (IL-33) is a crucial nuclear cytokine that induces the type 2 immune response and maintains immune homeostasis. The fine-tuned regulation of IL-33 in tissue cells is critical to control of the type 2 immune response in airway inflammation, but the mechanism is still unclear. Here, we found that healthy individuals had higher phosphate-pyridoxal (PLP, an active form of vitamin B6) concentrations in the serum than asthma patients. Lower serum PLP concentrations in asthma patients were strongly associated with worse lung function and inflammation. In a mouse model of lung inflammation, we revealed that PLP alleviated the type 2 immune response and that this inhibitory effect relied on the activity of IL-33. A mechanistic study showed that in vivo, pyridoxal (PL) needed to be converted into PLP, which inhibited the type 2 response by regulating IL-33 stability. In mice heterozygous for pyridoxal kinase (PDXK), the conversion of PL to PLP was limited, and IL-33 levels were increased in the lungs, aggravating type 2 inflammation. Furthermore, we found that the mouse double minute 2 homolog (MDM2) protein, an E3 ubiquitin-protein ligase, could ubiquitinate the N-terminus of IL-33 and sustain IL-33 stability in epithelial cells. PLP reduced MDM2-mediated IL-33 polyubiquitination and decreased the level of IL-33 through the proteasome pathway. In addition, inhalation of PLP alleviated asthma-related effects in mouse models. In summary, our data indicate that vitamin B6 regulates MDM2-mediated IL-33 stability to constrain the type 2 response, which might help develop a potential preventive and therapeutic agent for allergy-related diseases.
Collapse
Affiliation(s)
- Songling Zhu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230022, China
| | - Shufen Zhong
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Kebin Cheng
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Institute of Respiratory Medicine, School of Medicine, Tongji University, 507 Zhengmin Road, Shanghai, 200433, China
| | - Li-Sha Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Institute of Respiratory Medicine, School of Medicine, Tongji University, 507 Zhengmin Road, Shanghai, 200433, China
| | - Jiu-Wu Bai
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Institute of Respiratory Medicine, School of Medicine, Tongji University, 507 Zhengmin Road, Shanghai, 200433, China
| | - Zu Cao
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Institute of Respiratory Medicine, School of Medicine, Tongji University, 507 Zhengmin Road, Shanghai, 200433, China
| | - Su Wang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230022, China
| | - Wen Chen
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Shipeng Cheng
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Liyan Ma
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Zhiyang Ling
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Yuying Huang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Wangpeng Gu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230022, China
| | - Xiaoyu Sun
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Chunyan Yi
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Meng Zhao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Shuo Liang
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Institute of Respiratory Medicine, School of Medicine, Tongji University, 507 Zhengmin Road, Shanghai, 200433, China.
| | - Jin-Fu Xu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Institute of Respiratory Medicine, School of Medicine, Tongji University, 507 Zhengmin Road, Shanghai, 200433, China.
| | - Bing Sun
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230022, China.
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China.
| | - Yaguang Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China.
| |
Collapse
|
3
|
Murdaca G, Paladin F, Tonacci A, Borro M, Greco M, Gerosa A, Isola S, Allegra A, Gangemi S. Involvement of IL-33 in the Pathogenesis and Prognosis of Major Respiratory Viral Infections: Future Perspectives for Personalized Therapy. Biomedicines 2022; 10:biomedicines10030715. [PMID: 35327516 PMCID: PMC8944994 DOI: 10.3390/biomedicines10030715] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 02/06/2023] Open
Abstract
Interleukin (IL)-33 is a key cytokine involved in type-2 immunity and allergic airway disease. At the level of lung epithelial cells, where it is clearly expressed, IL-33 plays an important role in both innate and adaptive immune responses in mucosal organs. It has been widely demonstrated that in the course of respiratory virus infections, the release of IL-33 increases, with consequent pro-inflammatory effects and consequent exacerbation of the clinical symptoms of chronic respiratory diseases. In our work, we analyzed the pathogenetic and prognostic involvement of IL-33 during the main respiratory viral infections, with particular interest in the recent SARS-CoV-2 virus pandemic and the aim of determining a possible connection point on which to act with a targeted therapy that is able to improve the clinical outcome of patients.
Collapse
Affiliation(s)
- Giuseppe Murdaca
- Department of Internal Medicine, Ospedale Policlinico San Martino, 16132 Genoa, Italy; (F.P.); (A.G.)
- Correspondence:
| | - Francesca Paladin
- Department of Internal Medicine, Ospedale Policlinico San Martino, 16132 Genoa, Italy; (F.P.); (A.G.)
| | - Alessandro Tonacci
- Clinical Physiology Institute, National Research Council of Italy (IFC-CNR), 56124 Pisa, Italy;
| | - Matteo Borro
- Internal Medicine Department, San Paolo Hospital, 17100 Savona, Italy; (M.B.); (M.G.)
| | - Monica Greco
- Internal Medicine Department, San Paolo Hospital, 17100 Savona, Italy; (M.B.); (M.G.)
| | - Alessandra Gerosa
- Department of Internal Medicine, Ospedale Policlinico San Martino, 16132 Genoa, Italy; (F.P.); (A.G.)
| | - Stefania Isola
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy; (S.I.); (S.G.)
| | - Alessandro Allegra
- Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, Division of Hematology, University of Messina, 98125 Messina, Italy;
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy; (S.I.); (S.G.)
| |
Collapse
|
4
|
Macri C, Morgan H, Villadangos JA, Mintern JD. Regulation of dendritic cell function by Fc-γ-receptors and the neonatal Fc receptor. Mol Immunol 2021; 139:193-201. [PMID: 34560415 DOI: 10.1016/j.molimm.2021.07.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 06/28/2021] [Accepted: 07/19/2021] [Indexed: 01/02/2023]
Abstract
Dendritic cells (DCs) express receptors to sense pathogens and/or tissue damage and to communicate with other immune cells. Among those receptors, Fc receptors (FcRs) are triggered by the Fc region of antibodies produced during adaptive immunity. In this review, the role of FcγR and neonatal Fc receptor (FcRn) in DC immunity will be discussed. Their expression in DC subsets and impact on antigen uptake and presentation, DC maturation and polarisation of T cell responses will be described. Lastly, we will discuss the importance of FcR-mediated DC function in the context of immunity during viral infection, inflammatory disease, cancer and immunotherapy.
Collapse
Affiliation(s)
- Christophe Macri
- Department of Biochemistry and Pharmacology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Rd, Parkville, Victoria, 3010, Australia
| | - Huw Morgan
- ACRF Translational Research Laboratory, The Royal Melbourne Hospital, Parkville, Melbourne, Victoria, 3050, Australia; Department of Medicine, University of Melbourne, Parkville, Melbourne, Victoria, 3010, Australia
| | - Jose A Villadangos
- Department of Biochemistry and Pharmacology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Rd, Parkville, Victoria, 3010, Australia; Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| | - Justine D Mintern
- Department of Biochemistry and Pharmacology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Rd, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
5
|
Pariser DN, Hilt ZT, Ture SK, Blick-Nitko SK, Looney MR, Cleary SJ, Roman-Pagan E, Saunders J, Georas SN, Veazey J, Madere F, Santos LT, Arne A, Huynh NP, Livada AC, Guerrero-Martin SM, Lyons C, Metcalf-Pate KA, McGrath KE, Palis J, Morrell CN. Lung megakaryocytes are immune modulatory cells. J Clin Invest 2021; 131:137377. [PMID: 33079726 DOI: 10.1172/jci137377] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 10/14/2020] [Indexed: 02/06/2023] Open
Abstract
Although platelets are the cellular mediators of thrombosis, they are also immune cells. Platelets interact both directly and indirectly with immune cells, impacting their activation and differentiation, as well as all phases of the immune response. Megakaryocytes (Mks) are the cell source of circulating platelets, and until recently Mks were typically only considered bone marrow-resident (BM-resident) cells. However, platelet-producing Mks also reside in the lung, and lung Mks express greater levels of immune molecules compared with BM Mks. We therefore sought to define the immune functions of lung Mks. Using single-cell RNA sequencing of BM and lung myeloid-enriched cells, we found that lung Mks, which we term MkL, had gene expression patterns that are similar to antigen-presenting cells. This was confirmed using imaging and conventional flow cytometry. The immune phenotype of Mks was plastic and driven by the tissue immune environment, as evidenced by BM Mks having an MkL-like phenotype under the influence of pathogen receptor challenge and lung-associated immune molecules, such as IL-33. Our in vitro and in vivo assays demonstrated that MkL internalized and processed both antigenic proteins and bacterial pathogens. Furthermore, MkL induced CD4+ T cell activation in an MHC II-dependent manner both in vitro and in vivo. These data indicated that MkL had key immune regulatory roles dictated in part by the tissue environment.
Collapse
Affiliation(s)
- Daphne N Pariser
- Aab Cardiovascular Research Institute and.,Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | | | | | | | - Mark R Looney
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Simon J Cleary
- Department of Medicine, UCSF, San Francisco, California, USA
| | | | - Jerry Saunders
- Center for Pediatric Biomedical Research, Department of Pediatrics, and
| | - Steve N Georas
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA.,Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Janelle Veazey
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Ferralita Madere
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Laura Tesoro Santos
- Cardiovascular Research Department, University Hospital Ramón y Cajal Biotechnology, Medicine and Health Sciences PhD Program, University Francisco de Vitoria, Madrid, Spain
| | | | - Nguyen Pt Huynh
- Genomics Research Center, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA.,Center for Translational Neuromedicine, University of Copenhagen, Copenhagen, Denmark
| | - Alison C Livada
- Aab Cardiovascular Research Institute and.,Department of Pathology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Selena M Guerrero-Martin
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Claire Lyons
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kelly A Metcalf-Pate
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - James Palis
- Center for Pediatric Biomedical Research, Department of Pediatrics, and
| | - Craig N Morrell
- Aab Cardiovascular Research Institute and.,Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA.,Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA.,Department of Pathology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| |
Collapse
|
6
|
Shi XY, Yi FS, Qiao X, Pei XB, Dong SF. Diagnostic accuracy of interleukin-33 for tuberculous pleural effusion: A systematic review and meta-analysis. Medicine (Baltimore) 2021; 100:e26755. [PMID: 34397818 PMCID: PMC8341376 DOI: 10.1097/md.0000000000026755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 07/06/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The detection of interleukin 33 (IL-33) in pleural effusion may be more sensitive in diagnosing tuberculous pleural effusion (TPE). The present study aimed to assess the accuracy of pleural IL-33 for the diagnosis of TPE by means of meta-analysis and systematic review of relevant studies. METHOD After retrieving the published studies, the sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, diagnostic odds ratio, and a summary receiver operating characteristic curve were assessed to estimate the usefulness of pleural IL-33 in diagnosing TPE using meta-analysis with a random-effects model. We also performed meta-regression and subgroup analysis. RESULTS A total of 639 patients from 6 studies were analyzed. The pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, and diagnostic odds ratio were 0.87 (95% confidence interval [CI], 0.82-0.91), 0.76 (95% CI, 0.72-0.80), 6.54 (95% CI, 2.65-16.15), 0.17 (95% CI, 0.10-1.27), and 45.40 (95% CI, 12.83-160.70) respectively. The area under the curve was 0.94. The composition of the included population was the main cause of heterogeneity and subgroup analysis showed that pleural IL-33 had a higher specificity (0.93, 95% CI 0.87-0.96) when used for differential diagnosis between TPE and malignant pleural effusion. CONCLUSION The detection of IL-33 alone in pleural effusion seems to not be an efficient diagnostic marker for TPE but may serve as a novel biomarker to differentiate between TPE and malignant pleural effusion.
Collapse
Affiliation(s)
- Xin-Yu Shi
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Feng-Shuang Yi
- Department of Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xin Qiao
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xue-Bin Pei
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Shu-Feng Dong
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Cristinziano L, Poto R, Criscuolo G, Ferrara AL, Galdiero MR, Modestino L, Loffredo S, de Paulis A, Marone G, Spadaro G, Varricchi G. IL-33 and Superantigenic Activation of Human Lung Mast Cells Induce the Release of Angiogenic and Lymphangiogenic Factors. Cells 2021; 10:cells10010145. [PMID: 33445787 PMCID: PMC7828291 DOI: 10.3390/cells10010145] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/08/2021] [Accepted: 01/09/2021] [Indexed: 02/06/2023] Open
Abstract
Human lung mast cells (HLMCs) express the high-affinity receptor FcεRI for IgE and are strategically located in different compartments of human lung, where they play a role in several inflammatory disorders and cancer. Immunoglobulin superantigens (e.g., protein A of Staphylococcus aureus and protein L of Peptostreptococcus magnus) bind to the variable regions of either the heavy (VH3) or light chain (κ) of IgE. IL-33 is a cytokine expressed by epithelial cells that exerts pleiotropic functions in the lung. The present study investigated whether immunoglobulin superantigens protein A and protein L and IL-33 caused the release of inflammatory (histamine), angiogenic (VEGF-A) and lymphangiogenic (VEGF-C) factors from HLMCs. The results show that protein A and protein L induced the rapid (30 min) release of preformed histamine from HLMCs. By contrast, IL-33 did not induce the release of histamine from lung mast cells. Prolonged incubation (12 h) of HLMCs with superantigens and IL-33 induced the release of VEGF-A and VEGF-C. Preincubation with IL-33 potentiated the superantigenic release of histamine, angiogenic and lymphangiogenic factors from HLMCs. Our results suggest that IL-33 might enhance the inflammatory, angiogenic and lymphangiogenic activities of lung mast cells in pulmonary disorders.
Collapse
Affiliation(s)
- Leonardo Cristinziano
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (L.C.); (R.P.); (G.C.); (A.L.F.); (M.R.G.); (L.M.); (S.L.); (A.d.P.); (G.M.); (G.S.)
- World Allergy Organization (WAO) Center of Excellence, 80131 Naples, Italy
| | - Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (L.C.); (R.P.); (G.C.); (A.L.F.); (M.R.G.); (L.M.); (S.L.); (A.d.P.); (G.M.); (G.S.)
- World Allergy Organization (WAO) Center of Excellence, 80131 Naples, Italy
| | - Gjada Criscuolo
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (L.C.); (R.P.); (G.C.); (A.L.F.); (M.R.G.); (L.M.); (S.L.); (A.d.P.); (G.M.); (G.S.)
- World Allergy Organization (WAO) Center of Excellence, 80131 Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
| | - Anne Lise Ferrara
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (L.C.); (R.P.); (G.C.); (A.L.F.); (M.R.G.); (L.M.); (S.L.); (A.d.P.); (G.M.); (G.S.)
- World Allergy Organization (WAO) Center of Excellence, 80131 Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, 80131 Naples, Italy
| | - Maria Rosaria Galdiero
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (L.C.); (R.P.); (G.C.); (A.L.F.); (M.R.G.); (L.M.); (S.L.); (A.d.P.); (G.M.); (G.S.)
- World Allergy Organization (WAO) Center of Excellence, 80131 Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, 80131 Naples, Italy
| | - Luca Modestino
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (L.C.); (R.P.); (G.C.); (A.L.F.); (M.R.G.); (L.M.); (S.L.); (A.d.P.); (G.M.); (G.S.)
- World Allergy Organization (WAO) Center of Excellence, 80131 Naples, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (L.C.); (R.P.); (G.C.); (A.L.F.); (M.R.G.); (L.M.); (S.L.); (A.d.P.); (G.M.); (G.S.)
- World Allergy Organization (WAO) Center of Excellence, 80131 Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, 80131 Naples, Italy
| | - Amato de Paulis
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (L.C.); (R.P.); (G.C.); (A.L.F.); (M.R.G.); (L.M.); (S.L.); (A.d.P.); (G.M.); (G.S.)
- World Allergy Organization (WAO) Center of Excellence, 80131 Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (L.C.); (R.P.); (G.C.); (A.L.F.); (M.R.G.); (L.M.); (S.L.); (A.d.P.); (G.M.); (G.S.)
- World Allergy Organization (WAO) Center of Excellence, 80131 Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, 80131 Naples, Italy
| | - Giuseppe Spadaro
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (L.C.); (R.P.); (G.C.); (A.L.F.); (M.R.G.); (L.M.); (S.L.); (A.d.P.); (G.M.); (G.S.)
- World Allergy Organization (WAO) Center of Excellence, 80131 Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (L.C.); (R.P.); (G.C.); (A.L.F.); (M.R.G.); (L.M.); (S.L.); (A.d.P.); (G.M.); (G.S.)
- World Allergy Organization (WAO) Center of Excellence, 80131 Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, 80131 Naples, Italy
- Correspondence:
| |
Collapse
|
8
|
Pro-lymphangiogenic VEGFR-3 signaling modulates memory T cell responses in allergic airway inflammation. Mucosal Immunol 2021; 14:144-151. [PMID: 32518367 PMCID: PMC7725864 DOI: 10.1038/s41385-020-0308-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 04/06/2020] [Accepted: 05/20/2020] [Indexed: 02/04/2023]
Abstract
In allergic airway inflammation, VEGFR-3-mediated lymphangiogenesis occurs in humans and mouse models, yet its immunological roles, particularly in adaptive immunity, are poorly understood. Here, we explored how pro-lymphangiogenic signaling affects the allergic response to house dust mite (HDM). In the acute inflammatory phase, the lungs of mice treated with blocking antibodies against VEGFR-3 (mF4-31C1) displayed less inflammation overall, with dramatically reduced innate and T-cell numbers and reduced inflammatory chemokine levels. However, when inflammation was allowed to resolve and memory recall was induced 2 months later, mice treated with mF4-31C1 as well as VEGF-C/-D knockout models showed exacerbated type 2 memory response to HDM, with increased Th2 cells, eosinophils, type 2 chemokines, and pathological inflammation scores. This was associated with lower CCL21 and decreased TRegs in the lymph nodes. Together, our data imply that VEGFR-3 activation in allergic airways helps to both initiate the acute inflammatory response and regulate the adaptive (memory) response, possibly in part by shifting the TReg/Th2 balance. This introduces new immunomodulatory roles for pro-lymphangiogenic VEGFR-3 signaling in allergic airway inflammation and suggests that airway lymphatics may be a novel target for treating allergic responses.
Collapse
|
9
|
Li ZL, Gao M, Yang MS, Xiao XF, Liu JJ, Yang BC. Sesamin attenuates intestinal injury in sepsis via the HMGB1/TLR4/IL-33 signalling pathway. PHARMACEUTICAL BIOLOGY 2020; 58:898-904. [PMID: 32893702 PMCID: PMC8641667 DOI: 10.1080/13880209.2020.1787469] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
CONTEXT Sepsis is currently one of the leading causes of death in intensive care units (ICUs). Sesamin was previously reported to inhibit inflammation. However, no studies have revealed the impact of sesamin on sepsis. OBJECTIVE We studied the mechanism underlying the effect of sesamin on the pathophysiology of sepsis through the HMGB1/TLR4/IL-33 signalling pathway. MATERIALS AND METHODS Fifty male BALB/c mice (n = 10 per group) were used to establish a caecal ligation and puncture (CLP) mouse model, and given daily injections of sesamin at a low, middle, or high concentration (25, 50, or 100 μM) during the seven-day study period; survival curves were generated by the Kaplan-Meier method. H&E staining and TUNEL staining were performed to assess changes in intestinal morphology intestinal damage in the mouse intestinal epithelium. Molecules related to the HMGB1/TLR4/IL-33 pathway were assessed by RT-qPCR and Western blotting. RESULTS We found mice in the sepsis group survived for only 4 days, while those treated with sesamin survived for 6-7 days. In addition, sesamin significantly relieved the increase in the levels of MPO (21%, 33.3%), MDA (40.5% and 31.6%), DAO (1.24-fold and 2.31-fold), and pro-inflammatory cytokines such as TNF-α (75% and 79%) and IL-6 (1-fold and 1.67-fold) 24 and 48 h after sepsis induction and downregulated the expression of HMGB1, TLR4, and IL-33 while upregulating the expression of ZO-1 and occludin. DISCUSSION AND CONCLUSIONS Sesamin improved the 7-day survival rate of septic mice, suppressed the inflammatory response in sepsis through the HMGB-1/TLR4/IL-33 signalling pathway, and further alleviated intestinal injury.
Collapse
Affiliation(s)
- Zhi-Ling Li
- Translational Medicine Center of Sepsis, The Third Xiangya Hospital of Central South University, Changsha, PR China
- Department of Critical Care Medicine, The Third Xiangya Hospital of Central South University, Changsha, PR China
| | - Min Gao
- Translational Medicine Center of Sepsis, The Third Xiangya Hospital of Central South University, Changsha, PR China
- Department of Critical Care Medicine, The Third Xiangya Hospital of Central South University, Changsha, PR China
| | - Ming-Shi Yang
- Translational Medicine Center of Sepsis, The Third Xiangya Hospital of Central South University, Changsha, PR China
- Department of Critical Care Medicine, The Third Xiangya Hospital of Central South University, Changsha, PR China
| | - Xue-Fei Xiao
- Translational Medicine Center of Sepsis, The Third Xiangya Hospital of Central South University, Changsha, PR China
- Department of Critical Care Medicine, The Third Xiangya Hospital of Central South University, Changsha, PR China
| | - Jing-Jing Liu
- Translational Medicine Center of Sepsis, The Third Xiangya Hospital of Central South University, Changsha, PR China
- Department of Critical Care Medicine, The Third Xiangya Hospital of Central South University, Changsha, PR China
| | - Bing-Chang Yang
- Translational Medicine Center of Sepsis, The Third Xiangya Hospital of Central South University, Changsha, PR China
- Department of Critical Care Medicine, The Third Xiangya Hospital of Central South University, Changsha, PR China
- CONTACT Bing-Chang Yang Department of Critical Care Medicine, The Third Xiangya Hospital of Central South University, No. 138, Tongzipo Road, Yuelu District, Changsha410013, Hunan Province, PR China
| |
Collapse
|
10
|
IL-33 Mediates Lung Inflammation by the IL-6-Type Cytokine Oncostatin M. Mediators Inflamm 2020; 2020:4087315. [PMID: 33376451 PMCID: PMC7744230 DOI: 10.1155/2020/4087315] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/27/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023] Open
Abstract
The interleukin-1 family member IL-33 participates in both innate and adaptive T helper-2 immune cell responses in models of lung disease. The IL-6-type cytokine Oncostatin M (OSM) elevates lung inflammation, Th2-skewed cytokines, alternatively activated (M2) macrophages, and eosinophils in C57Bl/6 mice in vivo. Since OSM induces IL-33 expression, we here test the IL-33 function in OSM-mediated lung inflammation using IL-33-/- mice. Adenoviral OSM (AdOSM) markedly induced IL-33 mRNA and protein levels in wild-type animals while IL-33 was undetectable in IL-33-/- animals. AdOSM treatment showed recruitment of neutrophils, eosinophils, and elevated inflammatory chemokines (KC, eotaxin-1, MIP1a, and MIP1b), Th2 cytokines (IL-4/IL-5), and arginase-1 (M2 macrophage marker) whereas these responses were markedly diminished in IL-33-/- mice. AdOSM-induced IL-33 was unaffected by IL-6-/- deficiency. AdOSM also induced IL-33R+ ILC2 cells in the lung, while IL-6 (AdIL-6) overexpression did not. Flow-sorted ILC2 responded in vitro to IL-33 (but not OSM or IL-6 stimulation). Matrix remodelling genes col3A1, MMP-13, and TIMP-1 were also decreased in IL-33-/- mice. In vitro, IL-33 upregulated expression of OSM in the RAW264.7 macrophage cell line and in bone marrow-derived macrophages. Taken together, IL-33 is a critical mediator of OSM-driven, Th2-skewed, and M2-like responses in mouse lung inflammation and contributes in part through activation of ILC2 cells.
Collapse
|
11
|
The Airway Epithelium-A Central Player in Asthma Pathogenesis. Int J Mol Sci 2020; 21:ijms21238907. [PMID: 33255348 PMCID: PMC7727704 DOI: 10.3390/ijms21238907] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/20/2020] [Accepted: 11/21/2020] [Indexed: 12/11/2022] Open
Abstract
Asthma is a chronic inflammatory airway disease characterized by variable airflow obstruction in response to a wide range of exogenous stimuli. The airway epithelium is the first line of defense and plays an important role in initiating host defense and controlling immune responses. Indeed, increasing evidence indicates a range of abnormalities in various aspects of epithelial barrier function in asthma. A central part of this impairment is a disruption of the airway epithelial layer, allowing inhaled substances to pass more easily into the submucosa where they may interact with immune cells. Furthermore, many of the identified susceptibility genes for asthma are expressed in the airway epithelium. This review focuses on the biology of the airway epithelium in health and its pathobiology in asthma. We will specifically discuss external triggers such as allergens, viruses and alarmins and the effect of type 2 inflammatory responses on airway epithelial function in asthma. We will also discuss epigenetic mechanisms responding to external stimuli on the level of transcriptional and posttranscriptional regulation of gene expression, as well the airway epithelium as a potential treatment target in asthma.
Collapse
|
12
|
Oyesola OO, Früh SP, Webb LM, Tait Wojno ED. Cytokines and beyond: Regulation of innate immune responses during helminth infection. Cytokine 2020; 133:154527. [PMID: 30241895 PMCID: PMC6422760 DOI: 10.1016/j.cyto.2018.08.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 08/18/2018] [Accepted: 08/20/2018] [Indexed: 12/22/2022]
Abstract
Parasitic helminth infection elicits a type 2 cytokine-mediated inflammatory response. During type 2 inflammation, damaged or stimulated epithelial cells exposed to helminths and their products produce alarmins and cytokines including IL-25, IL-33, and thymic stromal lymphopoietin. These factors promote innate immune cell activation that supports the polarization of CD4+ T helper type 2 (Th2) cells. Activated innate and Th2 cells produce the cytokines IL-4, -5, -9, and -13 that perpetuate immune activation and act back on the epithelium to cause goblet cell hyperplasia and increased epithelial cell turnover. Together, these events facilitate worm expulsion and wound healing processes. While the role of Th2 cells in this context has been heavily studied, recent work has revealed that epithelial cell-derived cytokines are drivers of key innate immune responses that are critical for type 2 anti-helminth responses. Cutting-edge studies have begun to fully assess how other factors and pathways, including lipid mediators, chemokines, Fc receptor signaling, danger-associated molecular pattern molecules, and direct cell-cell interactions, also participate in shaping innate cell-mediated type 2 inflammation. In this review, we discuss how these pathways intersect and synergize with pathways controlled by epithelial cell-derived cytokines to coordinate innate immune responses that drive helminth-induced type 2 inflammation.
Collapse
Affiliation(s)
- Oyebola O Oyesola
- Baker Institute for Animal Health and Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Simon P Früh
- Baker Institute for Animal Health and Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Lauren M Webb
- Baker Institute for Animal Health and Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Elia D Tait Wojno
- Baker Institute for Animal Health and Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY, USA.
| |
Collapse
|
13
|
Ryan N, Anderson K, Volpedo G, Varikuti S, Satoskar M, Satoskar S, Oghumu S. The IL-33/ST2 Axis in Immune Responses Against Parasitic Disease: Potential Therapeutic Applications. Front Cell Infect Microbiol 2020; 10:153. [PMID: 32363166 PMCID: PMC7180392 DOI: 10.3389/fcimb.2020.00153] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/23/2020] [Indexed: 12/15/2022] Open
Abstract
Parasitic infections pose a wide and varying threat globally, impacting over 25% of the global population with many more at risk of infection. These infections are comprised of, but not limited to, toxoplasmosis, malaria, leishmaniasis and any one of a wide variety of helminthic infections. While a great deal is understood about the adaptive immune response to each of these parasites, there remains a need to further elucidate the early innate immune response. Interleukin-33 is being revealed as one of the earliest players in the cytokine milieu responding to parasitic invasion, and as such has been given the name "alarmin." A nuclear cytokine, interleukin-33 is housed primarily within epithelial and fibroblastic tissues and is released upon cellular damage or death. Evidence has shown that interleukin-33 seems to play a crucial role in priming the immune system toward a strong T helper type 2 immune response, necessary in the clearance of some parasites, while disease exacerbating in the context of others. With the possibility of being a double-edged sword, a great deal remains to be seen in how interleukin-33 and its receptor ST2 are involved in the immune response different parasites elicit, and how those parasites may manipulate or evade this host mechanism. In this review article we compile the current cutting-edge research into the interleukin-33 response to toxoplasmosis, malaria, leishmania, and helminthic infection. Furthermore, we provide insight into directions interleukin-33 research may take in the future, potential immunotherapeutic applications of interleukin-33 modulation and how a better clarity of early innate immune system responses involving interleukin-33/ST2 signaling may be applied in development of much needed treatment options against parasitic invaders.
Collapse
Affiliation(s)
- Nathan Ryan
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Division of Anatomy, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Kelvin Anderson
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Greta Volpedo
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Department of Microbiology, The Ohio State University, Columbus, OH, United States
| | - Sanjay Varikuti
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Monika Satoskar
- Northeast Ohio Medical University, Rootstown, OH, United States
| | - Sanika Satoskar
- Northeast Ohio Medical University, Rootstown, OH, United States
| | - Steve Oghumu
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
14
|
Hsu CL, Chhiba KD, Krier-Burris R, Hosakoppal S, Berdnikovs S, Miller ML, Bryce PJ. Allergic inflammation is initiated by IL-33-dependent crosstalk between mast cells and basophils. PLoS One 2020; 15:e0226701. [PMID: 31940364 PMCID: PMC6961911 DOI: 10.1371/journal.pone.0226701] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/03/2019] [Indexed: 12/29/2022] Open
Abstract
IgE-primed mast cells in peripheral tissues, including the skin, lung, and intestine, are key initiators of allergen-triggered edema and inflammation. Particularly in severe forms of allergy, this inflammation becomes strongly neutrophil dominated, and yet how mast cells coordinate this type of response is unknown. We and others have reported that activated mast cells--a hematopoietic cell type--can produce IL-33, a cytokine known to participate in allergic responses but generally considered as being of epithelial origin and driving Type 2 immune responses (e.g., ILC2 and eosinophil activation). Using models of skin anaphylaxis, our data reveal that mast cell-derived IL-33 also initiates neutrophilic inflammation. We demonstrate a cellular crosstalk mechanism whereby activated mast cells crosstalk to IL-33 receptor-bearing basophils, driving these basophils to adopt a unique response signature rich in neutrophil-associated molecules. We further establish that basophil expression of CXCL1 is necessary for IgE-driven neutrophilic inflammation. Our findings thus unearth a new mechanism by which mast cells initiate local inflammation after antigen triggering and might explain the complex inflammatory phenotypes observed in severe allergic diseases. Moreover, our findings (i) establish a functional link from IL-33 to neutrophilic inflammation that extends IL-33-mediated biology well beyond that of Type 2 immunity, and (ii) demonstrate the functional importance of hematopoietic cell-derived IL-33 in allergic pathogenesis.
Collapse
Affiliation(s)
- Chia-Lin Hsu
- Division of Allergy-Immunology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
| | - Krishan D. Chhiba
- Division of Allergy-Immunology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
| | - Rebecca Krier-Burris
- Division of Allergy-Immunology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
| | - Shweta Hosakoppal
- Division of Allergy-Immunology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
| | - Sergejs Berdnikovs
- Division of Allergy-Immunology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
| | - Mendy L. Miller
- Division of Allergy-Immunology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
| | - Paul J. Bryce
- Division of Allergy-Immunology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
- * E-mail:
| |
Collapse
|
15
|
The role of the IL-33/ST2 axis in autoimmune disorders: Friend or foe? Cytokine Growth Factor Rev 2019; 50:60-74. [DOI: 10.1016/j.cytogfr.2019.04.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/01/2019] [Indexed: 12/12/2022]
|
16
|
Liang Y, Yu B, Chen J, Wu H, Xu Y, Yang B, Lu Q. Thymic stromal lymphopoietin epigenetically upregulates Fc receptor γ subunit-related receptors on antigen-presenting cells and induces T H2/T H17 polarization through dectin-2. J Allergy Clin Immunol 2019; 144:1025-1035.e7. [PMID: 31251950 DOI: 10.1016/j.jaci.2019.06.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 06/01/2019] [Accepted: 06/10/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Fc receptor γ subunit (FcRγ)-related receptors expressed on antigen-presenting cells (APCs) enhance allergen sensitization and allergic inflammation. DNA demethylation of the high-affinity IgE receptor γ subunit gene (FCER1G) leads to FcRγ and FcεRI overexpression on monocytes from patients with atopic dermatitis. OBJECTIVE We investigated epigenetic mechanisms underlying FCER1G demethylation and upregulation of FcRγ-related receptors on APCs and the consequent effect on allergic responses. METHODS Effects of thymic stromal lymphopoietin (TSLP) on expression of FcRγ and its related receptors and methylation or hydroxymethylation of FCER1G in human monocytes were assessed. Recruitment of ten-eleven translocation protein (TET) 2 to FCER1G by TSLP-activated phosphorylated signal transducer and activator of transcription 5 (pSTAT5) was evaluated. Effects of TSLP on expression of FcRγ-related receptors and costimulatory receptors on monocyte-derived dendritic cells (DCs) and the ability of DCs to take up ovalbumin were analyzed. TSLP-induced TH polarization and related cytokine production were also analyzed. RESULTS pSTAT5 activation by TSLP resulted in TET2 recruitment to FCER1G, leading to FCER1G demethylation and subsequent upregulation of FcRγ-related receptors on monocytes. TSLP not only stimulated monocyte-derived DC maturation but also maintained their allergen uptake ability, likely through maintenance and upregulation of FcRγ-related receptors. Allergen sensitization and upregulation of TH2/TH17-related cytokines contributed to TSLP-DC-induced TH2/TH17 polarization. The latter was attenuated on neutralization with a dectin-2 antibody. CONCLUSIONS TSLP mediated upregulation of FcRγ-related receptors on APCs through activation of pSTAT5, which recruited TET2 to induce FCER1G demethylation. TSLP-induced allergic TH2/TH17 polarization likely depends on dectin-2-mediated allergen sensitization and upregulation of TH2/TH17-related cytokines.
Collapse
Affiliation(s)
- Yunsheng Liang
- Department of Dermatology, Dermatology Hospital of Southern Medical University, Southern Medical University, Guangzhou, China.
| | - Bihui Yu
- Department of Dermatology, Dermatology Hospital of Southern Medical University, Southern Medical University, Guangzhou, China; Hunan Key Laboratory of Medical Epigenomics & Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Junchen Chen
- Department of Dermatology, Dermatology Hospital of Southern Medical University, Southern Medical University, Guangzhou, China
| | - Haijin Wu
- Hunan Key Laboratory of Medical Epigenomics & Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Yingping Xu
- Department of Dermatology, Dermatology Hospital of Southern Medical University, Southern Medical University, Guangzhou, China
| | - Bin Yang
- Department of Dermatology, Dermatology Hospital of Southern Medical University, Southern Medical University, Guangzhou, China.
| | - Qianjin Lu
- Hunan Key Laboratory of Medical Epigenomics & Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
17
|
Al-Aarag ASH, Kamel MH, Abdelgawad ER, Abo-Youssef SM, Moussa HH, Elnaggar ME, Hendy RM, Diab KA. Diagnostic role of interleukin -33 in the differentiation of pleural effusions especially tuberculous and malignant effusions. BMC Pulm Med 2019; 19:114. [PMID: 31238901 PMCID: PMC6593576 DOI: 10.1186/s12890-019-0874-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 06/11/2019] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Tuberculous pleurisy and malignancy are two of the most common causes of pleural effusion. IL-33 is expressed in the epithelial lining and endothelial cells and is released after cell damage; it is proposed to have an essential role in sensing damage in various infectious and inflammatory diseases. This work aimed to determine the diagnostic role of IL-33 in pleural effusions. METHODS One hundred seventeen patients with pleural effusions of different etiologies had a quantitative measurement of IL-33 in their pleural effusion and serum samples by ELISA technique. RESULTS The concentrations of IL-33 (mean ± SD) in tuberculous pleural effusion (TPE) group (22.5 ± 0.90 ng/l) were significantly higher than that of malignant pleural effusion (MPE) group (14.6 ± 2.35 ng/l; P < 0.001). There is no significant difference between the serum levels of IL-33 in (TPE) group and (MPE) group (P > 0.05). The concentrations of IL-33 in the pleural effusions were significantly correlated to that of the serum concentrations in each group (TPE: r = 0.848, P = < 0.001; MPE: r = 0.881, < 0.001) and pleural ADA in patients with tuberculous pleural effusions, (r = 0.38, P < 0.001). The cut-off value of pleural IL33 for (TPE) was 19.16 ng/l, with a sensitivity of 91.7%, a specificity of 96.4%. The cutoff point of a pleural/ serum IL-33 ratio for the diagnosis of TPE was > 1.4 with a sensitivity of 91.7% and specificity of 100% while for the determination of (MPE) was < 0.9 with a sensitivity of 83.3% and specificity of 96.4%. CONCLUSION IL-33 level may serve as a novel biomarker to differentiate pleural effusions, especially tuberculous from malignant effusions.
Collapse
Affiliation(s)
| | | | | | | | - Hany Hussein Moussa
- Faculty of medicine, Kafrelsheikh University, fifth foutoh salam street, Banha city, Qalubia Province, 13518, Egypt.
| | | | - Rasha Mohammad Hendy
- Faculty of medicine, Benha University, Banha city, Qalubia Province, 13518, Egypt
| | - Koot Ahmad Diab
- Faculty of medicine, Benha University, Banha city, Qalubia Province, 13518, Egypt
| |
Collapse
|
18
|
Shinke G, Yamada D, Eguchi H, Iwagami Y, Akita H, Asaoka T, Noda T, Gotoh K, Kobayashi S, Takeda Y, Tanemura M, Doki Y, Mori M. The postoperative peak number of leukocytes after hepatectomy is a significant prognostic factor for cholangiocarcinoma. Mol Clin Oncol 2019; 10:531-540. [PMID: 31007913 PMCID: PMC6466996 DOI: 10.3892/mco.2019.1827] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 02/14/2019] [Indexed: 01/14/2023] Open
Abstract
Cholangiocarcinoma (CCA) is a lethal disease. A new predictive factor to identify patients suitable for adjuvant chemotherapy is needed. The relationship between the long-term prognosis and the perioperative immune responses in patients with CCA remains unclear. We therefore investigated the clinical impact of perioperative immune responses on the long-term prognosis in patients receiving hepatectomy for CCA. We investigated 81 patients who underwent hepatectomy between February 2000 and October 2012: 57 intra-hepatic CCA (iCCA) patients and 24 extra-hepatic CCA (eCCA) patients. We checked the postoperative level of C-reactive protein and the numbers of leukocytes. A multivariate analysis of the clinicopathological factors identified 2 significant risk factors for the overall survival: The postoperative maximum number of leukocytes (PNL) among patient factors (P=0.0406) and the TNM-stage among tumor factors (P=0.0059). On evaluating the distribution of each kind of leukocyte with a multivariate analysis, both the postoperative maximum number of neutrophils (PNN) and the postoperative maximum number of eosinophils (PNE) were detected as significant factors among leukocytes (PNN/PNE, P=0.0367/0.0083). In conclusion, the PNL after hepatectomy was significantly associated with the long-term prognosis in patients with CCA. Changes in the numbers of leukocytes after hepatectomy may be a marker on treatment for CCA.
Collapse
Affiliation(s)
- Go Shinke
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Daisaku Yamada
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
- Department of Gastroenterological Surgery, Osaka International Cancer Institute, Osaka 541-8567, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yoshifumi Iwagami
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hirofumi Akita
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Tadafumi Asaoka
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Takehiro Noda
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kunihito Gotoh
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Shogo Kobayashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yutaka Takeda
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
- Department of Surgery, Kansai Rosai Hospital, Amagasaki, Hyogo 660-8511, Japan
| | - Masahiro Tanemura
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
- Department of Surgery, Osaka Police Hospital, Osaka 558-8558, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masaki Mori
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
19
|
Mantovani A, Dinarello CA, Molgora M, Garlanda C. Interleukin-1 and Related Cytokines in the Regulation of Inflammation and Immunity. Immunity 2019; 50:778-795. [PMID: 30995499 PMCID: PMC7174020 DOI: 10.1016/j.immuni.2019.03.012] [Citation(s) in RCA: 624] [Impact Index Per Article: 104.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/08/2019] [Accepted: 03/14/2019] [Indexed: 02/06/2023]
Abstract
Forty years after its naming, interleukin-1 (IL-1) is experiencing a renaissance brought on by the growing understanding of its context-dependent roles and advances in the clinic. Recent studies have identified important roles for members of the IL-1 family-IL-18, IL-33, IL-36, IL-37, and IL-38-in inflammation and immunity. Here, we review the complex functions of IL-1 family members in the orchestration of innate and adaptive immune responses and their diversity and plasticity. We discuss the varied roles of IL-1 family members in immune homeostasis and their contribution to pathologies, including autoimmunity and auto-inflammation, dysmetabolism, cardiovascular disorders, and cancer. The trans-disease therapeutic activity of anti-IL-1 strategies argues for immunity and inflammation as a metanarrative of modern medicine.
Collapse
Affiliation(s)
- Alberto Mantovani
- IRCCS Humanitas Clinical and Research Center, via Manzoni 56, 20089 Rozzano Milan, Italy; Humanitas University, via Rita Levi Montalcini, 20090 Pieve Emanuele Milan, Italy; William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| | - Charles A Dinarello
- Department of Medicine, University of Colorado Denver, Aurora, CO 80045, USA; Department of Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Martina Molgora
- IRCCS Humanitas Clinical and Research Center, via Manzoni 56, 20089 Rozzano Milan, Italy
| | - Cecilia Garlanda
- IRCCS Humanitas Clinical and Research Center, via Manzoni 56, 20089 Rozzano Milan, Italy; Humanitas University, via Rita Levi Montalcini, 20090 Pieve Emanuele Milan, Italy.
| |
Collapse
|
20
|
Chung S, Kim JY, Song MA, Park GY, Lee YG, Karpurapu M, Englert JA, Ballinger MN, Pabla N, Chung HY, Christman JW. FoxO1 is a critical regulator of M2-like macrophage activation in allergic asthma. Allergy 2019; 74:535-548. [PMID: 30288751 PMCID: PMC6393185 DOI: 10.1111/all.13626] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/13/2018] [Accepted: 08/25/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND The pathogenesis of asthma and airway obstruction is the result of an abnormal response to different environmental exposures. The scientific premise of our study was based on the finding that FoxO1 expression is increased in lung macrophages of mice after allergen exposure and human asthmatic patients. Macrophages are capable of switching from one functional phenotype to another, and it is important to understand the mechanisms involved in the transformation of macrophages and how their cellular function affects the peribronchial stromal microenvironment. METHODS We employed a murine asthma model, in which mice were treated by intranasal insufflation with allergens for 2-8 weeks. We used both a pharmacologic approach using a highly specific FoxO1 inhibitor and genetic approaches using FoxO1 knockout mice (FoxO1fl/fl LysMcre). Cytokine level in biological fluids was measured by ELISA and the expression of encoding molecules by NanoString assay and qRT-PCR. RESULTS We show that the levels of FoxO1 gene are significantly elevated in the airway macrophages of patients with mild asthma in response to subsegmental bronchial allergen challenge. Transcription factor FoxO1 regulates a pro-asthmatic phenotype of lung macrophages that is involved in the development and progression of chronic allergic airway disease. We have shown that inhibition of FoxO1 induced phenotypic conversion of lung macrophages and downregulates pro-asthmatic and pro-fibrotic gene expression by macrophages, which contribute to airway inflammation and airway remodeling in allergic asthma. CONCLUSION Targeting FoxO1 with its downstream regulator IRF4 is a novel therapeutic target for controlling allergic inflammation and potentially reversing fibrotic airway remodeling.
Collapse
Affiliation(s)
- Sangwoon Chung
- Pulmonary, Sleep and Critical Care Medicine, The Ohio State University, Wexner Medical Center, Davis Heart
and Lung Research Institute, Columbus, Ohio
| | - Ji Young Kim
- Division of Pharmaceutics, College of Pharmacy, The Ohio State University
| | - Min-Ae Song
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University
| | - Gye Young Park
- Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, Illinois
| | - Yong Gyu Lee
- Pulmonary, Sleep and Critical Care Medicine, The Ohio State University, Wexner Medical Center, Davis Heart
and Lung Research Institute, Columbus, Ohio
| | - Manjula Karpurapu
- Pulmonary, Sleep and Critical Care Medicine, The Ohio State University, Wexner Medical Center, Davis Heart
and Lung Research Institute, Columbus, Ohio
| | - Joshua A. Englert
- Pulmonary, Sleep and Critical Care Medicine, The Ohio State University, Wexner Medical Center, Davis Heart
and Lung Research Institute, Columbus, Ohio
| | - Megan N. Ballinger
- Pulmonary, Sleep and Critical Care Medicine, The Ohio State University, Wexner Medical Center, Davis Heart
and Lung Research Institute, Columbus, Ohio
| | - Navjot Pabla
- Division of Pharmaceutics, College of Pharmacy, The Ohio State University
| | - Hae Young Chung
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, Korea
| | - John W. Christman
- Pulmonary, Sleep and Critical Care Medicine, The Ohio State University, Wexner Medical Center, Davis Heart
and Lung Research Institute, Columbus, Ohio
| |
Collapse
|
21
|
Weinberg EO, Ferran B, Tsukahara Y, Hatch MMS, Han J, Murdoch CE, Matsui R. IL-33 induction and signaling are controlled by glutaredoxin-1 in mouse macrophages. PLoS One 2019; 14:e0210827. [PMID: 30682073 PMCID: PMC6347181 DOI: 10.1371/journal.pone.0210827] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 01/02/2019] [Indexed: 01/07/2023] Open
Abstract
Interleukin (IL)-33 is an interleukin-1 like cytokine that enhances Th2 responses and mediates mucosal immunity and allergic inflammation but the mechanism regulating endogenous IL-33 production are still under investigation. In macrophages, lipopolysaccharide (LPS) administration resulted in marked induction of IL-33 mRNA that was blunted in macrophages from glutaredoxin-1 (Glrx) knockout mice and in RAW264.7 macrophages with Glrx knockdown by siRNA. Glutaredoxin-1 is a small cytosolic thioltransferase that controls a reversible protein thiol modification, S-glutationylation (protein-GSH adducts), thereby regulating redox signaling. In this study, we examined the mechanism of Glrx regulation of endogenous IL-33 induction in macrophages. Glrx knockdown resulted in impaired de-glutathionylation of TRAF6, which is required for TRAF6 activation, and inhibited downstream IKKβ and NF-κB activation. Inhibitors of NF-κB suppressed IL-33 induction and chromatin IP sequencing data analysis confirmed that IL-33 is an NF-κB-responsive gene. Since TRAF6-NF-κB activation is also essential for IL-33 signaling through its receptor, ST2L, we next tested the involvement of Glrx in exogenous IL-33 responses in RAW264.7 cells. Recombinant IL-33 (rIL-33) administration induced IL-33 mRNA expression in RAW264.7 macrophages, and this was inhibited by Glrx knockdown. Interestingly, rIL-33-induced IL-33 protein was identified as the 20 kDa cleaved form whereas LPS-induced IL-33 protein was identified as full-length IL-33, which may be less active than the cleaved form. In a clinically-relevant mouse model of asthma, intra-tracheal cockroach antigen treatment induced Glrx protein in wild type mouse lungs but Glrx induction was attenuated in IL-33 knockout mouse lungs, suggesting that IL-33 may regulate Glrx induction in vivo in response to allergen challenge. In summary, our data reveal a novel mechanism by which Glrx controls both LPS- and IL-33-mediated NF-κB activation leading to IL-33 production, and paracrine IL-33 can induce Glrx to further regulate inflammatory reactions.
Collapse
Affiliation(s)
- Ellen O. Weinberg
- Department of Medicine, Section of Infectious Diseases, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Beatriz Ferran
- Department of Medicine, Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Yuko Tsukahara
- Department of Medicine, Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Michaela M. S. Hatch
- Department of Medicine, Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Jingyan Han
- Department of Medicine, Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Colin E. Murdoch
- Department of Medicine, Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Reiko Matsui
- Department of Medicine, Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
22
|
Gour N, Lajoie S, Smole U, White M, Hu D, Goddard P, Huntsman S, Eng C, Mak A, Oh S, Kim JH, Sharma A, Plante S, Salem IH, Resch Y, Xiao X, Yao N, Singh A, Vrtala S, Chakir J, Burchard EG, Lane AP, Wills-Karp M. Dysregulated invertebrate tropomyosin-dectin-1 interaction confers susceptibility to allergic diseases. Sci Immunol 2018; 3:3/20/eaam9841. [PMID: 29475849 DOI: 10.1126/sciimmunol.aam9841] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 07/25/2017] [Accepted: 12/14/2017] [Indexed: 12/11/2022]
Abstract
The key factors underlying the development of allergic diseases-the propensity for a minority of individuals to develop dysfunctional responses to harmless environmental molecules-remain undefined. We report a pathway of immune counter-regulation that suppresses the development of aeroallergy and shrimp-induced anaphylaxis. In mice, signaling through epithelially expressed dectin-1 suppresses the development of type 2 immune responses through inhibition of interleukin-33 (IL-33) secretion and the subsequent recruitment of IL-13-producing innate lymphoid cells. Although this homeostatic pathway is functional in respiratory epithelial cells from healthy humans, it is dramatically impaired in epithelial cells from asthmatic and chronic rhinosinusitis patients, resulting in elevated IL-33 production. Moreover, we identify an association between a single-nucleotide polymorphism (SNP) in the dectin-1 gene loci and reduced pulmonary function in two cohorts of asthmatics. This intronic SNP is a predicted eQTL (expression quantitative trait locus) that is associated with reduced dectin-1 expression in human tissue. We identify invertebrate tropomyosin, a ubiquitous arthropod-derived molecule, as an immunobiologically relevant dectin-1 ligand that normally serves to restrain IL-33 release and dampen type 2 immunity in healthy individuals. However, invertebrate tropomyosin presented in the context of impaired dectin-1 function, as observed in allergic individuals, leads to unrestrained IL-33 secretion and skewing of immune responses toward type 2 immunity. Collectively, we uncover a previously unrecognized mechanism of protection against allergy to a conserved recognition element omnipresent in our environment.
Collapse
Affiliation(s)
- Naina Gour
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.,Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Stephane Lajoie
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| | - Ursula Smole
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Marquitta White
- Department of Medicine and Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Donglei Hu
- Department of Medicine and Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Pagé Goddard
- Department of Medicine and Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Scott Huntsman
- Department of Medicine and Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Celeste Eng
- Department of Medicine and Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Angel Mak
- Department of Medicine and Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sam Oh
- Department of Medicine and Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jung-Hyun Kim
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Annu Sharma
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Sophie Plante
- Centre de Recherche, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Québec, Canada
| | - Ikhlass Haj Salem
- Centre de Recherche, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Québec, Canada
| | - Yvonne Resch
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Xiao Xiao
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Nu Yao
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Anju Singh
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Susanne Vrtala
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Jamila Chakir
- Centre de Recherche, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Québec, Canada
| | - Esteban G Burchard
- Department of Medicine and Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Andrew P Lane
- Division of Rhinology and Sinus Surgery, Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Marsha Wills-Karp
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| |
Collapse
|
23
|
Luo Q, Fan Y, Lin L, Wei J, Li Z, Li Y, Nakae S, Lin W, Chen Q. Interleukin-33 Protects Ischemic Brain Injury by Regulating Specific Microglial Activities. Neuroscience 2018; 385:75-89. [DOI: 10.1016/j.neuroscience.2018.05.047] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 05/29/2018] [Accepted: 05/31/2018] [Indexed: 12/11/2022]
|
24
|
Ding W, Zou GL, Zhang W, Lai XN, Chen HW, Xiong LX. Interleukin-33: Its Emerging Role in Allergic Diseases. Molecules 2018; 23:E1665. [PMID: 29987222 PMCID: PMC6099536 DOI: 10.3390/molecules23071665] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/05/2018] [Accepted: 07/06/2018] [Indexed: 12/15/2022] Open
Abstract
Allergic diseases, which include asthma, allergic rhinitis (AR), chronic rhinosinusitis (CRS), atopic dermatitis (AD), food allergy (FA), allergic keratoconjunctivitis, seriously affect the quality of life of people all over the world. Recently, interleukin-33 (IL-33) has been found to play an important role in these refractory disorders, mainly by inducing T helper (Th) 2 immune responses. This article reviews the mobilization and biological function of IL-33 in allergic disorders, providing novel insights for addressing these hypersensitive conditions.
Collapse
Affiliation(s)
- Wen Ding
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, China.
| | - Gui-Lin Zou
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, China.
| | - Wei Zhang
- Gannan Medical University, Rongjiang New Area, Ganzhou 341000, China.
| | - Xing-Ning Lai
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, China.
| | - Hou-Wen Chen
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, China.
| | - Li-Xia Xiong
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, China.
| |
Collapse
|
25
|
Ryu WI, Lee H, Bae HC, Jeon J, Ryu HJ, Kim J, Kim JH, Son JW, Kim J, Imai Y, Yamanishi K, Jeong SH, Son SW. IL-33 down-regulates CLDN1 expression through the ERK/STAT3 pathway in keratinocytes. J Dermatol Sci 2018. [DOI: 10.1016/j.jdermsci.2018.02.017] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
26
|
Hirose K, Iwata A, Tamachi T, Nakajima H. Allergic airway inflammation: key players beyond the Th2 cell pathway. Immunol Rev 2018; 278:145-161. [PMID: 28658544 DOI: 10.1111/imr.12540] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Allergic asthma is characterized by eosinophilic airway inflammation, mucus hyperproduction, and airway hyperreactivity, causing reversible airway obstruction. Accumulating evidence indicates that antigen-specific Th2 cells and their cytokines such as IL-4, IL-5, and IL-13 orchestrate these pathognomonic features of asthma. However, over the past decade, the understanding of asthma pathogenesis has made a significant shift from a Th2 cell-dependent, IgE-mediated disease to a more complicated heterogeneous disease. Recent studies clearly show that not only Th2 cytokines but also other T cell-related cytokines such as IL-17A and IL-22 as well as epithelial cell cytokines such as IL-25, IL-33, and thymic stromal lymphopoietin (TSLP) are involved in the pathogenesis of asthma. In this review, we focus on the roles of these players beyond Th2 pathways in the pathogenesis of asthma.
Collapse
Affiliation(s)
- Koichi Hirose
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Arifumi Iwata
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tomohiro Tamachi
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hiroshi Nakajima
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
27
|
Immunity to gastrointestinal nematode infections. Mucosal Immunol 2018; 11:304-315. [PMID: 29297502 DOI: 10.1038/mi.2017.113] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 11/20/2017] [Indexed: 02/06/2023]
Abstract
Numerous species of nematodes have evolved to inhabit the gastrointestinal tract of animals and humans, with over a billion of the world's population infected with at least one species. These large multicellular pathogens present a considerable and complex challenge to the host immune system given that individuals are continually exposed to infective stages, as well as the high prevalence in endemic areas. This review summarizes our current understanding of host-parasite interactions, detailing induction of protective immunity, mechanisms of resistance, and resolution of the response. It is clear from studies of well-defined laboratory model systems that these responses are dominated by innate and adaptive type 2 cytokine responses, regulating cellular and soluble effectors that serve to disrupt the niche in which the parasites live by strengthening the physical mucosal barrier and ultimately promoting tissue repair.
Collapse
|
28
|
Barbour M, Wood R, Hridi SU, Wilson C, McKay G, Bushell TJ, Jiang HR. The therapeutic effect of anti-CD52 treatment in murine experimental autoimmune encephalomyelitis is associated with altered IL-33 and ST2 expression levels. J Neuroimmunol 2018. [PMID: 29526407 DOI: 10.1016/j.jneuroim.2018.02.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Experimental autoimmune encephalomyelitis (EAE) mice were administered with murine anti-CD52 antibody to investigate its therapeutic effect and whether the treatment modulates IL-33 and ST2 expression. EAE severity and central nervous system (CNS) inflammation were reduced following the treatment, which was accompanied by peripheral T and B lymphocyte depletion and reduced production of various cytokines including IL-33, while sST2 was increased. In spinal cords of EAE mice, while the number of IL-33+ cells remained unchanged, the extracellular level of IL-33 protein was significantly reduced in anti-CD52 antibody treated mice compared with controls. Furthermore the number of ST2+ cells in the spinal cord of treated EAE mice was downregulated due to decreased inflammation and immune cell infiltration in the CNS. These results suggest that treatment with anti-CD52 antibody differentially alters expression of IL-33 and ST2, both systemically and within the CNS, which may indicate IL-33/ST2 axis is involved in the action of the antibody in inhibiting EAE.
Collapse
Affiliation(s)
- Mark Barbour
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Rachel Wood
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Shehla U Hridi
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Chelsey Wilson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Grant McKay
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Trevor J Bushell
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Hui-Rong Jiang
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK.
| |
Collapse
|
29
|
Hung LY, Oniskey TK, Sen D, Krummel MF, Vaughan AE, Cohen NA, Herbert DR. Trefoil Factor 2 Promotes Type 2 Immunity and Lung Repair through Intrinsic Roles in Hematopoietic and Nonhematopoietic Cells. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:1161-1170. [PMID: 29458008 DOI: 10.1016/j.ajpath.2018.01.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/08/2018] [Accepted: 01/23/2018] [Indexed: 01/03/2023]
Abstract
Trefoil factors (TFFs) are small secreted proteins that regulate tissue integrity and repair at mucosal surfaces, particularly in the gastrointestinal tract. However, their relative contribution(s) to controlling baseline lung function or the extent of infection-induced lung injury are unknown issues. With the use of irradiation bone marrow chimeras, we found that TFF2 produced from both hematopoietic- and nonhematopoietic-derived cells is essential for host protection, proliferation of alveolar type 2 cells, and restoration of pulmonary gas exchange after infection with the hookworm parasite Nippostrongylus brasiliensis. In the absence of TFF2, lung epithelia were unable to proliferate and expressed reduced lung mRNA transcript levels for type 2 response-inducing IL-25 and IL-33 after infectious injury. Strikingly, even in the absence of infection or irradiation, TFF2 deficiency compromised lung structure and function, as characterized by distended alveoli and reduced blood oxygen levels relative to wild-type control mice. Taken together, we show a previously unappreciated role for TFF2, produced by either hematopoietic or nonhematopoietic sources, as a pro-proliferative factor for lung epithelial cells under steady-state and infectious injury conditions.
Collapse
Affiliation(s)
- Li-Yin Hung
- Division of Experimental Medicine, University of California San Francisco, San Francisco, California
| | - Taylor K Oniskey
- Division of Experimental Medicine, University of California San Francisco, San Francisco, California
| | - Debasish Sen
- Department of Pathology, University of California San Francisco, San Francisco, California
| | - Matthew F Krummel
- Department of Pathology, University of California San Francisco, San Francisco, California
| | - Andrew E Vaughan
- Department of Biological Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania
| | - Noam A Cohen
- Department of Otorhinololaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - De'Broski R Herbert
- Division of Experimental Medicine, University of California San Francisco, San Francisco, California.
| |
Collapse
|
30
|
Kong IG, Kim DW. Pathogenesis of Recalcitrant Chronic Rhinosinusitis: The Emerging Role of Innate Immune Cells. Immune Netw 2018; 18:e6. [PMID: 29732233 PMCID: PMC5928419 DOI: 10.4110/in.2018.18.e6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 02/05/2018] [Accepted: 02/13/2018] [Indexed: 12/14/2022] Open
Abstract
Chronic rhinosinusitis (CRS) is a major part of the recalcitrant inflammatory diseases of the upper airway that needs enormous socioeconomic burden. T helper (Th) 2 type immune responses recruiting eosinophils were the most well-known immune players in CRS pathogenesis especially in western countries. By the piling up of a vast amount of researches to elucidate the pathogenic mechanism of CRS recently, heterogeneous inflammatory processes were found to be related to the phenotypes of CRS. Recently more cells other than T cells were in the focus of CRS pathogenesis, such as the epithelial cell, macrophage, innate lymphoid cells, and neutrophils. Here, we reviewed the recent research focusing on the innate immune cells related to CRS pathogenesis.
Collapse
Affiliation(s)
- Il Gyu Kong
- Department of Otorhinolaryngology-Head and Neck Surgery, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068, Korea
| | - Dae Woo Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul 07061, Korea
| |
Collapse
|
31
|
Zhao J, Zhao Y. Interleukin-33 and its Receptor in Pulmonary Inflammatory Diseases. Crit Rev Immunol 2018; 35:451-61. [PMID: 27279043 DOI: 10.1615/critrevimmunol.2016015865] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Interleukin-33 (IL-33) is a member of the IL-1 cytokine family. It modulates immune responses and biological functions through binding to its membrane receptor, ST2L. ST2L is a member of the Toll-like/IL-1 (TIR)-receptor superfamily, and its isoform, soluble ST2 (sST2), functions as an inhibitor of the IL-33/ST2L pathway. Levels of IL-33 and sST2 in serum and bronchoalveolar lavage fluid (BAL) are known biomarkers for a variety of disorders such as heart failure, non-small-cell lung cancer, and pulmonary inflammatory diseases. IL-33 also exists in the nuclei, and nuclear IL-33 seems to regulate cytokine gene expression. In this review, we focus on the role of IL-33/ST2 in the pathogenesis of pulmonary inflammatory diseases including asthma, chronic obstructive pulmonary disease (COPD), and lung injury.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Medicine, University of Pittsburgh School of Medicine, Acute Lung Injury Center of Excellence, and Vascular Medical Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yutong Zhao
- Department of Medicine, University of Pittsburgh School of Medicine, Acute Lung Injury Center of Excellence, and Vascular Medical Institute, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
32
|
Sun M, Bai Y, Zhao S, Liu X, Gao Y, Wang L, Liu B, Ma D, Ma C. Gram-negative bacteria facilitate tumor progression through TLR4/IL-33 pathway in patients with non-small-cell lung cancer. Oncotarget 2018; 9:13462-13473. [PMID: 29568370 PMCID: PMC5862591 DOI: 10.18632/oncotarget.24008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 11/13/2017] [Indexed: 12/13/2022] Open
Abstract
Non-small-cell lung cancer (NSCLC) accounts for the most cases in clinical lung cancer patients. Patients with NSCLC are often diagnosed in advanced stage and frequently infected with gram-negative bacteria. Pulmonary infection with gram-negative bacteria is the most frequent postoperative complication in NSCLC patients. While accumulating evidence indicate an involvement of gram-negative bacteria in NSCLC progression, the underlying mechanisms remain largely unknown. Herein, we explored the effect of gram-negative bacteria on tumor progression using tumor cells from NSCLC patients. We observed that infection with gram-negative bacteria predicted advanced stages and decreased time interval to recurrence of NSCLC patients. Incubation of NSCLC cells with gram-negative bacteria promoted their growth and metastasis. Mechanistically, gram-negative bacteria activated Toll-like receptor 4 (TLR4) signaling in NSCLC cells, leading to increased mRNA and protein expression of interleukin 33 (IL-33) through MyD88-dependent pathway. Knockdown of IL-33 abrogated the contribution of gram-negative bacteria to NSCLC progression by regulating cancer metabolic activities and stem cell properties. In NSCLC patients, higher TLR4 expression was associated with increased IL-33 expression, Ki-67 proliferation index and CD133 expression in those with gram-negative bacterial infection. These findings shed new light on the molecular mechanisms underlie gram-negative bacteria mediated tumor progression and provide clues for innovative therapeutic explorations for NSCLC patients.
Collapse
Affiliation(s)
- Mengyao Sun
- The Cardiac Surgery Department, The First Hospital of Jilin University, Changchun 130021, China
| | - Yang Bai
- The Cardiac Surgery Department, The First Hospital of Jilin University, Changchun 130021, China
| | - Song Zhao
- The Spine Surgery Department, The First Hospital of Jilin University, Changchun 130021, China
| | - Xiyu Liu
- The Thoracic Surgery Department, Affiliated Hospital of Guilin Medical University, Guilin 541001, China
| | - Yongsheng Gao
- The Cardiac Surgery Department, The First Hospital of Jilin University, Changchun 130021, China
| | - Lei Wang
- The Cardiac Surgery Department, The First Hospital of Jilin University, Changchun 130021, China
| | - Bin Liu
- The Cardiac Surgery Department, The First Hospital of Jilin University, Changchun 130021, China
| | - Dashi Ma
- The Cardiac Surgery Department, The First Hospital of Jilin University, Changchun 130021, China
| | - Chunye Ma
- The Cardiac Surgery Department, The First Hospital of Jilin University, Changchun 130021, China
| |
Collapse
|
33
|
Miller JE, Monsanto SP, Ahn SH, Khalaj K, Fazleabas AT, Young SL, Lessey BA, Koti M, Tayade C. Interleukin-33 modulates inflammation in endometriosis. Sci Rep 2017; 7:17903. [PMID: 29263351 PMCID: PMC5738435 DOI: 10.1038/s41598-017-18224-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 12/07/2017] [Indexed: 01/05/2023] Open
Abstract
Endometriosis is a debilitating condition that is categorized by the abnormal growth of endometrial tissue outside the uterus. Although the pathogenesis of this disease remains unknown, it is well established that endometriosis patients exhibit immune dysfunction. Interleukin (IL)-33 is a danger signal that is a critical regulator of chronic inflammation. Although plasma and peritoneal fluid levels of IL-33 have been associated with deep infiltrating endometriosis, its contribution to the disease pathophysiology is unknown. We investigated the role of IL-33 in the pathology of endometriosis using patient samples, cell lines and a syngeneic mouse model. We found that endometriotic lesions produce significantly higher levels of IL-33 compared to the endometrium of healthy, fertile controls. In vitro stimulation of endometrial epithelial, endothelial and endometriotic epithelial cells with IL-33 led to the production of pro-inflammatory and angiogenic cytokines. In a syngeneic mouse model of endometriosis, IL-33 injections caused systemic inflammation, which manifested as an increase in plasma pro-inflammatory cytokines compared to control mice. Furthermore, endometriotic lesions from IL-33 treated mice were highly vascularized and exhibited increased proliferation. Collectively, we provide convincing evidence that IL-33 perpetuates inflammation, angiogenesis and lesion proliferation, which are critical events in the lesion survival and progression of endometriosis.
Collapse
Affiliation(s)
- Jessica E Miller
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Stephany P Monsanto
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Soo Hyun Ahn
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Kasra Khalaj
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Asgerally T Fazleabas
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University College of Human Medicine, Grand Rapids, MI, 49503, USA
| | - Steven L Young
- Department of Obstetrics and Gynecology, University of North Carolina, Chapel Hill, North Carolina, NC, 27514, USA
| | - Bruce A Lessey
- Department of Obstetrics and Gynecology, Greenville Health Systems, Greenville, South Carolina, SC, 29605, USA
| | - Madhuri Koti
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Chandrakant Tayade
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada.
| |
Collapse
|
34
|
Cayrol C, Girard JP. Interleukin-33 (IL-33): A nuclear cytokine from the IL-1 family. Immunol Rev 2017; 281:154-168. [DOI: 10.1111/imr.12619] [Citation(s) in RCA: 401] [Impact Index Per Article: 50.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Corinne Cayrol
- Institut de Pharmacologie et de Biologie Structurale; IPBS; Université de Toulouse; CNRS; UPS; Toulouse France
| | - Jean-Philippe Girard
- Institut de Pharmacologie et de Biologie Structurale; IPBS; Université de Toulouse; CNRS; UPS; Toulouse France
| |
Collapse
|
35
|
Charrad R, Kaabachi W, Berraies A, Hamzaoui K, Hamzaoui A. IL-33 gene variants and protein expression in pediatric Tunisian asthmatic patients. Cytokine 2017; 104:85-91. [PMID: 28985997 DOI: 10.1016/j.cyto.2017.09.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 09/04/2017] [Accepted: 09/25/2017] [Indexed: 01/28/2023]
Abstract
Interleukin-33 (IL-33) is one of the last discovered members of the human IL-1 family. It is involved in the pathogenesis of many inflammatory diseases. This study investigates the relationship between IL33 gene variants and serum protein levels with the development of childhood asthma. We analyzed in this case-control study the distribution of two IL33 polymorphisms, rs7044343 and rs1342326, within 200 Tunisian children, using predefined Taqman genotyping assays. IL-33 serum levels were assessed by commercial sandwich Enzyme-linked immunosorbent assay (ELISA). The presence of rs1342326 polymorphism was significantly associated with a lower risk of asthma development. The CC [OR=0.20, CI (0.08-0.50)] and AC [OR=0.24, CI (0.11-0.49)] genotypes, as well as the C-allele [OR=0.40; CI: 0.26-0.61, P=0.00001] were associated significantly with a decreased asthma risk. However, the C-allele was more frequent in severe asthma patients than in milder ones. No association was found between rs7044343 variant and asthma. The level of IL-33 in sera was significantly increased in asthmatic children [1.48±0.47pg/mL] compared to controls [0.70±0.18pg/mL; P<0.001]. Furthermore, this increase of IL-33 was associated with the presence of rs1342326 C allele. The IL33 rs1342326 polymorphism was associated with a lower childhood asthma risk in the Tunisian population and a higher IL-33 protein expression.
Collapse
Affiliation(s)
- Rihab Charrad
- Université de Tunis El Manar, Faculty of Medicine of Tunis, Department of Basic Sciences, Tunis, Tunisia.
| | - Wajih Kaabachi
- Université de Tunis El Manar, Faculty of Medicine of Tunis, Department of Basic Sciences, Tunis, Tunisia.
| | - Anissa Berraies
- Université de Tunis El Manar, Faculty of Medicine of Tunis, Department of Basic Sciences, Tunis, Tunisia; A. Mami Hospital, Department of Pediatric Respiratory Diseases, Unit Research 12SP15 "Expression Moleculaire des Interactions Cellulaires et leur Mode d'Action dans le Poumon Profond", Pavillon B, 2080, Ariana, Tunisia.
| | - Kamel Hamzaoui
- Université de Tunis El Manar, Faculty of Medicine of Tunis, Department of Basic Sciences, Tunis, Tunisia.
| | - Agnès Hamzaoui
- Université de Tunis El Manar, Faculty of Medicine of Tunis, Department of Basic Sciences, Tunis, Tunisia; A. Mami Hospital, Department of Pediatric Respiratory Diseases, Unit Research 12SP15 "Expression Moleculaire des Interactions Cellulaires et leur Mode d'Action dans le Poumon Profond", Pavillon B, 2080, Ariana, Tunisia.
| |
Collapse
|
36
|
Chang J, Xia Y, Wasserloos K, Deng M, Blose KJ, Vorp DA, Turnquist HR, Billiar TR, Pitt BA, Zhang MZ, Zhang LM. Cyclic stretch induced IL-33 production through HMGB1/TLR-4 signaling pathway in murine respiratory epithelial cells. PLoS One 2017; 12:e0184770. [PMID: 28898270 PMCID: PMC5595336 DOI: 10.1371/journal.pone.0184770] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 08/30/2017] [Indexed: 11/19/2022] Open
Abstract
Interleukin 33 (IL-33), an inflammatory and mechanically responsive cytokine, is an important component of a TLR4-dependent innate immune process in mucosal epithelium. Although TLR4 also plays a role in sensing biomechanical stretch, a pathway of stretch-induced TLR4-dependent IL-33 biosynthesis has not been revealed. In the current study, we show that short term (6 h) cyclic stretch (CS) of cultured murine respiratory epithelial cells (MLE-12) increased intracellular IL-33 expression in a TLR4 dependent fashion. There was no detectable IL-33 in conditioned media in this interval. CS, however, increased release of the notable alarmin, HMGB1, and a neutralizing antibody (2G7) to HMGB1 completely abolished the CS mediated increase in IL-33. rHMGB1 increased IL-33 synthesis and this was partially abrogated by silencing TLR4 suggesting additional receptors for HMGB1 are involved in its regulation of IL-33. Collectively, these data reveal a HMGB1/TLR4/IL-33 pathway in the response of respiratory epithelium to mechanical stretch.
Collapse
Affiliation(s)
- Jing Chang
- Department of Anesthesiology, Shanghai Children’s Medical Center, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School Public Health, Pittsburgh, Pennsylvania, United States of America
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Yuefeng Xia
- Department of Anesthesiology, Hunan Cancer Hospital, Xiangya School of Medicine, Central South University, Hunan, China
| | - Karla Wasserloos
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School Public Health, Pittsburgh, Pennsylvania, United States of America
| | - Meihong Deng
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Kory J. Blose
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - David A. Vorp
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Heth R. Turnquist
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Timothy R. Billiar
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Bruce A. Pitt
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School Public Health, Pittsburgh, Pennsylvania, United States of America
| | - Ma-Zhong Zhang
- Department of Anesthesiology, Shanghai Children’s Medical Center, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
- * E-mail: (MZZ); (LMZ)
| | - Li-Ming Zhang
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- * E-mail: (MZZ); (LMZ)
| |
Collapse
|
37
|
Verschoor A, Karsten CM, Broadley SP, Laumonnier Y, Köhl J. Old dogs-new tricks: immunoregulatory properties of C3 and C5 cleavage fragments. Immunol Rev 2017; 274:112-126. [PMID: 27782330 DOI: 10.1111/imr.12473] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The activation of the complement system by canonical and non-canonical mechanisms results in the generation of multiple C3 and C5 cleavage fragments including anaphylatoxins C3a and C5a as well as opsonizing C3b/iC3b. It is now well appreciated that anaphylatoxins not only act as pro-inflammatory mediators but as immunoregulatory molecules that control the activation status of cells and tissue at several levels. Likewise, C3b/iC3b is more than the opsonizing fragment that facilitates engulfment and destruction of targets by phagocytes. In the circulation, it also facilitates the transport and delivery of bacteria and immune complexes to phagocytes, through a process known as immune adherence, with consequences for adaptive immunity. Here, we will discuss non-classical immunoregulatory properties of C3 and C5 cleavage fragments. We highlight the influence of anaphylatoxins on Th2 and Th17 cell development during allergic asthma with a particular emphasis on their role in the modulation of CD11b+ conventional dendritic cells and monocyte-derived dendritic cells. Furthermore, we discuss the control of anaphylatoxin-mediated activation of dendritic cells and allergic effector cells by adaptive immune mechanisms that involve allergen-specific IgG1 antibodies and plasma or regulatory T cell-derived IL-10 production. Finally, we take a fresh look at immune adherence with a particular focus on the development of antibacterial cytotoxic T-cell responses.
Collapse
Affiliation(s)
- Admar Verschoor
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany.
| | - Christian M Karsten
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Steven P Broadley
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Yves Laumonnier
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany. .,Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
38
|
Tjota MY, Camacho DF, Turnquist HR, Sperling AI. IL-33 Drives Monocyte Recruitment to Lung Interstitium through Chemokine Upregulation. Immunohorizons 2017; 1:101-108. [PMID: 29629429 PMCID: PMC5889047 DOI: 10.4049/immunohorizons.1700024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Tissue infiltration by circulating monocytes is a critical step in the initiation and augmentation of type 2 inflammatory responses in the lungs. Our studies demonstrate that IL-33-/- mice have a defect in monocyte extravasation from the vasculature to the lung interstitium during induction of type 2 inflammatory responses. This result suggests that monocyte migration to the lungs is IL-33 dependent, and we found that administration of exogenous recombinant IL-33 is sufficient to restore monocyte localization to the lung interstitium. Further investigation of the effect of early administration of recombinant IL-33 on the lungs identified upregulation of multiple chemokines including the monocyte chemoattractants CCL2, CCL7, and CCL22. Importantly, blockade of G-protein coupled receptor-dependent signaling, and thereby chemokine receptor activity, inhibited IL-33-driven monocyte recruitment. CCR2 deficiency prevented recruitment of monocytes to the lung extravascular space during allergic sensitization, and resulted in reduced eosinophilia after allergen challenge. Thus, IL-33 plays a critical role in the initiation of type 2 inflammatory responses by inducing upregulation of chemokines that promote monocyte recruitment to the lung interstitium.
Collapse
Affiliation(s)
- Melissa Y Tjota
- Committee on Immunology, University of Chicago, Chicago, IL 60637
- Medical Scientist Training Program, University of Chicago, Chicago, IL 60637
| | - Daniel F Camacho
- Committee on Immunology, University of Chicago, Chicago, IL 60637
- Medical Scientist Training Program, University of Chicago, Chicago, IL 60637
| | - Heth R Turnquist
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Anne I Sperling
- Committee on Immunology, University of Chicago, Chicago, IL 60637
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, IL 60637
| |
Collapse
|
39
|
Corthésy B, Bioley G. Therapeutic intranasal instillation of allergen-loaded microbubbles suppresses experimental allergic asthma in mice. Biomaterials 2017; 142:41-51. [PMID: 28727997 DOI: 10.1016/j.biomaterials.2017.07.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/20/2017] [Accepted: 07/09/2017] [Indexed: 12/18/2022]
Abstract
Despite proven efficiency, subcutaneous immunotherapy for aeroallergens is impaired by the duration of the protocol, the repeated injections and potential side-effects associated with the doses of allergen administered. Intranasal delivery of immunotherapeutic agents may overcome several of these drawbacks, provided that an efficient allergen delivery vehicle can be identified. This study evaluates whether intranasally delivered gas-filled microbubble (MB)-associated ovalbumin (OVA), used as a model allergen, can serve as a therapeutic treatment in a mouse model of established allergic asthma. Lung and systemic production of pro-tolerogenic markers, including Foxp3+ CD4 T cells, IL-10, and TGF-β, as well as the Th1-type cytokine IFN-γ, was observed after intranasal immunization with OVA-MB. Post-treatment, aerosol-sensitized mice exhibited the same pattern of markers. Moreover, decrease of eosinophils and neutrophils in BALs, lower frequencies of Th2 cytokine- and IL-17-producing CD4 T cells in lungs and reduced specific IgE in BALs and sera after allergen challenge were observed. Concomitantly, lung resistance and mucus production diminished in OVA-MB-treated animals. Thus, therapeutic intranasal administration of OVA-MBs in established experimental allergic asthma allows modulating pathology-associated immune and physiological parameters usually triggered after exposure to the allergen.
Collapse
Affiliation(s)
- Blaise Corthésy
- R&D Laboratory, Division of Immunology and Allergy, University State Hospital (CHUV), Epalinges, Switzerland
| | - Gilles Bioley
- R&D Laboratory, Division of Immunology and Allergy, University State Hospital (CHUV), Epalinges, Switzerland.
| |
Collapse
|
40
|
The role of rare innate immune cells in Type 2 immune activation against parasitic helminths. Parasitology 2017; 144:1288-1301. [PMID: 28583216 DOI: 10.1017/s0031182017000488] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The complexity of helminth macroparasites is reflected in the intricate network of host cell types that participate in the Type 2 immune response needed to battle these organisms. In this context, adaptive T helper 2 cells and the Type 2 cytokines interleukin (IL)-4, IL-5, IL-9 and IL-13 have been the focus of research for years, but recent work has demonstrated that the innate immune system plays an essential role. Some innate immune cells that promote Type 2 immunity are relatively abundant, such as macrophages and eosinophils. However, we now appreciate that more rare cell types including group 2 innate lymphoid cells, basophils, mast cells and dendritic cells make significant contributions to these responses. These cells are found at low frequency but they are specialized to their roles - located at sites such as the skin, lung and gut, where the host combats helminth parasites. These cells respond rapidly and robustly to worm antigens and worm-induced damage to produce essential cytokines, chemokines, eicosanoids and histamine to activate damaged epithelium and to recruit other effectors. Thus, a greater understanding of how these cells operate is essential to understand how the host protects itself during helminth infection.
Collapse
|
41
|
Johnston LK, Bryce PJ. Understanding Interleukin 33 and Its Roles in Eosinophil Development. Front Med (Lausanne) 2017; 4:51. [PMID: 28512632 PMCID: PMC5411415 DOI: 10.3389/fmed.2017.00051] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 04/18/2017] [Indexed: 01/10/2023] Open
Abstract
Over the last decade, significant interest in the contribution of three “epithelial-derived cytokines,” such as thymic stromal lymphopoietin, interleukin 25, and interleukin 33 (IL-33), has developed. These cytokines have been strongly linked to the early events that occur during allergen exposures and how they contribute to the subsequent type 2 immune response. Of these three cytokines, IL-33 has proven particularly interesting because of the strong associations found between both it and its receptor, ST2, in several genome-wide association studies of allergic diseases. Further work has demonstrated clear mechanisms through which this cytokine might orchestrate allergic inflammation, including activation of several key effector cells that possess high ST2 levels, including mast cells, basophils, innate lymphoid cells, and eosinophils. Despite this, controversies surrounding IL-33 seem to suggest the biology of this cytokine might not be as simple as current dogmas suggest including: the relevant cellular sources of IL-33, with significant evidence for inducible expression in some hematopoietic cells; the mechanistic contributions of nuclear localization vs secretion; secretion and processing mechanisms; and the biological consequences of IL-33 exposure on different cell types. In this review, we will address the evidence for IL-33 and ST2 regulation over eosinophils and how this may contribute to allergic diseases. In particular, we focus on the accumulating evidence for a role of IL-33 in regulating hematopoiesis and how this relates to eosinophils as well as how this may provide new concepts for how the progression of allergy is regulated.
Collapse
Affiliation(s)
- Laura K Johnston
- Department of Medicine, Division of Allergy-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Paul J Bryce
- Department of Medicine, Division of Allergy-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
42
|
Medina JL, Brooks EG, Chaparro A, Dube PH. Mycoplasma pneumoniae CARDS toxin elicits a functional IgE response in Balb/c mice. PLoS One 2017; 12:e0172447. [PMID: 28199385 PMCID: PMC5310781 DOI: 10.1371/journal.pone.0172447] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 02/04/2017] [Indexed: 12/24/2022] Open
Abstract
Mycoplasma pneumoniae is strongly associated with new onset asthma and asthma exacerbations. Until recently, the molecular mechanisms utilized by M. pneumoniae to influence asthma symptoms were unknown. However, we recently reported that an ADP-ribosylating and vacuolating toxin called the Community Acquired Respiratory Distress Syndrome toxin, CARDS toxin, produced by M. pneumoniae was sufficient to promote allergic inflammation and asthma-like disease in mice. A mouse model of CARDS toxin exposure was used to evaluate total and CARDS-toxin specific serum IgE responses. Mast cell sensitization, challenge, and degranulation studies determined functionality of the CARDS toxin-specific IgE. In the current study, we report that a single mucosal exposure to CARDS toxin was sufficient to increase total serum IgE and CARDS toxin-specific IgE in mice. Mice given a second mucosal challenge of CARDS toxin responded with significant increases in total and CARDS toxin-specific IgE. CARDS toxin-specific IgE bound to an N-terminal peptide of CARDS toxin but not the C-terminal peptide. Likewise, full-length CARDS toxin and the N-terminal peptide induced mast cell degranulation. Altogether, these data demonstrate that exposure to CARDS toxin is sufficient to generate functional IgE in mice. M. pneumoniae and CARDS toxin are strongly associated with asthma exacerbations raising the possibility that the CARDS toxin-specific IgE-mast cell axis contributes to disease pathogenesis.
Collapse
Affiliation(s)
- Jorge L. Medina
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Edward G. Brooks
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Department of Pediatrics, Division of Immunology and Infectious Diseases, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Adriana Chaparro
- Department of Pediatrics, Division of Immunology and Infectious Diseases, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Peter H. Dube
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- * E-mail:
| |
Collapse
|
43
|
Mukherjee M, Lim HF, Thomas S, Miller D, Kjarsgaard M, Tan B, Sehmi R, Khalidi N, Nair P. Airway autoimmune responses in severe eosinophilic asthma following low-dose Mepolizumab therapy. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2017; 13:2. [PMID: 28070196 PMCID: PMC5216532 DOI: 10.1186/s13223-016-0174-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 12/12/2016] [Indexed: 12/30/2022]
Abstract
BACKGROUND Anti-interleukin (IL)-5 monoclonal antibodies as an eosinophil-depleting strategy is well established, with Mepolizumab being the first biologic approved as an adjunct treatment for severe eosinophilic asthma. CASE PRESENTATION A 62-year old woman diagnosed with severe eosinophilic asthma showed poor response to Mepolizumab therapy (100 mg subcutaneous dose/monthly) and subsequent worsening of symptoms. The treatment response to Mepolizumab was monitored using both blood and sputum eosinophil counts. The latter was superior in assessing deterioration in symptoms, suggesting that normal blood eosinophil count may not always indicate amelioration or adequate control of the ongoing eosinophil-driven disease process. This perplexing situation of persistent airway eosinophilia and increased steroid insensitivity despite an anti-eosinophil therapy can be explained if the administered dose of the mAb was inadequate in comparison to the target antigen. The resultant immune complexes could act as 'cytokine depots', protecting the potency of the 'bound' IL-5, thereby sustaining the eosinophilic inflammation within the target tissue. Molecular analysis of the sputum indicated the development of a polyclonal autoimmune response as well as an increase in group 2 innate lymphoid cells, two novel observations in severe eosinophilic asthma, which were associated with indices of disease severity and progression. This case highlights the possibility of a previously unrecognised autoimmune-mediated worsening of asthma perhaps triggered by immune complexes formed due to inadequate dosing of administered monoclonal antibodies in the target tissue. CONCLUSIONS While anti-IL5 mAb therapy is an exciting novel option to treat patients with severe asthma, there is the rare possibility of worsening of asthma as observed in this case study, due to local autoimmune mechanisms precipitated by potential inadequate airway levels of the monoclonal antibody.
Collapse
Affiliation(s)
- Manali Mukherjee
- Department of Medicine, McMaster University & St. Joseph’s Healthcare, Hamilton, ON Canada
- Firestone Institute for Respiratory Health, 50 Charlton Avenue East, Hamilton, ON L8N 4A6 Canada
| | - Hui Fang Lim
- Department of Respiratory Medicine, National University of Singapore, Singapore, Singapore
| | - Sruthi Thomas
- Department of Medicine, McMaster University & St. Joseph’s Healthcare, Hamilton, ON Canada
- Firestone Institute for Respiratory Health, 50 Charlton Avenue East, Hamilton, ON L8N 4A6 Canada
| | - Douglas Miller
- Department of Medicine, McMaster University & St. Joseph’s Healthcare, Hamilton, ON Canada
| | - Melanie Kjarsgaard
- Department of Medicine, McMaster University & St. Joseph’s Healthcare, Hamilton, ON Canada
- Firestone Institute for Respiratory Health, 50 Charlton Avenue East, Hamilton, ON L8N 4A6 Canada
| | - Bruce Tan
- Department of Otolaryngology, Northwestern University, Feinberg School of Medicine, Chicago, IL USA
| | - Roma Sehmi
- Department of Medicine, McMaster University & St. Joseph’s Healthcare, Hamilton, ON Canada
| | - Nader Khalidi
- Department of Medicine, McMaster University & St. Joseph’s Healthcare, Hamilton, ON Canada
| | - Parameswaran Nair
- Department of Medicine, McMaster University & St. Joseph’s Healthcare, Hamilton, ON Canada
- Firestone Institute for Respiratory Health, 50 Charlton Avenue East, Hamilton, ON L8N 4A6 Canada
| |
Collapse
|
44
|
Lambrecht BN, Persson EK, Hammad H. Myeloid Cells in Asthma. Microbiol Spectr 2017; 5:10.1128/microbiolspec.mchd-0053-2016. [PMID: 28102118 PMCID: PMC11687443 DOI: 10.1128/microbiolspec.mchd-0053-2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Indexed: 12/24/2022] Open
Abstract
Asthma is a heterogeneous chronic inflammatory disorder of the airways, and not surprisingly, many myeloid cells play a crucial role in pathogenesis. Antigen-presenting dendritic cells are the first to recognize the allergens, pollutants, and viruses that are implicated in asthma pathogenesis, and subsequently initiate the adaptive immune response by migrating to lymph nodes. Eosinophils are the hallmark of type 2 inflammation, releasing toxic compounds in the airways and contributing to airway remodeling. Mast cells and basophils control both the early- and late-phase allergic response and contribute to alterations in smooth muscle reactivity. Finally, relatively little is known about neutrophils and macrophages in this disease. Although many of these myeloid cells respond well to treatment with inhaled steroids, there is now an increasing armamentarium of targeted biologicals that can specifically eliminate only one myeloid cell population, like eosinophils. It is only with those new tools that we will be able to fully understand the role of myeloid cells in chronic asthma in humans.
Collapse
Affiliation(s)
- Bart N Lambrecht
- VIB Center for Inflammation Research, Ghent University, 9000 Gent, Belgium
- Department of Pulmonary Medicine, Ghent University Hospital, 9000 Gent, Belgium
| | - Emma K Persson
- VIB Center for Inflammation Research, Ghent University, 9000 Gent, Belgium
| | - Hamida Hammad
- VIB Center for Inflammation Research, Ghent University, 9000 Gent, Belgium
- Department of Pulmonary Medicine, Ghent University Hospital, 9000 Gent, Belgium
| |
Collapse
|
45
|
Abstract
Sepsis remains a major clinical problem with high morbidity and mortality. As new inflammatory mediators are characterized, it is important to understand their roles in sepsis. Interleukin 33 (IL-33) is a recently described member of the IL-1 family that is widely expressed in cells of barrier tissues. Upon tissue damage, IL-33 is released as an alarmin and activates various types of cells of both the innate and adaptive immune system through binding to the ST2/IL-1 receptor accessory protein complex. IL-33 has apparent pleiotropic functions in many disease models, with its actions strongly shaped by the local microenvironment. Recent studies have established a role for the IL-33-ST2 axis in the initiation and perpetuation of inflammation during endotoxemia, but its roles in sepsis appear to be organism and model dependent. In this review, we focus on the recent advances in understanding the role of the IL-33/ST2 axis in sepsis.
Collapse
Affiliation(s)
- Hui Xu
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213 USA.,State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 China
| | - Heth R Turnquist
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213 USA.,Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 USA
| | - Rosemary Hoffman
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213 USA.,State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 China
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213 USA
| |
Collapse
|
46
|
Christiaansen AF, Syed MA, Ten Eyck PP, Hartwig SM, Durairaj L, Kamath SS, Varga SM. Altered Treg and cytokine responses in RSV-infected infants. Pediatr Res 2016; 80:702-709. [PMID: 27486703 PMCID: PMC6215710 DOI: 10.1038/pr.2016.130] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 04/20/2016] [Indexed: 01/17/2023]
Abstract
BACKGROUND Respiratory syncytial virus (RSV) is the leading cause of bronchiolitis and pneumonia in children under 1 y of age in the USA. The host immune response is believed to contribute to RSV-induced disease. We hypothesize that severe RSV infection in infants is mediated by insufficient regulation of the host immune response of regulatory T cells (Tregs) resulting in immunopathology. METHODS Blood and nasal aspirates from 23 RSV-infected and 17 control infants under 1 y of age were collected. Treg frequencies were determined by flow cytometry from peripheral blood mononuclear cells. Analysis of 24 cytokines was measured by multiplex assay on nasal aspirates. RESULTS We demonstrate that the frequency of activated Tregs is significantly reduced in the peripheral blood of RSV-infected infants compared with age-matched controls. Surprisingly, T helper (Th)17 related cytokines including interleukin (IL)-1β, IL-17A, and IL-23 were associated with a reduction in clinical symptoms of respiratory distress. In addition, the amount of IL-33 protein in nasal washes, a cytokine important in maintaining Treg homeostasis in mucosal tissues, was decreased in RSV-infected children. CONCLUSION These results suggest that decreased Treg numbers and an inability to properly control the host inflammatory response results in severe RSV infection.
Collapse
Affiliation(s)
| | | | - Patrick P. Ten Eyck
- Institute for Clinical and Translational Science, University of Iowa, Iowa City, IA
| | | | - Lakshmi Durairaj
- Department of Internal Medicine, University of Iowa, Iowa City, IA
| | | | - Steven M. Varga
- Department of Microbiology, University of Iowa, Iowa City, IA
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA
- Department of Pathology, University of Iowa, Iowa City, IA
| |
Collapse
|
47
|
Johnston LK, Hsu CL, Krier-Burris RA, Chhiba KD, Chien KB, McKenzie A, Berdnikovs S, Bryce PJ. IL-33 Precedes IL-5 in Regulating Eosinophil Commitment and Is Required for Eosinophil Homeostasis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 197:3445-3453. [PMID: 27683753 PMCID: PMC5101160 DOI: 10.4049/jimmunol.1600611] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 08/31/2016] [Indexed: 12/15/2022]
Abstract
Eosinophils are important in the pathogenesis of many diseases, including asthma, eosinophilic esophagitis, and eczema. Whereas IL-5 is crucial for supporting mature eosinophils (EoMs), the signals that support earlier eosinophil lineage events are less defined. The IL-33R, ST2, is expressed on several inflammatory cells, including eosinophils, and is best characterized for its role during the initiation of allergic responses in peripheral tissues. Recently, ST2 expression was described on hematopoietic progenitor subsets, where its function remains controversial. Our findings demonstrate that IL-33 is required for basal eosinophil homeostasis, because both IL-33- and ST2-deficient mice exhibited diminished peripheral blood eosinophil numbers at baseline. Exogenous IL-33 administration increased EoMs in both the bone marrow and the periphery in wild-type and IL-33-deficient, but not ST2-deficient, mice. Systemic IL-5 was also increased under this treatment, and blocking IL-5 with a neutralizing Ab ablated the IL-33-induced EoM expansion. The homeostatic hypereosinophilia seen in IL-5-transgenic mice was significantly lower with ST2 deficiency despite similar elevations in systemic IL-5. Finally, in vitro treatment of bone marrow cells with IL-33, but not IL-5, led to specific early expansion of IL-5Rα-expressing precursor cells. In summary, our findings establish a basal defect in eosinophilopoiesis in IL-33- and ST2-deficient mice and a mechanism whereby IL-33 supports EoMs by driving both systemic IL-5 production and the expansion of IL-5Rα-expressing precursor cells.
Collapse
Affiliation(s)
- Laura K Johnston
- Division of Allergy-Immunology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60610; and
| | - Chia-Lin Hsu
- Division of Allergy-Immunology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60610; and
| | - Rebecca A Krier-Burris
- Division of Allergy-Immunology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60610; and
| | - Krishan D Chhiba
- Division of Allergy-Immunology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60610; and
| | - Karen B Chien
- Division of Allergy-Immunology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60610; and
| | - Andrew McKenzie
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Sergejs Berdnikovs
- Division of Allergy-Immunology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60610; and
| | - Paul J Bryce
- Division of Allergy-Immunology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60610; and
| |
Collapse
|
48
|
Rigas D, Lewis G, Aron JL, Wang B, Banie H, Sankaranarayanan I, Galle-Treger L, Maazi H, Lo R, Freeman GJ, Sharpe AH, Soroosh P, Akbari O. Type 2 innate lymphoid cell suppression by regulatory T cells attenuates airway hyperreactivity and requires inducible T-cell costimulator-inducible T-cell costimulator ligand interaction. J Allergy Clin Immunol 2016; 139:1468-1477.e2. [PMID: 27717665 DOI: 10.1016/j.jaci.2016.08.034] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/19/2016] [Accepted: 08/02/2016] [Indexed: 01/14/2023]
Abstract
BACKGROUND Atopic diseases, including asthma, exacerbate type 2 immune responses and involve a number of immune cell types, including regulatory T (Treg) cells and the emerging type 2 innate lymphoid cells (ILC2s). Although ILC2s are potent producers of type 2 cytokines, the regulation of ILC2 activation and function is not well understood. OBJECTIVE In the present study, for the first time, we evaluate how Treg cells interact with pulmonary ILC2s and control their function. METHODS ILC2s and Treg cells were evaluated by using in vitro suppression assays, cell-contact assays, and gene expression panels. Also, human ILC2s and Treg cells were adoptively transferred into NOD SCID γC-deficient mice, which were given isotype or anti-inducible T-cell costimulator ligand (ICOSL) antibodies and then challenged with IL-33 and assessed for airway hyperreactivity. RESULTS We show that induced Treg cells, but not natural Treg cells, effectively suppress the production of the ILC2-driven proinflammatory cytokines IL-5 and IL-13 both in vitro and in vivo. Mechanistically, our data reveal the necessity of inducible T-cell costimulator (ICOS)-ICOS ligand cell contact for Treg cell-mediated ILC2 suppression alongside the suppressive cytokines TGF-β and IL-10. Using a translational approach, we then demonstrate that human induced Treg cells suppress syngeneic human ILC2s through ICOSL to control airway inflammation in a humanized ILC2 mouse model. CONCLUSION These findings suggest that peripheral expansion of induced Treg cells can serve as a promising therapeutic target against ILC2-dependent asthma.
Collapse
Affiliation(s)
- Diamanda Rigas
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, Calif
| | - Gavin Lewis
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, Calif; Janssen Research and Development, San Diego, Calif
| | - Jennifer L Aron
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, Calif
| | - Bowen Wang
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, Calif
| | | | - Ishwarya Sankaranarayanan
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, Calif
| | - Lauriane Galle-Treger
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, Calif
| | - Hadi Maazi
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, Calif
| | - Richard Lo
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, Calif
| | - Gordon J Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Department of Medicine, Harvard Medical School, Boston, Mass
| | - Arlene H Sharpe
- Department of Microbiology and Immunology, Harvard Medical School, Boston, Mass
| | | | - Omid Akbari
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, Calif.
| |
Collapse
|
49
|
Liu Q, Turnquist HR. Controlling the burn and fueling the fire: defining the role for the alarmin interleukin-33 in alloimmunity. Curr Opin Organ Transplant 2016; 21:45-52. [PMID: 26709577 DOI: 10.1097/mot.0000000000000265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review is to provide a general update on recent developments in the immunobiology of IL-33 and IL-33-targeted immune cells. We also discuss emerging concepts regarding the potential role IL-33 appears to play in altering alloimmune responses mediating host-versus-graft and graft-versus-host alloresponses. RECENT FINDINGS Stromal cells and leukocytes display regulated expression of IL-33 and may actively or passively secrete this pleotropic cytokine. Type 2 innate lymphoid cells and a large proportion of tissue resident regulatory T cells (Treg) express membrane-bound suppressor of tumorigenicity 2 (ST2), the IL-33 receptor. Although Treg are appreciated suppressors of the inflammatory function of immune cells, both type 2 innate lymphoid cells and tissue resident Treg could play key roles in tissue repair and homeostasis. The functions of IL-33 in transplantation are poorly understood. However, like other disease models, the functions of IL-33 in alloimmunity appear to be quite pleiotropic. IL-33 is associated with immune regulation and graft protection in cardiac transplant settings. Yet, it is highly proinflammatory and stimulates lethal graft-versus-host disease through its capacity to stimulate type 1 immunity. SUMMARY Intensive studies on IL-33/ST2 signaling pathways and ST2 cell populations in solid organ and cell transplantation are warranted. A better understanding of this important pathway will provide promising therapeutic targets controlling pathogenic alloimmune responses, as well as potentially facilitating the function of regulatory and reparative immune cells posttransplantation.
Collapse
Affiliation(s)
- Quan Liu
- aThomas E. Starzl Transplantation Institute and Department of Surgery, Pittsburgh, Pennsylvania, USA bDepartment of Cardiovascular Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China cDepartment of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania , USA
| | | |
Collapse
|
50
|
Peri-alloHCT IL-33 administration expands recipient T-regulatory cells that protect mice against acute GVHD. Blood 2016; 128:427-39. [PMID: 27222477 DOI: 10.1182/blood-2015-12-684142] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 05/17/2016] [Indexed: 12/31/2022] Open
Abstract
During allogeneic hematopoietic cell transplantation (alloHCT), nonhematopoietic cell interleukin-33 (IL-33) is augmented and released by recipient conditioning to promote type 1 alloimmunity and lethal acute graft-versus-host disease (GVHD). Yet, IL-33 is highly pleiotropic and exhibits potent immunoregulatory properties in the absence of coincident proinflammatory stimuli. We tested whether peri-alloHCT IL-33 delivery can protect against development of GVHD by augmenting IL-33-associated regulatory mechanisms. IL-33 administration augmented the frequency of regulatory T cells (Tregs) expressing the IL-33 receptor, suppression of tumorigenicity-2 (ST2), which persist following total body irradiation. ST2 expression is not exclusive to Tregs and IL-33 expands innate immune cells with regulatory or reparative properties. However, selective depletion of recipient Foxp3(+) cells concurrent with peri-alloHCT IL-33 administration accelerated acute GVHD lethality. IL-33-expanded Tregs protected recipients from GVHD by controlling macrophage activation and preventing accumulation of effector T cells in GVHD-target tissue. IL-33 stimulation of ST2 on Tregs activates p38 MAPK, which drives expansion of the ST2(+) Treg subset. Associated mechanistic studies revealed that proliferating Tregs exhibit IL-33-independent upregulation of ST2 and the adoptive transfer of st2(+) but not st2(-) Tregs mediated GVHD protection. In total, these data demonstrate the protective capacity of peri-alloHCT administration of IL-33 and IL-33-responsive Tregs in mouse models of acute GVHD. These findings provide strong support that the immunoregulatory relationship between IL-33 and Tregs can be harnessed therapeutically to prevent GVHD after alloHCT for treatment of malignancy or as a means for tolerance induction in solid organ transplantation.
Collapse
|