1
|
Huang L, Ding W, Wu H, Zheng J. miR-497/195 Cluster Affects the Development of Colorectal Cancer by Targeting FRA1. Mol Biotechnol 2024; 66:1019-1030. [PMID: 38147235 DOI: 10.1007/s12033-023-01000-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/16/2023] [Indexed: 12/27/2023]
Abstract
The miR-497-195 cluster facilitates the occurrence and development of cancer. This study aims to investigate whether the miR-195-497 cluster could regulate the progression of colorectal cancer by regulating the common target gene, FOS-related antigen 1 (FRA1). Overexpression of the miR-195/497 vector was used to evaluate the effect of overexpression of miR-195-497 clusters on the biological behavior of colon cancer cells. In animal experiments, tumor growth and metastasis were recorded by constructing a nude mouse model of a subcutaneously implanted tumor. miR-195 and miR-497 were expressed to varying degrees in Caco-2, LoVo, and HT-29 cells. Overexpression of miR-195/497 and inhibition of FRA1 decreased HT-29 cell proliferation, inhibited cell invasion and migration, and promoted Epithelial-mesenchymal transition (EMT). In vivo experiments showed that the overexpression of miR-195/497 or inhibition of FRA1 inhibited tumor growth, affected EMT in tumor cells, and inhibited the expression of FRA1. Additionally, the aforementioned conditions had the best effect when used together. The miR-195-497 cluster can regulate the proliferation, EMT, invasion, and migration of colorectal cancer cells by regulating the common target gene FRA1, thereby affecting the development of colorectal cancer.
Collapse
Affiliation(s)
- Li Huang
- Hospital of Guizhou Panjiang Coal Power Group Co. Ltd, Panzhou, China
| | - Wanjun Ding
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Hongxue Wu
- Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Jia Zheng
- Hospital of Guizhou Panjiang Coal Power Group Co. Ltd, Panzhou, China.
| |
Collapse
|
2
|
Yu Y, Lou Y, Zhu J, Wang X. Comprehensive analysis of diverse programmed cell death patterns in the prognosis, tumor microenvironment and drug sensitivity in hepatocellular carcinoma. Medicine (Baltimore) 2023; 102:e36239. [PMID: 38050240 PMCID: PMC10695610 DOI: 10.1097/md.0000000000036239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 10/31/2023] [Indexed: 12/06/2023] Open
Abstract
Treatment failure in patients with liver hepatocellular carcinoma (LIHC) is primarily caused by tumor progression and therapy resistance. Tumor immunity plays a crucial role in regulating the homeostasis of cells through the process of programmed cell death (PCD). However, the expression profile and clinical significance of PCD-related genes in LIHC require further investigation. In this study, we analyzed twelve commonly observed PCD patterns to construct a prognostic model. We collected RNA-seq data, genomics, and clinical information from TCGA-LIHC and GSE14520 cohorts to validate the prognostic gene signature. We discovered 75 PCD-related differentially expressed genes (DEGs) with prognostic significance in LIHC. Using these genes, we constructed a PCD-related score (PCDscore) with an 11-gene signature through LASSO COX regression analysis. Validation in the GSE14520 cohort demonstrated that LIHC patients with high PCDscore had poorer prognoses. Unsupervised clustering based on the 11 model genes revealed 3 molecular subtypes of LIHC with distinct prognoses. By incorporating PCDscore with clinical features, we constructed a highly predictive nomogram. Additionally, PCDscore was correlated with immune checkpoint genes and immune cell infiltration. LIHC patients with high PCDscore exhibited sensitivity to common chemotherapy drugs (such as cisplatin and docetaxel). To summarize, our study developed a novel PCDscore model that comprehensively analyzed different cell death modes, providing an accurate prediction of clinical prognosis and drug sensitivity for LIHC patients.
Collapse
Affiliation(s)
- Youlin Yu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Shaoxing University, Shaoxing, Zhejiang, China
| | - Yanglieguang Lou
- Department of Hepatobiliary Surgery, Affiliated Hospital of Shaoxing University, Shaoxing, Zhejiang, China
| | - Jinlong Zhu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Shaoxing University, Shaoxing, Zhejiang, China
| | - Xiaobo Wang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Shaoxing University, Shaoxing, Zhejiang, China
| |
Collapse
|
3
|
Volovat SR, Augustin I, Zob D, Boboc D, Amurariti F, Volovat C, Stefanescu C, Stolniceanu CR, Ciocoiu M, Dumitras EA, Danciu M, Apostol DGC, Drug V, Shurbaji SA, Coca LG, Leon F, Iftene A, Herghelegiu PC. Use of Personalized Biomarkers in Metastatic Colorectal Cancer and the Impact of AI. Cancers (Basel) 2022; 14:4834. [PMID: 36230757 PMCID: PMC9562853 DOI: 10.3390/cancers14194834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/18/2022] [Accepted: 09/29/2022] [Indexed: 12/09/2022] Open
Abstract
Colorectal cancer is a major cause of cancer-related death worldwide and is correlated with genetic and epigenetic alterations in the colonic epithelium. Genetic changes play a major role in the pathophysiology of colorectal cancer through the development of gene mutations, but recent research has shown an important role for epigenetic alterations. In this review, we try to describe the current knowledge about epigenetic alterations, including DNA methylation and histone modifications, as well as the role of non-coding RNAs as epigenetic regulators and the prognostic and predictive biomarkers in metastatic colorectal disease that can allow increases in the effectiveness of treatments. Additionally, the intestinal microbiota's composition can be an important biomarker for the response to strategies based on the immunotherapy of CRC. The identification of biomarkers in mCRC can be enhanced by developing artificial intelligence programs. We present the actual models that implement AI technology as a bridge connecting ncRNAs with tumors and conducted some experiments to improve the quality of the model used as well as the speed of the model that provides answers to users. In order to carry out this task, we implemented six algorithms: the naive Bayes classifier, the random forest classifier, the decision tree classifier, gradient boosted trees, logistic regression and SVM.
Collapse
Affiliation(s)
- Simona-Ruxandra Volovat
- Department of Medical Oncology-Radiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iasi, Romania
| | - Iolanda Augustin
- Department of Medical Oncology, AI.Trestioreanu Institute of Oncology, 022328 Bucharest, Romania
| | - Daniela Zob
- Department of Medical Oncology, AI.Trestioreanu Institute of Oncology, 022328 Bucharest, Romania
| | - Diana Boboc
- Department of Medical Oncology-Radiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iasi, Romania
| | - Florin Amurariti
- Department of Medical Oncology-Radiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iasi, Romania
| | - Constantin Volovat
- Department of Medical Oncology, “Euroclinic” Center of Oncology, 2 Vasile Conta Str., 700106 Iasi, Romania
| | - Cipriana Stefanescu
- Department of Biophysics and Medical Physics-Nuclear Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iasi, Romania
| | - Cati Raluca Stolniceanu
- Department of Biophysics and Medical Physics-Nuclear Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iasi, Romania
| | - Manuela Ciocoiu
- Department of Pathophysiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Eduard Alexandru Dumitras
- Department of Pathophysiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Department of Anesthesiology and Intensive Care, Regional Institute of Oncology, 700115 Iasi, Romania
| | - Mihai Danciu
- Pathology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | | | - Vasile Drug
- Department of Gastroenterology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iasi, Romania
- Gastroenterology Clinic, Institute of Gastroenterology and Hepatology, ‘St. Spiridon’ Clinical Hospital, 700115 Iasi, Romania
| | - Sinziana Al Shurbaji
- Gastroenterology Clinic, Institute of Gastroenterology and Hepatology, ‘St. Spiridon’ Clinical Hospital, 700115 Iasi, Romania
| | - Lucia-Georgiana Coca
- Faculty of Computer Science, Alexandru Ioan Cuza University, 700115 Iasi, Romania
| | - Florin Leon
- Faculty of Automatic Control and Computer Engineering, Gheorghe Asachi Technical University, 700115 Iasi, Romania
| | - Adrian Iftene
- Faculty of Computer Science, Alexandru Ioan Cuza University, 700115 Iasi, Romania
| | - Paul-Corneliu Herghelegiu
- Faculty of Automatic Control and Computer Engineering, Gheorghe Asachi Technical University, 700115 Iasi, Romania
| |
Collapse
|
4
|
Jin M, Xu S, Li J, Yao Y, Tang C. MicroRNA-3935 promotes human trophoblast cell epithelial-mesenchymal transition through tumor necrosis factor receptor-associated factor 6/regulator of G protein signaling 2 axis. Reprod Biol Endocrinol 2021; 19:134. [PMID: 34493304 PMCID: PMC8422670 DOI: 10.1186/s12958-021-00817-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 08/18/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Insufficient migration and invasion during trophoblast epithelial-mesenchymal transition (EMT) results in the occurrence and development of preeclampsia (PE), and our previous study has screened 52 miRNAs, whose expression levels are altered in the placental samples from PE patients, compared with the normal group. Among those, miR-3935 is one of the miRNAs being most significantly down-regulated, indicating its involvement in PE. However, the exact effect and molecular mechanisms remain unknown. METHODS In the present study, we investigate the roles and underlying mechanisms of miR-3935 in trophoblast EMT by use of the human extra-villous trophoblast cell line HTR-8/SVneo as well as human placental tissues and maternal blood samples obtained from 15 women with normal pregnancies and 15 women with PE. Experimental methods include transfection, quantitative reverse transcription-PCR (qRT-PCR), western blot, immunofluorescence staining, dual-luciferase assays, in vitro invasion and migration assays, RNA-Seq analysis, bisulfite sequencing and immunohistochemistry staining. RESULTS MiR-3935 expression is significantly decreased in both placentas and peripheral blood specimens of PE, and functionally, miR-3935 promotes EMT of trophoblast cells. Mechanistically, TRAF6 is identified to be a direct target of miR-3935 and TRAF6 exerts its negative effect on EMT of trophoblast cells by inhibition of RGS2, which down-regulates the methylation status of promoter of CDH1 gene that encodes E-Cadherin protein through induction of ALKBH1, resulting in increase of E-Cadherin and subsequently insufficient trophoblast EMT. CONCLUSIONS Together these results uncover a hitherto uncharacterized role of miR-3935/TRAF6/RGS2 axis in the function of human trophoblasts, which may pinpoint the molecular pathogenesis of PE and may be a prognostic biomarker and therapeutic target for such obstetrical diseases as PE.
Collapse
Affiliation(s)
- Meiyuan Jin
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, No. 3333, Binsheng Rd, Hangzhou, 310052, China
- Department of Obstetrics, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, China
| | - Shouying Xu
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, No. 3333, Binsheng Rd, Hangzhou, 310052, China
| | - Jiayong Li
- Department of Ophthalmology, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310007, China
| | - Yingyu Yao
- Department of Obstetrics, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, China
| | - Chao Tang
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, No. 3333, Binsheng Rd, Hangzhou, 310052, China.
| |
Collapse
|
5
|
Jiang Y, Chen P, Hu K, Dai G, Li J, Zheng D, Yuan H, He L, Xie P, Tu M, Peng S, Qu C, Lin W, Chung RT, Hong J. Inflammatory microenvironment of fibrotic liver promotes hepatocellular carcinoma growth, metastasis and sorafenib resistance through STAT3 activation. J Cell Mol Med 2021; 25:1568-1582. [PMID: 33410581 PMCID: PMC7875922 DOI: 10.1111/jcmm.16256] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 10/14/2019] [Accepted: 12/14/2020] [Indexed: 12/12/2022] Open
Abstract
The pro‐inflammatory and pro‐fibrotic liver microenvironment facilitates hepatocarcinogenesis. However, the effects and mechanisms by which the hepatic fibroinflammatory microenvironment modulates intrahepatic hepatocellular carcinoma (HCC) progression and its response to systematic therapy remain largely unexplored. We established a syngeneic orthotopic HCC mouse model with a series of persistent liver injury induced by CCl4 gavage, which mimic the dynamic effect of hepatic pathology microenvironment on intrahepatic HCC growth and metastasis. Non‐invasive bioluminescence imaging was applied to follow tumour progression over time. The effect of the liver microenvironment modulated by hepatic injury on sorafenib resistance was investigated in vivo and in vitro. We found that the persistent liver injury facilitated HCC growth and metastasis, which was positively correlated with the degree of liver inflammation rather than the extent of liver fibrosis. The inflammatory cytokines in liver tissue were clearly increased after liver injury. The two indicated cytokines, tumour necrosis factor‐α (TNF‐α) and interleukin‐6 (IL‐6), both promoted intrahepatic HCC progression via STAT3 activation. In addition, the hepatic inflammatory microenvironment contributed to sorafenib resistance through the anti‐apoptotic protein mediated by STAT3, and STAT3 inhibitor S3I‐201 significantly improved sorafenib efficacy impaired by liver inflammation. Clinically, the increased inflammation of liver tissues was accompanied with the up‐regulated STAT3 activation in HCC. Above all, we concluded that the hepatic inflammatory microenvironment promotes intrahepatic HCC growth, metastasis and sorafenib resistance through activation of STAT3.
Collapse
Affiliation(s)
- Yuchuan Jiang
- Department of Abdominal Surgery, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Peng Chen
- Department of Abdominal Surgery, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Kaishun Hu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Guanqi Dai
- Department of Abdominal Surgery, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jinying Li
- Department of Gastroenterology, Guangzhou Overseas Chinese Hospital, Jinan University, Guangzhou, China
| | - Dandan Zheng
- Department of Abdominal Surgery, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Hui Yuan
- Department of Abdominal Surgery, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Lu He
- Department of Radiotherapy, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Penghui Xie
- Department of Abdominal Surgery, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Mengxian Tu
- Department of Abdominal Surgery, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Shuang Peng
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China
| | - Chen Qu
- Department of Abdominal Surgery, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Wenyu Lin
- Liver Center and Gastrointestinal Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Raymond T Chung
- Liver Center and Gastrointestinal Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jian Hong
- Department of Abdominal Surgery, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
6
|
Zhou D, Ye C, Pan Z, Deng Y. SATB1 Knockdown Inhibits Proliferation and Invasion and Decreases Chemoradiation Resistance in Nasopharyngeal Carcinoma Cells by Reversing EMT and Suppressing MMP-9. Int J Med Sci 2021; 18:42-52. [PMID: 33390772 PMCID: PMC7738962 DOI: 10.7150/ijms.49792] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/09/2020] [Indexed: 12/21/2022] Open
Abstract
Background: Special AT-rich sequence binding protein 1 (SATB1) is a chromatin organizer and transcriptional regulator which regulate numerous cellular processes through effects on multiple gene expression. SATB1 is associated with drug resistance in several cancers. Whether SATB1 involves radiation resistance in nasopharyngeal carcinoma (NPC) and underlying mechanism of SATB1 to participate in chemoradiotherapy resistance in NPC have not been elaborated. Methods: Chemoradioresistant NPC cell lines 5-8F/DDP (cisplatin) and 5-8F/R (radiation) were developed from 5-8F cell line. The expressions of SATB1, MMP-9 and EMT markers (Vimentin and E-cadherin) in these cell lines were examined by reverse transcription-quantitative (RT-q) PCR and western blot (WB) analysis. Cell viabilities of 5-8F/DDP treated with various concentrations of DDP and 5-8F/R irradiated with various doses of X-ray at the indicated time were investigated by MTT test. SATB1 was silenced in 5-8F/DDP and 5-8F/R cells by short hairpin RNA, and then the expressions of SATB1, MMP-9, Vimentin and E-cadherin were evaluated by RT-qPCR and WB analysis; the abilities of cell proliferation and invasion were assessed using MTT and transwell assays, respectively. Drug and radiation resistance assays were performed after SATB1 knockdown and cell viability was detected by MTT method. Results: SATB1, MMP-9 and Vimentin were markedly upregulated in 5-8F/DDP and 5-8F/R cells compared with 5-8F cell, whereas E-cadherin was obviously downregulated. 5-8F/DDP and 5-8F/R cells displayed drug and radiation resistance to DDP or X-irradiation, respectively, while DDP or X-irradiation inhibited 5-8F cell viability in a time- and dose-dependent manner. Subsequently, knockdown of SATB1 resulted in decreased MMP-9 and Vimentin expression and increased E-cadherin expression in 5-8F/DDP and 5-8F/R. Furthermore, silencing of SATB1 suppressed proliferative and invasive abilities of 5-8F/DDP and 5-8F/R cells. Additionally, SATB1 knockdown reduced drug resistance of 5-8F/DDP cell to DDP and decreased radiation resistance of 5-8F/R cell to X-ray. Conclusion: These results suggest that high expression of SATB1 plays an important role in the malignant behavior of NPC and leads to X-radiation and drug resistance in NPC through promoting EMT process and enhancing MMP-9 expression. SATB1 may be a promising therapeutic target for aggressive and chemoradiation resistant NPC.
Collapse
Affiliation(s)
- Dongni Zhou
- Department of Pathology, Zhongshan Hospital, Xiamen University, Xiamen, Fujian, China
| | - Chunsheng Ye
- Department of Otolaryngology-Head and Neck Surgery, Zhongshan Hospital, Xiamen University, Xiamen, Fujian, China
| | - Zhiyong Pan
- Department of Otolaryngology-Head and Neck Surgery, Zhongshan Hospital, Xiamen University, Xiamen, Fujian, China
| | - Yanfei Deng
- Department of Otolaryngology-Head and Neck Surgery, Zhongshan Hospital, Xiamen University, Xiamen, Fujian, China.,Union School of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
7
|
Tian Y, Tang L, Yi P, Pan Q, Han Y, Shi Y, Rao S, Tan S, Xia L, Lin J, Oyang L, Tang Y, Liang J, Luo X, Liao Q, Wang H, Zhou Y. MiRNAs in Radiotherapy Resistance of Nasopharyngeal Carcinoma. J Cancer 2020; 11:3976-3985. [PMID: 32328201 PMCID: PMC7171507 DOI: 10.7150/jca.42734] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/27/2020] [Indexed: 02/06/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is one of the most common malignant tumors of the head and neck in Southeast Asia and southern China. Although the comprehensive treatment based on intensity-modulated radiation therapy improves outcomes, the five-year survival rate of NPC patients is low, and the recurrence remains high. Radiotherapy resistance is the main cause of poor prognosis in NPC patients. MicroRNAs (miRNAs) are a class of endogenous non-coding RNAs regulating various biological functions in eukaryotes. These miRNAs can regulate the development and progression of nasopharyngeal carcinoma by affecting the proliferation, apoptosis, movement, invasion and metastasis of NPC cells. The abnormal expression of miRNAs is closely related to radiotherapy sensitivity and prognosis of NPC patients, which can affect the transmission of related signaling pathways by regulating the expression of tumor suppressor genes and / or oncogenes, and therefore participate in radiotherapy resistance in nasopharyngeal carcinoma. Here, we review the mechanisms by which miRNAs may be involved in the radiotherapy resistance of nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Yutong Tian
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha 410013, Hunan, China.,University of South China, Hengyang, 421001, Hunan, China
| | - Lu Tang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha 410013, Hunan, China.,University of South China, Hengyang, 421001, Hunan, China
| | - Pin Yi
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha 410013, Hunan, China.,University of South China, Hengyang, 421001, Hunan, China
| | - Qing Pan
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha 410013, Hunan, China.,University of South China, Hengyang, 421001, Hunan, China
| | - Yaqian Han
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Yingrui Shi
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Shan Rao
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Shiming Tan
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Longzheng Xia
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Jinguan Lin
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Linda Oyang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Yanyan Tang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Jiaxin Liang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Xia Luo
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Qianjin Liao
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Hui Wang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Yujuan Zhou
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha 410013, Hunan, China
| |
Collapse
|
8
|
Epigenetic Regulation of Inflammatory Cytokine-Induced Epithelial-To-Mesenchymal Cell Transition and Cancer Stem Cell Generation. Cells 2019; 8:cells8101143. [PMID: 31557902 PMCID: PMC6829508 DOI: 10.3390/cells8101143] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/20/2019] [Accepted: 09/24/2019] [Indexed: 12/12/2022] Open
Abstract
The neoplastic transformation of normal to metastatic cancer cells is a complex multistep process involving the progressive accumulation of interacting genetic and epigenetic changes that alter gene function and affect cell physiology and homeostasis. Epigenetic changes including DNA methylation, histone modifications and changes in noncoding RNA expression, and deregulation of epigenetic processes can alter gene expression during the multistep process of carcinogenesis. Cancer progression and metastasis through an ‘invasion–metastasis cascade’ involving an epithelial-to-mesenchymal cell transition (EMT), the generation of cancer stem cells (CSCs), invasion of adjacent tissues, and dissemination are fueled by inflammation, which is considered a hallmark of cancer. Chronic inflammation is generated by inflammatory cytokines secreted by the tumor and the tumor-associated cells within the tumor microenvironment. Inflammatory cytokine signaling initiates signaling pathways leading to the activation of master transcription factors (TFs) such as Smads, STAT3, and NF-κB. Moreover, the same inflammatory responses also activate EMT-inducing TF (EMT-TF) families such as Snail, Twist, and Zeb, and epigenetic regulators including DNA and histone modifying enzymes and micoRNAs, through complex interconnected positive and negative feedback loops to regulate EMT and CSC generation. Here, we review the molecular regulatory feedback loops and networks involved in inflammatory cytokine-induced EMT and CSC generation.
Collapse
|
9
|
Wang J, Yin K, Lv X, Yang Q, Shao M, Liu X, Sun H. MicroRNA-24-3p regulates Hodgkin's lymphoma cell proliferation, migration and invasion by targeting DEDD. Oncol Lett 2018; 17:365-371. [PMID: 30655776 PMCID: PMC6313197 DOI: 10.3892/ol.2018.9599] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 10/09/2018] [Indexed: 01/07/2023] Open
Abstract
Hodgkin's lymphoma (HL) is a common hematologic tumor, and the incidence is increasing. At present, it is considered that miRNAs are closely related to HL. Substantial attention has been paid to the effects of miRNA on the pathophysiological process of HL. This study was focused on the potential role of miR-24-3p in HL by targeting DEDD. The reverse transcription-quantitative PCR (RT-qPCR) results demonstrated that miR-24-3p expression was highly elevated and DEDD expression reduced inversely in HL tissues compared to adjacent tissues. According to the results of CKK-8 assays, miR-24-3p was able to accelerate HL cell proliferation. In addition, the results of the Transwell assays also indicated that miR-24-3p promoted the invasion and migration abilities of HL cells. Moreover, the results demonstrated that miR-24-3p inhibited DEDD expression. Hence, the present study revealed that miR-24-3p could accelerate HL development through inhibiting DEDD.
Collapse
Affiliation(s)
- Jing Wang
- Department of Blood Transfusion, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Kai Yin
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Xianping Lv
- Department of Blood Transfusion, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Qiankun Yang
- Department of Blood Transfusion, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Ming Shao
- Department of Blood Transfusion, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Xin Liu
- Department of Blood Transfusion, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Hui Sun
- Department of Hematopathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
10
|
Vakili‐Ghartavol R, Mombeiny R, Salmaninejad A, Sorkhabadi SMR, Faridi‐Majidi R, Jaafari MR, Mirzaei H. Tumor‐associated macrophages and epithelial–mesenchymal transition in cancer: Nanotechnology comes into view. J Cell Physiol 2018; 233:9223-9236. [DOI: 10.1002/jcp.27027] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/25/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Roghayyeh Vakili‐Ghartavol
- Department of Medical Nanotechnology School of Advanced Technologies in Medicine, Tehran University of Medical Sciences Tehran Iran
| | - Reza Mombeiny
- Cellular and Molecular Research Center, Iran University of Medical Sciences Tehran Iran
| | - Arash Salmaninejad
- Drug Applied Research Center, Student Research Committee, Tabriz University of Medical Science Tabriz Iran
- Department of Medical Genetics Faculty of Medicine, Student Research Committee, Mashhad University of Medical Sciences Mashhad Iran
| | - Seyed Mahdi Rezayat Sorkhabadi
- Department of Medical Nanotechnology School of Advanced Technologies in Medicine, Tehran University of Medical Sciences Tehran Iran
- Department of Pharmacology School of Medicine, Tehran University of Medical Sciences Tehran Iran
- Department of Toxicology–Pharmacology Faculty of Pharmacy, Pharmaceutical Science Branch, Islamic Azad University (IAUPS) Tehran Iran
| | - Reza Faridi‐Majidi
- Department of Medical Nanotechnology School of Advanced Technologies in Medicine, Tehran University of Medical Sciences Tehran Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences Mashhad Iran
- Department of Pharmaceutical Nanotechnology School of Pharmacy, Mashhad University of Medical Sciences Mashhad Iran
| | - Hamed Mirzaei
- Department of Biomaterials Tissue Engineering and Nanotechnology, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences Isfahan Iran
| |
Collapse
|
11
|
Chen K, Qian W, Li J, Jiang Z, Cheng L, Yan B, Cao J, Sun L, Zhou C, Lei M, Duan W, Ma J, Ma Q, Ma Z. Loss of AMPK activation promotes the invasion and metastasis of pancreatic cancer through an HSF1-dependent pathway. Mol Oncol 2017; 11:1475-1492. [PMID: 28783244 PMCID: PMC5623818 DOI: 10.1002/1878-0261.12116] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/27/2017] [Accepted: 07/29/2017] [Indexed: 12/17/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy with a mortality rate that closely parallels its incidence rate, and a better understanding of the molecular and cellular mechanisms associated with the invasion and distant metastasis is required. Heat shock factor 1 (HSF1) is a very highly conserved factor in eukaryotes that regulates the protective heat shock response. Here, we show that HSF1 is abnormally activated in pancreatic cancer. The knockdown of HSF1 impaired the invasion and migration and epithelial–mesenchymal transition (EMT) of pancreatic cancer cells in vitro; however, the upregulation of HSF1 showed the opposite effects. In vivo, the pharmacological inhibition of HSF1 significantly reduced the tumor burden, decreased the incidence of invasion, and prolonged the overall survival of transgenic mice harboring the spontaneous pancreatic cancer. We suggest that the loss of AMP‐activated protein kinase (AMPK) activation mediates the abnormal activation of HSF1 based on the findings that phospho‐HSF1 (p‐HSF1) was highly expressed in human PDAC tissues with a low expression of p‐AMPK and that in those tissues with a high p‐AMPK expression, the level of p‐HSF1 was decreased. The in vivo and in vitro activation of AMPK impaired the activity of HSF1, and HSF1 mediated the effects of the AMPK knockdown‐induced pancreatic cancer invasion and migration. Our study revealed a novel mechanism by which the loss of AMPK activation amplifies the activity of HSF1 to promote the invasion and metastasis of pancreatic cancer.
Collapse
Affiliation(s)
- Ke Chen
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, China
| | - Weikun Qian
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, China
| | - Jie Li
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, China
| | - Zhengdong Jiang
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, China
| | - Liang Cheng
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, China
| | - Bin Yan
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, China
| | - Junyu Cao
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, China
| | - Liankang Sun
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, China
| | - Cancan Zhou
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, China
| | - Meng Lei
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, China
| | - Wanxing Duan
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, China
| | - Jiguang Ma
- Department of Anesthesiology, First Affiliated Hospital, Xi'an Jiaotong University, China
| | - Qingyong Ma
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, China
| | - Zhenhua Ma
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, China
| |
Collapse
|
12
|
Markopoulos GS, Roupakia E, Tokamani M, Chavdoula E, Hatziapostolou M, Polytarchou C, Marcu KB, Papavassiliou AG, Sandaltzopoulos R, Kolettas E. A step-by-step microRNA guide to cancer development and metastasis. Cell Oncol (Dordr) 2017; 40:303-339. [DOI: 10.1007/s13402-017-0341-9] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2017] [Indexed: 01/17/2023] Open
|
13
|
The short and the long: non-coding RNAs and growth factors in cancer progression. Biochem Soc Trans 2017; 45:51-64. [PMID: 28202659 DOI: 10.1042/bst20160131] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/26/2016] [Accepted: 12/01/2016] [Indexed: 12/12/2022]
Abstract
A relatively well-understood multistep process enables mutation-bearing cells to form primary tumours, which later use the circulation system to colonize new locations and form metastases. However, in which way the emerging abundance of different non-coding RNAs supports tumour progression is poorly understood. Here, we review new lines of evidence linking long and short types of non-coding RNAs to signalling pathways activated in the course of cancer progression by growth factors and by the tumour micro-environment. Resolving the new dimension of non-coding RNAs in oncogenesis will probably translate to earlier detection of cancer and improved therapeutic strategies.
Collapse
|
14
|
Zhao W, Qian H, Zhang R, Gao X, Gou X. MicroRNA targeting microtubule cross-linked protein (MACF1) would suppress the invasion and metastasis of malignant tumor. Med Hypotheses 2017; 104:25-29. [DOI: 10.1016/j.mehy.2017.05.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 05/06/2017] [Indexed: 12/31/2022]
|
15
|
Integrated genomic and molecular characterization of cervical cancer. Nature 2017; 543:378-384. [PMID: 28112728 PMCID: PMC5354998 DOI: 10.1038/nature21386] [Citation(s) in RCA: 1037] [Impact Index Per Article: 148.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 01/14/2017] [Indexed: 02/06/2023]
Abstract
Cervical cancer remains one of the leading causes of cancer-related deaths worldwide. Reported here is an extensive molecular characterization of 228 primary cervical cancers, the largest comprehensive genomic study of cervical cancer to date. We observed striking APOBEC mutagenesis patterns and identified SHKBP1, ERBB3, CASP8, HLA-A, and TGFBR2 as novel significantly mutated genes in cervical cancer. We also discovered novel amplifications in immune targets CD274/PD-L1 and PDCD1LG2/PD-L2, and the BCAR4 lncRNA that has been associated with response to lapatinib. HPV integration was observed in all HPV18-related cases and 76% of HPV16-related cases, and was associated with structural aberrations and increased target gene expression. We identified a unique set of endometrial-like cervical cancers, comprised predominantly of HPV-negative tumors with high frequencies of KRAS, ARID1A, and PTEN mutations. Integrative clustering of 178 samples identified Keratin-low Squamous, Keratin-high Squamous, and Adenocarcinoma-rich subgroups. These molecular analyses reveal new potential therapeutic targets for cervical cancers.
Collapse
|
16
|
Wang F, Ma Y, Wang H, Qin H. Reciprocal regulation between microRNAs and epigenetic machinery in colorectal cancer. Oncol Lett 2017; 13:1048-1057. [PMID: 28454212 DOI: 10.3892/ol.2017.5593] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 02/24/2016] [Indexed: 12/23/2022] Open
Abstract
Epigenetics encompasses changes in DNA methylation, histone and chromatin structure, and non-coding RNAs, specifically microRNA (miRNA) expression. Recent advances in the rapidly evolving field of colorectal cancer (CRC) epigenetics have revealed a complicated network of reciprocal interconnections between miRNAs and other epigenetic machinery. On the one hand, miRNA expression may be regulated by epigenetic mechanisms including DNA methylation and histone modifications. However, miRNAs may affect the epigenetic machinery by directly targeting its enzymatic components. In this study, we focus on the colorectal miRNA expression profile and further illustrate the reciprocal regulation in CRC, with the aim of offering new insights into the strategies of combatting the disease.
Collapse
Affiliation(s)
- Feng Wang
- Department of Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai 200072, P.R. China
| | - Yanlei Ma
- Department of Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai 200072, P.R. China
| | - Huamin Wang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Huanlong Qin
- Department of Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai 200072, P.R. China
| |
Collapse
|
17
|
Lee JU, Cheong HS, Shim EY, Bae DJ, Chang HS, Uh ST, Kim YH, Park JS, Lee B, Shin HD, Park CS. Gene profile of fibroblasts identify relation of CCL8 with idiopathic pulmonary fibrosis. Respir Res 2017; 18:3. [PMID: 28057004 PMCID: PMC5216573 DOI: 10.1186/s12931-016-0493-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 12/13/2016] [Indexed: 01/15/2023] Open
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is characterized by the complex interaction of cells involved in chronic inflammation and fibrosis. Global gene expression of a homogenous cell population will identify novel candidate genes. Methods Gene expression of fibroblasts derived from lung tissues (8 IPF and 4 controls) was profiled, and ontology and functional pathway were analyzed in the genes exhibiting >2 absolute fold changes with p-values < 0.05. CCL8 mRNA and protein levels were quantified using real-time PCR and ELISA. CCL8 localization was evaluated by immunofluorescence staining. Results One hundred seventy eight genes differentially expressed and 15 genes exhibited >10-fold change. Among them, 13 were novel in relation with IPF. CCL8 expression was 22.8-fold higher in IPF fibroblasts. The levels of CCL8 mRNA and protein were 3 and 9-fold higher in 14 IPF fibroblasts than those in 10 control fibroblasts by real-time PCR and ELISA (p = 0.022 and p = 0.026, respectively). The CCL8 concentrations in BAL fluid was significantly higher in 86 patients with IPF than those in 41 controls, and other interstitial lung diseases including non-specific interstitial pneumonia (n = 22), hypersensitivity pneumonitis (n = 20) and sarcoidosis (n = 19) (p < 0.005, respectively). Cut-off values of 2.29 pg/mL and 0.43 pg/mL possessed 80.2 and 70.7% accuracy for the discrimination of IPF from NC and the other lung diseases, respectively. IPF subjects with CCL8 levels >28.61 pg/mL showed shorter survival compared to those with lower levels (p = 0.012). CCL8 was expressed by α-SMA-positive cells in the interstitium of IPF. Conclusions Transcriptome analysis identified several novel IPF-related genes. Among them, CCL8 is a candidate molecule for the differential diagnosis and prediction of survival. Electronic supplementary material The online version of this article (doi:10.1186/s12931-016-0493-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jong-Uk Lee
- Department of Interdisciplinary Program in Biomedical Science Major, Soonchunhyang Graduate School, Bucheon, Korea
| | - Hyun Sub Cheong
- Department of Genetic Epidemiology, SNP Genetics, Inc., Sogang University, Seoul, Korea
| | - Eun-Young Shim
- Department of Interdisciplinary Program in Biomedical Science Major, Soonchunhyang Graduate School, Bucheon, Korea
| | - Da-Jeong Bae
- Department of Interdisciplinary Program in Biomedical Science Major, Soonchunhyang Graduate School, Bucheon, Korea
| | - Hun Soo Chang
- Department of Interdisciplinary Program in Biomedical Science Major, Soonchunhyang Graduate School, Bucheon, Korea.,Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang, University Bucheon Hospital, Bucheon, Korea
| | - Soo-Taek Uh
- Division of Respiratory and Allergy Medicine, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, 1174, Jung Dong, Wonmi-Gu, Bucheon, Gyeonggi Do, 420-021, Korea
| | - Young Hoon Kim
- Division of Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University, Chunan Hospital, Cheonan, Korea
| | - Jong-Sook Park
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang, University Bucheon Hospital, Bucheon, Korea
| | - Bora Lee
- Department of Biostatistic Consulting, Soon Chun Hyang Medical Center, Bucheon, Korea
| | - Hyoung Doo Shin
- Department of Genetic Epidemiology, SNP Genetics, Inc., Sogang University, Seoul, Korea.,Department of Life Science, Sogang University, Seoul, Korea
| | - Choon-Sik Park
- Department of Interdisciplinary Program in Biomedical Science Major, Soonchunhyang Graduate School, Bucheon, Korea. .,Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang, University Bucheon Hospital, Bucheon, Korea.
| |
Collapse
|
18
|
Yu G, Jia Z, Dou Z. miR-24-3p regulates bladder cancer cell proliferation, migration, invasion and autophagy by targeting DEDD. Oncol Rep 2016; 37:1123-1131. [PMID: 28000900 DOI: 10.3892/or.2016.5326] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 11/14/2016] [Indexed: 11/05/2022] Open
Abstract
microRNAs (miRNAs), a class of small non-coding RNA molecules, can regulate gene expression by interacting with the 3'-untranslated regions (3'UTR) of target genes and influence various biological processes. We investigated the potential role of miR-24-3p in the development of bladder cancer by regulating DEDD, a member of the death effector domain-containing protein family. First, we found that miR-24-3p was highly expressed and that DEDD was expressed at a low level in bladder cancer tissues compared with that in adjacent bladder tissues by qRT-PCR (P<0.0001). Second, we found that miR-24-3p promoted the proliferation ability of bladder cancer cells using the MTT assay and colony forming assay; and showed that miR-24-3p accelerated the migration and invasion of bladder cancer cells using migration and invasion assays (P<0.05). Moreover, miR-24-3p inhibited apoptosis of bladder cancer cells, as shown by flow cytometry (P<0.05). Western blot results demonstrated that miR-24-3p participated in autophagy of bladder cancer cells by DEDD. In addition, the tumor formation assay showed that miR-24-3p promoted the growth of bladder tumor in vivo. Furthermore, the luciferase reporter gene assay indicated that miR-24-3p suppressed DEDD gene transcription. Therefore, our study indicated that miR-24-3p promoted bladder cancer progression by inhibiting DEDD.
Collapse
Affiliation(s)
- Guoqiang Yu
- Department of Urological Surgery, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Zhaohui Jia
- Department of Urological Surgery, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Zhongling Dou
- Department of Urological Surgery, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| |
Collapse
|
19
|
Wang X, Yu M, Zhao K, He M, Ge W, Sun Y, Wang Y, Sun H, Hu Y. Upregulation of MiR-205 under hypoxia promotes epithelial-mesenchymal transition by targeting ASPP2. Cell Death Dis 2016; 7:e2517. [PMID: 27929537 PMCID: PMC5261019 DOI: 10.1038/cddis.2016.412] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/24/2016] [Accepted: 11/10/2016] [Indexed: 12/22/2022]
Abstract
The epithelial–mesenchymal transition (EMT) is one of the crucial procedures for cancer invasion and distal metastasis. Despite undergoing intensive studies, the mechanisms underlying EMT remain to be completely elucidated. Here, we identified that apoptosis-stimulating protein of p53-2 (ASPP2) is a novel target of MiR-205 in various cancers. Interestingly, the binding site of MiR-205 at the 3′-untranslated region of ASPP2 was highly conserved among different species. An inverse correlation between MiR-205 and ASPP2 was further observed in vivo in cervical cancers, suggesting MiR-205 may be an important physiological inhibitor of ASPP2. Hypoxia is a hallmark of solid tumor microenvironment and one of such conditions to induce EMT. Notably, MiR-205 was remarkably induced by hypoxia in cervical and lung cancer cells. A marked suppression of ASPP2 was observed simultaneously. Further studies confirmed that hypoxia-induced ASPP2 suppression was mainly attributed to the elevated MiR-205. Interestingly, the alteration of MiR-205/ASPP2 under hypoxia was accompanied with the decreased epithelial marker E-cadherin and increased mesenchymal marker Vimentin, as well as a morphological transition from the typical cobblestone-like appearance to the mesenchymal-like structure. More importantly, MiR-205 mimics or ASPP2 silencing similarly promoted EMT process. By contrast, ASPP2 recovery or MiR-205 inhibitor reversed MiR-205-dependent EMT. Further studies demonstrated that the newly revealed MiR-205/ASPP2 axis promoted cell migration and also increased cell proliferation both in vivo and in vitro. These data together implicated a critical impact of MiR-205/ASPP2 on promoting EMT. MiR-205/ASPP2 may be potential diagnostic and therapeutic biomarkers in cervical and lung cancers.
Collapse
Affiliation(s)
- Xingwen Wang
- School of Life Science and Technology, Harbin Institute of Technology, Shenzhen, China.,Shenzhen Graduate School of Harbin Institute of Technology, Shenzhen, China
| | - Miao Yu
- School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin, China
| | - Kunming Zhao
- School of Life Science and Technology, Harbin Institute of Technology, Shenzhen, China
| | - Mengmeng He
- School of Life Science and Technology, Harbin Institute of Technology, Shenzhen, China
| | - Wenjie Ge
- School of Life Science and Technology, Harbin Institute of Technology, Shenzhen, China.,Shenzhen Graduate School of Harbin Institute of Technology, Shenzhen, China
| | - Yuhui Sun
- The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yihua Wang
- Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, UK
| | - Haizhu Sun
- The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Ying Hu
- School of Life Science and Technology, Harbin Institute of Technology, Shenzhen, China.,Shenzhen Graduate School of Harbin Institute of Technology, Shenzhen, China
| |
Collapse
|
20
|
Shah MY, Ferrajoli A, Sood AK, Lopez-Berestein G, Calin GA. microRNA Therapeutics in Cancer - An Emerging Concept. EBioMedicine 2016; 12:34-42. [PMID: 27720213 PMCID: PMC5078622 DOI: 10.1016/j.ebiom.2016.09.017] [Citation(s) in RCA: 322] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/16/2016] [Accepted: 09/16/2016] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs) are an evolutionarily conserved class of small, regulatory non-coding RNAs that negatively regulate protein coding gene and other non-coding transcripts expression. miRNAs have been established as master regulators of cellular processes, and they play a vital role in tumor initiation, progression and metastasis. Further, widespread deregulation of microRNAs have been reported in several cancers, with several microRNAs playing oncogenic and tumor suppressive roles. Based on these, miRNAs have emerged as promising therapeutic tools for cancer management. In this review, we have focused on the roles of miRNAs in tumorigenesis, the miRNA-based therapeutic strategies currently being evaluated for use in cancer, and the advantages and current challenges to their use in the clinic. miRNAs can act as oncogenes or tumor suppressors depending on the specific tissue/cancer targets. miRNAs can be used as drugs or can be targets for drugs. Clinical trials using miRNA mimetics or anti-miRNAs as therapeutic targets are currently underway and show promising results.
Collapse
Affiliation(s)
- Maitri Y Shah
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alessandra Ferrajoli
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anil K Sood
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA and Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gabriel Lopez-Berestein
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA and Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - George A Calin
- Departments of Experimental Therapeutics and Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA and Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
21
|
Soluble IL6R represents a miR-34a target: potential implications for the recently identified IL-6R/STAT3/miR-34a feed-back loop. Oncotarget 2016; 6:14026-32. [PMID: 26091352 PMCID: PMC4546448 DOI: 10.18632/oncotarget.4334] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 05/24/2015] [Indexed: 01/10/2023] Open
Abstract
We previously reported that IL-6R, STAT3 and miR-34a form a positive feedback-loop, which promotes epithelial to mesenchymal transition (EMT), invasion, and metastasis of colorectal cancer (CRC) [1]. In that study only the membrane-bound form of the IL-6R was shown to be repressed by miR-34a. Here, we show that also the mRNA encoding the soluble IL6R (s-IL-6R) is directly targeted and repressed by miR-34a. Accordingly, the concentration of s-IL6R protein was decreased in conditioned media of CRC cell lines ectopically expressing miR-34a. The s-IL-6R mediates IL-6 trans-signaling, which also affects cells that do not express the IL-6R. Since IL-6 trans-signaling is involved in numerous inflammatory disease states these findings may be relevant for future therapeutic approaches.
Collapse
|
22
|
Berindan-Neagoe I, Calin GA. Molecular pathways: microRNAs, cancer cells, and microenvironment. Clin Cancer Res 2015; 20:6247-53. [PMID: 25512634 DOI: 10.1158/1078-0432.ccr-13-2500] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
One of the most unexpected discoveries in molecular oncology over the last decade is the interplay between abnormalities in protein-coding genes and short noncoding microRNAs (miRNA) that are causally involved in cancer initiation, progression, and dissemination. This phenomenon was initially defined in malignant cells; however, in recent years, more data have accumulated describing the active participation of miRNAs produced by microenvironment cells. As hormones, miRNAs can be released by a donor cell in various forms of vesicles or as "free" molecules secreted by active mechanisms. These miRNAs spread as signaling molecules that are uptaken either as exosomes or as "free" RNAs, by cells located in other parts of the organism. Here, we discuss the communication between cancer cells and the microenvironment through miRNAs. We further expand this in a more translational context and present miRNAs as predictors of treatment response, as crucial agents in targeted therapeutics, and as significant molecules to target.
Collapse
Affiliation(s)
- Ioana Berindan-Neagoe
- Research Center for Functional Genomics and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania. Department of Immunology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania. Department of Functional Genomics and Experimental Pathology, "Ion Chiricuta" The Oncology Institute, Cluj-Napoca, Romania. Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas. Center for RNA Interference and Noncoding RNAs, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
23
|
Yuan B, Shen H, Lin L, Su T, Zhong L, Yang Z. MicroRNA367 negatively regulates the inflammatory response of microglia by targeting IRAK4 in intracerebral hemorrhage. J Neuroinflammation 2015; 12:206. [PMID: 26552593 PMCID: PMC4640168 DOI: 10.1186/s12974-015-0424-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 10/31/2015] [Indexed: 12/22/2022] Open
Abstract
Background Intracerebral hemorrhage (ICH) induces microglial activation and the release of inflammatory cytokines, leading to inflammation in the brain. IRAK4, an essential component of the MyD88-dependent pathway, activates subsets of divergent signaling pathways in inflammation. Methods In the experiment, microglia were stimulated with erythrocyte lysates, and then miR-367, IRAK4, NF-ĸB activation and downstream proinflammatory mediator production were analyzed. In addition, inflammation, brain edema, and neurological functions in ICH mice were also assessed. Results Here, we report that ICH downregulated miR-367 expression but upregulated IRAK4 expression in primary microglia. We also demonstrate that miR-367 suppressed IRAK4 expression by directly binding its 3′-untranslated region. MiR-367 inhibited NF-ĸB activation and downstream proinflammatory mediator production. Knocking down IRAK4 in microglia significantly decreased the IRAK4 expression and inhibited the NF-ĸB activation and the downstream production of proinflammatory mediators. In addition, our results indicate that miR-367 could inhibit expression of proinflammatory cytokines, reduce brain edema, and improve neurological functions in ICH mice. Conclusions In conclusion, our study demonstrates that miR-367/IRAK4 pathway plays an important role in microglial activation and neuroinflammation in ICH. Our finding also suggests that miR-367 might represent a potential therapeutic target for ICH.
Collapse
Affiliation(s)
- Bangqing Yuan
- Department of Neurosurgery, The 476th Hospital of PLA, Fuzhou, Fujian, 350025, China.
| | - Hanchao Shen
- Department of Neurosurgery, The 476th Hospital of PLA, Fuzhou, Fujian, 350025, China.
| | - Li Lin
- Department of Neurosurgery, The 476th Hospital of PLA, Fuzhou, Fujian, 350025, China.
| | - Tonggang Su
- Department of Neurosurgery, The 476th Hospital of PLA, Fuzhou, Fujian, 350025, China.
| | - Lina Zhong
- Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160, China.
| | - Zhao Yang
- Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160, China.
| |
Collapse
|
24
|
The Regulatory Role of MicroRNAs in EMT and Cancer. JOURNAL OF ONCOLOGY 2015; 2015:865816. [PMID: 25883654 PMCID: PMC4389820 DOI: 10.1155/2015/865816] [Citation(s) in RCA: 206] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 10/09/2014] [Indexed: 02/07/2023]
Abstract
The epithelial to mesenchymal transition (EMT) is a powerful process in tumor invasion, metastasis, and tumorigenesis and describes the molecular reprogramming and phenotypic changes that are characterized by a transition from polarized immotile epithelial cells to motile mesenchymal cells. It is now well known that miRNAs are important regulators of malignant transformation and metastasis. The aberrant expression of the miR-200 family in cancer and its involvement in the initiation and progression of malignant transformation has been well demonstrated. The metastasis suppressive role of the miR-200 members is strongly associated with a pathologic EMT. This review describes the most recent advances regarding the influence of miRNAs in EMT and the control they exert in major signaling pathways in various cancers. The ability of the autocrine TGF-β/ZEB/miR-200 signaling regulatory network to control cell plasticity between the epithelial and mesenchymal state is further discussed. Various miRNAs are reported to directly target EMT transcription factors and components of the cell architecture, as well as miRNAs that are able to reverse the EMT process by targeting the Notch and Wnt signaling pathways. The link between cancer stem cells and EMT is also reported and the most recent developments regarding clinical trials that are currently using anti-miRNA constructs are further discussed.
Collapse
|
25
|
Ribeiro AS, Paredes J. P-Cadherin Linking Breast Cancer Stem Cells and Invasion: A Promising Marker to Identify an "Intermediate/Metastable" EMT State. Front Oncol 2015; 4:371. [PMID: 25601904 PMCID: PMC4283504 DOI: 10.3389/fonc.2014.00371] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 12/11/2014] [Indexed: 01/06/2023] Open
Abstract
Epithelial–mesenchymal transition (also known as EMT) is a fundamental mechanism occurring during embryonic development and tissue differentiation, being also crucial for cancer progression. Actually, the EMT program contributes to the dissemination of cancer cells from solid tumors and to the formation of micro-metastasis that subsequently develop into clinically detectable metastases. Besides being a process that is defined by the progressive loss of epithelial cell characteristics and the acquisition of mesenchymal features, EMT has also been implicated in therapy resistance, immune escape, and maintenance of cancer stem cell properties, such as self-renewal capacity. However, the majority of the studies usually neglect the progressive alterations occurring during intermediate EMT states, which imply a range of phenotypic cellular heterogeneity that can potentially generate more metastable and plastic tumor cells. In fact, few studies have tried to identify these transitory states, partly due to the current lack of a detailed understanding of EMT, as well as of reliable readouts for its progression. Herein, a brief review of evidences is presented, showing that P-cadherin expression, which has been already identified as a breast cancer stem cell marker and invasive promoter, is probably able to identify an intermediate EMT state associated with a metastable phenotype. This hypothesis is based on our own work, as well as on the results described by others, which suggest the use of P-cadherin as a promising EMT marker, clearly functioning as an important clinical prognostic factor and putative therapeutic target in breast carcinogenesis.
Collapse
Affiliation(s)
- Ana Sofia Ribeiro
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP) , Porto , Portugal
| | - Joana Paredes
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP) , Porto , Portugal ; Department of Pathology and Oncology, Faculty of Medicine of the University of Porto , Porto , Portugal
| |
Collapse
|