1
|
Jayawickrama SM, Ranaweera PM, Pradeep RGGR, Jayasinghe YA, Senevirathna K, Hilmi AJ, Rajapakse RMG, Kanmodi KK, Jayasinghe RD. Developments and future prospects of personalized medicine in head and neck squamous cell carcinoma diagnoses and treatments. Cancer Rep (Hoboken) 2024; 7:e2045. [PMID: 38522008 PMCID: PMC10961052 DOI: 10.1002/cnr2.2045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 02/07/2024] [Accepted: 03/05/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Precision healthcare has entered a new era because of the developments in personalized medicine, especially in the diagnosis and treatment of head and neck squamous cell carcinoma (HNSCC). This paper explores the dynamic landscape of personalized medicine as applied to HNSCC, encompassing both current developments and future prospects. RECENT FINDINGS The integration of personalized medicine strategies into HNSCC diagnosis is driven by the utilization of genetic data and biomarkers. Epigenetic biomarkers, which reflect modifications to DNA that can influence gene expression, have emerged as valuable indicators for early detection and risk assessment. Treatment approaches within the personalized medicine framework are equally promising. Immunotherapy, gene silencing, and editing techniques, including RNA interference and CRISPR/Cas9, offer innovative means to modulate gene expression and correct genetic aberrations driving HNSCC. The integration of stem cell research with personalized medicine presents opportunities for tailored regenerative approaches. The synergy between personalized medicine and technological advancements is exemplified by artificial intelligence (AI) and machine learning (ML) applications. These tools empower clinicians to analyze vast datasets, predict patient responses, and optimize treatment strategies with unprecedented accuracy. CONCLUSION The developments and prospects of personalized medicine in HNSCC diagnosis and treatment offer a transformative approach to managing this complex malignancy. By harnessing genetic insights, biomarkers, immunotherapy, gene editing, stem cell therapies, and advanced technologies like AI and ML, personalized medicine holds the key to enhancing patient outcomes and ushering in a new era of precision oncology.
Collapse
Affiliation(s)
| | | | | | | | - Kalpani Senevirathna
- Centre for Research in Oral Cancer, Faculty of Dental SciencesUniversity of PeradeniyaKandySri Lanka
| | | | | | - Kehinde Kazeem Kanmodi
- School of DentistryUniversity of RwandaKigaliRwanda
- Faculty of DentistryUniversity of PuthisastraPhnom PenhCambodia
- Cephas Health Research Initiative IncIbadanNigeria
- School of Health and Life SciencesTeesside UniversityMiddlesbroughUK
| | - Ruwan Duminda Jayasinghe
- Centre for Research in Oral Cancer, Faculty of Dental SciencesUniversity of PeradeniyaKandySri Lanka
- Faculty of DentistryUniversity of PuthisastraPhnom PenhCambodia
- School of Health and Life SciencesTeesside UniversityMiddlesbroughUK
- Department of Oral Medicine and Periodontology, Faculty of Dental SciencesUniversity of PeradeniyaKandySri Lanka
| |
Collapse
|
2
|
Schniewind I, Besso MJ, Klicker S, Schwarz FM, Hadiwikarta WW, Richter S, Löck S, Linge A, Krause M, Dubrovska A, Baumann M, Kurth I, Peitzsch C. Epigenetic Targeting to Overcome Radioresistance in Head and Neck Cancer. Cancers (Basel) 2024; 16:730. [PMID: 38398123 PMCID: PMC10886471 DOI: 10.3390/cancers16040730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 02/25/2024] Open
Abstract
(1) Background: The sensitivity of head and neck squamous cell carcinoma (HNSCC) to ionizing radiation, among others, is determined by the number of cells with high clonogenic potential and stem-like features. These cellular characteristics are dynamically regulated in response to treatment and may lead to an enrichment of radioresistant cells with a cancer stem cell (CSC) phenotype. Epigenetic mechanisms, particularly DNA and histone methylation, are key regulators of gene-specific transcription and cellular plasticity. Therefore, we hypothesized that specific epigenetic targeting may prevent irradiation-induced plasticity and may sensitize HNSCC cells to radiotherapy. (2) Methods: We compared the DNA methylome and intracellular concentrations of tricarboxylic acid cycle metabolites in radioresistant FaDu and Cal33 cell lines with their parental controls, as well as aldehyde dehydrogenase (ALDH)-positive CSCs with negative controls. Moreover, we conducted a screen of a chemical library targeting enzymes involved in epigenetic regulation in combination with irradiation and analyzed the clonogenic potential, sphere formation, and DNA repair capacity to identify compounds with both radiosensitizing and CSC-targeting potential. (3) Results: We identified the histone demethylase inhibitor GSK-J1, which targets UTX (KDM6A) and JMJD3 (KDM6B), leading to increased H3K27 trimethylation, heterochromatin formation, and gene silencing. The clonogenic survival assay after siRNA-mediated knock-down of both genes radiosensitized Cal33 and SAS cell lines. Moreover, high KDM6A expression in tissue sections of patients with HNSCC was associated with improved locoregional control after primary (n = 137) and post-operative (n = 187) radio/chemotherapy. Conversely, high KDM6B expression was a prognostic factor for reduced overall survival. (4) Conclusions: Within this study, we investigated cellular and molecular mechanisms underlying irradiation-induced cellular plasticity, a key inducer of radioresistance, with a focus on epigenetic alterations. We identified UTX (KDM6A) as a putative prognostic and therapeutic target for HNSCC patients treated with radiotherapy.
Collapse
Affiliation(s)
- Iñaki Schniewind
- National Center for Tumor Diseases (NCT), Faculty of Medicine, University Hospital Carl Gustav Carus, Dresden University of Technology, 01307 Dresden, Germany; (I.S.)
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine, University Hospital Carl Gustav Carus, Dresden University of Technology and Helmholtz-Zentrum Dresden-Rossendorf, 01307 Dresden, Germany
- Department of Neurology, Carl Gustav Carus University Hospital, Dresden University of Technology, 01307 Dresden, Germany
| | - Maria José Besso
- German Cancer Research Center (DKFZ), Division Radiooncology/Radiobiology, 69120 Heidelberg, Germany
| | - Sebastian Klicker
- National Center for Tumor Diseases (NCT), Faculty of Medicine, University Hospital Carl Gustav Carus, Dresden University of Technology, 01307 Dresden, Germany; (I.S.)
| | - Franziska Maria Schwarz
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine, University Hospital Carl Gustav Carus, Dresden University of Technology and Helmholtz-Zentrum Dresden-Rossendorf, 01307 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, 01307 Dresden, Germany
- Institute of Radiooncology—OncoRay, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany
| | - Wahyu Wijaya Hadiwikarta
- German Cancer Research Center (DKFZ), Division Radiooncology/Radiobiology, 69120 Heidelberg, Germany
| | - Susan Richter
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Dresden University of Technology, 01307 Dresden, Germany
| | - Steffen Löck
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine, University Hospital Carl Gustav Carus, Dresden University of Technology and Helmholtz-Zentrum Dresden-Rossendorf, 01307 Dresden, Germany
- Department of Radiation Oncology, University Hospital Carl Gustav Carus, 01307 Dresden, Germany
| | - Annett Linge
- National Center for Tumor Diseases (NCT), Faculty of Medicine, University Hospital Carl Gustav Carus, Dresden University of Technology, 01307 Dresden, Germany; (I.S.)
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine, University Hospital Carl Gustav Carus, Dresden University of Technology and Helmholtz-Zentrum Dresden-Rossendorf, 01307 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, 01307 Dresden, Germany
- Department of Radiation Oncology, University Hospital Carl Gustav Carus, 01307 Dresden, Germany
| | - Mechthild Krause
- National Center for Tumor Diseases (NCT), Faculty of Medicine, University Hospital Carl Gustav Carus, Dresden University of Technology, 01307 Dresden, Germany; (I.S.)
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine, University Hospital Carl Gustav Carus, Dresden University of Technology and Helmholtz-Zentrum Dresden-Rossendorf, 01307 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, 01307 Dresden, Germany
- Institute of Radiooncology—OncoRay, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany
- Department of Radiation Oncology, University Hospital Carl Gustav Carus, 01307 Dresden, Germany
| | - Anna Dubrovska
- National Center for Tumor Diseases (NCT), Faculty of Medicine, University Hospital Carl Gustav Carus, Dresden University of Technology, 01307 Dresden, Germany; (I.S.)
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine, University Hospital Carl Gustav Carus, Dresden University of Technology and Helmholtz-Zentrum Dresden-Rossendorf, 01307 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, 01307 Dresden, Germany
- Institute of Radiooncology—OncoRay, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany
| | - Michael Baumann
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine, University Hospital Carl Gustav Carus, Dresden University of Technology and Helmholtz-Zentrum Dresden-Rossendorf, 01307 Dresden, Germany
- German Cancer Research Center (DKFZ), Division Radiooncology/Radiobiology, 69120 Heidelberg, Germany
| | - Ina Kurth
- German Cancer Research Center (DKFZ), Division Radiooncology/Radiobiology, 69120 Heidelberg, Germany
| | - Claudia Peitzsch
- National Center for Tumor Diseases (NCT), Faculty of Medicine, University Hospital Carl Gustav Carus, Dresden University of Technology, 01307 Dresden, Germany; (I.S.)
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine, University Hospital Carl Gustav Carus, Dresden University of Technology and Helmholtz-Zentrum Dresden-Rossendorf, 01307 Dresden, Germany
- Center for Regenerative Therapies Dresden (CRTD), Dresden University of Technology, 01307 Dresden, Germany
| |
Collapse
|
3
|
Mazzeo L, Ghosh S, Di Cicco E, Isma J, Tavernari D, Samarkina A, Ostano P, Youssef MK, Simon C, Dotto GP. ANKRD1 is a mesenchymal-specific driver of cancer-associated fibroblast activation bridging androgen receptor loss to AP-1 activation. Nat Commun 2024; 15:1038. [PMID: 38310103 PMCID: PMC10838290 DOI: 10.1038/s41467-024-45308-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 01/19/2024] [Indexed: 02/05/2024] Open
Abstract
There are significant commonalities among several pathologies involving fibroblasts, ranging from auto-immune diseases to fibrosis and cancer. Early steps in cancer development and progression are closely linked to fibroblast senescence and transformation into tumor-promoting cancer-associated fibroblasts (CAFs), suppressed by the androgen receptor (AR). Here, we identify ANKRD1 as a mesenchymal-specific transcriptional coregulator under direct AR negative control in human dermal fibroblasts (HDFs) and a key driver of CAF conversion, independent of cellular senescence. ANKRD1 expression in CAFs is associated with poor survival in HNSCC, lung, and cervical SCC patients, and controls a specific gene expression program of myofibroblast CAFs (my-CAFs). ANKRD1 binds to the regulatory region of my-CAF effector genes in concert with AP-1 transcription factors, and promotes c-JUN and FOS association. Targeting ANKRD1 disrupts AP-1 complex formation, reverses CAF activation, and blocks the pro-tumorigenic properties of CAFs in an orthotopic skin cancer model. ANKRD1 thus represents a target for fibroblast-directed therapy in cancer and potentially beyond.
Collapse
Affiliation(s)
- Luigi Mazzeo
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Soumitra Ghosh
- ORL service, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Emery Di Cicco
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Jovan Isma
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Daniele Tavernari
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Cancer Center Léman, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | | | - Paola Ostano
- Cancer Genomics Laboratory, Edo and Elvo Tempia Valenta Foundation, Biella, 13900, Italy
| | - Markus K Youssef
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Christian Simon
- ORL service, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- International Cancer Prevention Institute, Epalinges, Switzerland
| | - G Paolo Dotto
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland.
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.
- ORL service, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.
- International Cancer Prevention Institute, Epalinges, Switzerland.
| |
Collapse
|
4
|
Braune EB, Geist F, Tang X, Kalari K, Boughey J, Wang L, Leon-Ferre RA, D'Assoro AB, Ingle JN, Goetz MP, Kreis J, Wang K, Foukakis T, Seshire A, Wienke D, Lendahl U. Identification of a Notch transcriptomic signature for breast cancer. Breast Cancer Res 2024; 26:4. [PMID: 38172915 PMCID: PMC10765899 DOI: 10.1186/s13058-023-01757-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Dysregulated Notch signalling contributes to breast cancer development and progression, but validated tools to measure the level of Notch signalling in breast cancer subtypes and in response to systemic therapy are largely lacking. A transcriptomic signature of Notch signalling would be warranted, for example to monitor the effects of future Notch-targeting therapies and to learn whether altered Notch signalling is an off-target effect of current breast cancer therapies. In this report, we have established such a classifier. METHODS To generate the signature, we first identified Notch-regulated genes from six basal-like breast cancer cell lines subjected to elevated or reduced Notch signalling by culturing on immobilized Notch ligand Jagged1 or blockade of Notch by γ-secretase inhibitors, respectively. From this cadre of Notch-regulated genes, we developed candidate transcriptomic signatures that were trained on a breast cancer patient dataset (the TCGA-BRCA cohort) and a broader breast cancer cell line cohort and sought to validate in independent datasets. RESULTS An optimal 20-gene transcriptomic signature was selected. We validated the signature on two independent patient datasets (METABRIC and Oslo2), and it showed an improved coherence score and tumour specificity compared with previously published signatures. Furthermore, the signature score was particularly high for basal-like breast cancer, indicating an enhanced level of Notch signalling in this subtype. The signature score was increased after neoadjuvant treatment in the PROMIX and BEAUTY patient cohorts, and a lower signature score generally correlated with better clinical outcome. CONCLUSIONS The 20-gene transcriptional signature will be a valuable tool to evaluate the response of future Notch-targeting therapies for breast cancer, to learn about potential effects on Notch signalling from conventional breast cancer therapies and to better stratify patients for therapy considerations.
Collapse
Affiliation(s)
- Eike-Benjamin Braune
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | | | - Xiaojia Tang
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Krishna Kalari
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Judy Boughey
- Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Liewei Wang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | | | | | - James N Ingle
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Matthew P Goetz
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | | | - Kang Wang
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Theodoros Foukakis
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | | | | | - Urban Lendahl
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
5
|
Li J, Xia Y, Kong S, Yang K, Chen H, Zhang Y, Liu D, Chen L, Sun X. Single-cell RNA-seq reveals actinic keratosis-specific keratinocyte subgroups and their crosstalk with secretory-papillary fibroblasts. J Eur Acad Dermatol Venereol 2023; 37:2273-2283. [PMID: 37357444 DOI: 10.1111/jdv.19289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/09/2023] [Indexed: 06/27/2023]
Abstract
BACKGROUND AND AIM Actinic keratosis (AK) represents an intraepidermal malignant neoplasm with the proliferation of atypical keratinocytes. AK lesions are regarded as early in situ squamous cell carcinomas (SCCs) having the potential to progress into invasive SCC (iSCC) and metastasize, causing death. This study aimed to investigate the heterogeneity of keratinocytes and how this heterogeneity promoted AK development and progression. METHODS We employed single-cell RNA sequencing (scRNA-seq) to examine the heterogeneity of keratinocytes and dermal fibroblast clusters in AKs and adjacent normal skins. Cell clustering, pseudotime trajectory construction, gene ontology enrichment analysis, transcription factor network analysis, and cell-cell communication were used to investigate the heterogeneity of keratinocytes in AK. The cellular identity and function were verified by immunohistochemical and immunofluorescence staining. RESULTS Using scRNA-seq, we revealed 13 keratinocyte subgroups (clusters 0-12) in AK tissues and characterized 2 AK-specific clusters. Cluster 9 displayed high levels of IL1R2 and WFDC2, and cluster 11 showed high levels of FADS2 and FASN. The percentages of cells in these two clusters significantly increased in AK compared with normal tissues. The existence and spatial localization of AK-specific IL1R2+WFDC2+ cluster were verified by immunohistochemical and immunofluorescence staining. Functional studies indicated that the genes identified in the IL1R2+WFDC2+ cluster were crucial for epithelial cell proliferation, migration, and angiogenesis. Further immunofluorescent staining revealed the interactions between AK-specific keratinocytes and secretory-papillary fibroblasts mainly through ANGPTL4-ITGA5 signalling pathway rarely seen in normal tissues. CONCLUSION The findings of this study might help better understand AK pathogenesis.
Collapse
Affiliation(s)
- Jun Li
- Department of Dermatology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Ying Xia
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Shumin Kong
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Kun Yang
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Hui Chen
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Yong Zhang
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Dongxian Liu
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Lan Chen
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Xiaoyan Sun
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| |
Collapse
|
6
|
Tan JK, Xiao Y, Liu G, Huang LX, Ma WH, Xia Y, Wang XZ, Zhu XJ, Cai SP, Wu XB, Wang Y, Liu XY. Evaluation of trabecular meshwork-specific promoters in vitro and in vivo using scAAV2 vectors expressing C3 transferase. Int J Ophthalmol 2023; 16:1196-1209. [PMID: 37602341 PMCID: PMC10398517 DOI: 10.18240/ijo.2023.08.03] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/14/2023] [Indexed: 08/22/2023] Open
Abstract
AIM To evaluate the potential of two trabecular meshwork (TM)-specific promoters, Chitinase 3-like 1 (Ch3L1) and matrix gla protein (MGP), for improving specificity and safety in glaucoma gene therapy based on self-complementary AAV2 (scAAV2) vector technologies. METHODS An scAAV2 vector with C3 transferase (C3) as the reporter gene (scAAV2-C3) was selected. The scAAV2-C3 vectors were driven by Ch3L1 (scAAV2-Ch3L1-C3), MGP (scAAV2-MGP-C3), enhanced MGP (scAAV2-eMGP-C3) and cytomegalovirus (scAAV2-CMV-C3), respectively. The cultured primary human TM cells were treated with each vector at different multiplicities of infections. Changes in cell morphology were observed by phase contrast microscopy. Actin stress fibers and Rho GTPases/Rho-associated protein kinase pathway-related molecules were assessed by immunofluorescence staining, real-time quantitative polymerase chain reaction and Western blot. Each vector was injected intracamerally into the one eye of each rat at low and high doses respectively. In vivo green fluorescence was visualized by a Micron III Retinal Imaging Microscope. Intraocular pressure (IOP) was monitored using a rebound tonometer. Ocular responses were evaluated by slit-lamp microscopy. Ocular histopathology analysis was examined by hematoxylin and eosin staining. RESULTS In TM cell culture studies, the vector-mediated C3 expression induced morphologic changes, disruption of actin cytoskeleton and reduction of fibronectin expression in TM cells by inhibiting the Rho GTPases/Rho-associated protein kinase signaling pathway. At the same dose, these changes were significant in TM cells treated with scAAV2-CMV-C3 or scAAV2-Ch3L1-C3, but not in cells treated with scAAV2-eMGP-C3 or scAAV2-MGP-C3. At low-injected dose, the IOP was significantly decreased in the scAAV2-Ch3L1-C3-injected eyes but not in scAAV2-MGP-C3-injected and scAAV2-eMGP-C3-injected eyes. At high-injected dose, significant IOP reduction was observed in the scAAV2-eMGP-C3-injected eyes but not in scAAV2-MGP-C3-injected eyes. Similar to scAAV2-CMV-C3, scAAV2-Ch3L1-C3 vector showed efficient transduction both in the TM and corneal endothelium. In anterior segment tissues of scAAV2-eMGP-C3-injected eyes, no obvious morphological changes were found except for the TM. Inflammation was absent. CONCLUSION In scAAV2-transduced TM cells, the promoter-driven efficiency of Ch3L1 is close to that of cytomegalovirus, but obviously higher than that of MGP. In the anterior chamber of rat eye, the transgene expression pattern of scAAV2 vector is presumably affected by MGP promoter, but not by Ch3L1 promoter. These findings would provide a useful reference for improvement of specificity and safety in glaucoma gene therapy using scAAV2 vector.
Collapse
Affiliation(s)
- Jun-Kai Tan
- Xiamen Eye Center, Xiamen University, Xiamen 361004, Fujian Province, China
| | - Ying Xiao
- Department of Pathology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610032, Sichuan Province, China
| | - Guo Liu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan Province, China
| | - Long-Xiang Huang
- The First Affiliated Hospital of Fujian Medical University, Fuzhou 350004, Fujian Province, China
| | - Wen-Hao Ma
- Beijing FivePlus Molecular Medicine Institute Co., Ltd., Beijing 102600, China
| | - Yan Xia
- Beijing FivePlus Molecular Medicine Institute Co., Ltd., Beijing 102600, China
| | - Xi-Zhen Wang
- Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, School of Optometry, Jinan University, Shenzhen 518040, Guangdong Province, China
| | - Xian-Jun Zhu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan Province, China
| | - Su-Ping Cai
- Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, School of Optometry, Jinan University, Shenzhen 518040, Guangdong Province, China
| | - Xiao-Bing Wu
- Beijing FivePlus Molecular Medicine Institute Co., Ltd., Beijing 102600, China
| | - Yun Wang
- Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, School of Optometry, Jinan University, Shenzhen 518040, Guangdong Province, China
| | - Xu-Yang Liu
- Xiamen Eye Center, Xiamen University, Xiamen 361004, Fujian Province, China
- Department of Ophthalmology, Shenzhen People's Hospital, the 2 Clinical Medical College, Jinan University, Shenzhen 518020, Guangdong Province, China
| |
Collapse
|
7
|
Goruppi S, Clocchiatti A, Bottoni G, Di Cicco E, Ma M, Tassone B, Neel V, Demehri S, Simon C, Paolo Dotto G. The ULK3 kinase is a determinant of keratinocyte self-renewal and tumorigenesis targeting the arginine methylome. Nat Commun 2023; 14:887. [PMID: 36797248 PMCID: PMC9935893 DOI: 10.1038/s41467-023-36410-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/26/2023] [Indexed: 02/18/2023] Open
Abstract
Epigenetic mechanisms oversee epidermal homeostasis and oncogenesis. The identification of kinases controlling these processes has direct therapeutic implications. We show that ULK3 is a nuclear kinase with elevated expression levels in squamous cell carcinomas (SCCs) arising in multiple body sites, including skin and Head/Neck. ULK3 loss by gene silencing or deletion reduces proliferation and clonogenicity of human keratinocytes and SCC-derived cells and affects transcription impinging on stem cell-related and metabolism programs. Mechanistically, ULK3 directly binds and regulates the activity of two histone arginine methyltransferases, PRMT1 and PRMT5 (PRMT1/5), with ULK3 loss compromising PRMT1/5 chromatin association to specific genes and overall methylation of histone H4, a shared target of these enzymes. These findings are of translational significance, as downmodulating ULK3 by RNA interference or locked antisense nucleic acids (LNAs) blunts the proliferation and tumorigenic potential of SCC cells and promotes differentiation in two orthotopic models of skin cancer.
Collapse
Affiliation(s)
- Sandro Goruppi
- Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, 02129, MA, USA.
- Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, 02114, MA, USA.
| | - Andrea Clocchiatti
- Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, 02129, MA, USA
- Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, 02114, MA, USA
| | - Giulia Bottoni
- Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, 02129, MA, USA
- Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, 02114, MA, USA
| | - Emery Di Cicco
- Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, 02129, MA, USA
- Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, 02114, MA, USA
| | - Min Ma
- Personalized Cancer Prevention Research Unit and Head and Neck Surgery Division, Centre Hospitalier Universitaire Vaudois, Lausanne, 1011, Switzerland
- Department of Immunobiology, University of Lausanne, Epalinges, 1066, Switzerland
| | - Beatrice Tassone
- Personalized Cancer Prevention Research Unit and Head and Neck Surgery Division, Centre Hospitalier Universitaire Vaudois, Lausanne, 1011, Switzerland
- Department of Immunobiology, University of Lausanne, Epalinges, 1066, Switzerland
| | - Victor Neel
- Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, 02114, MA, USA
| | - Shadhmer Demehri
- Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, 02129, MA, USA
- Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, 02114, MA, USA
| | - Christian Simon
- Personalized Cancer Prevention Research Unit and Head and Neck Surgery Division, Centre Hospitalier Universitaire Vaudois, Lausanne, 1011, Switzerland
- Department of Immunobiology, University of Lausanne, Epalinges, 1066, Switzerland
- International Cancer Prevention Institute, Epalinges, 1066, Switzerland
| | - G Paolo Dotto
- Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, 02129, MA, USA.
- Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, 02114, MA, USA.
- Personalized Cancer Prevention Research Unit and Head and Neck Surgery Division, Centre Hospitalier Universitaire Vaudois, Lausanne, 1011, Switzerland.
- Department of Immunobiology, University of Lausanne, Epalinges, 1066, Switzerland.
- International Cancer Prevention Institute, Epalinges, 1066, Switzerland.
| |
Collapse
|
8
|
KDM6B promotes gastric carcinogenesis and metastasis via upregulation of CXCR4 expression. Cell Death Dis 2022; 13:1068. [PMID: 36564369 PMCID: PMC9789124 DOI: 10.1038/s41419-022-05458-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 12/24/2022]
Abstract
KDM6B (Lysine-specific demethylase 6B) is a histone lysine demethyltransferase that plays a key role in many types of cancers. However, its potential role in gastric cancer (GC) remains unclear. Here, we focused on the clinical significance and potential role of KDM6B in GC. We found that the KDM6B expression is upregulated in GC tissues and that its high expression in patients is related to poor prognosis. KDM6B ectopic expression promotes GC cells' proliferation and metastasis, while its inhibition has opposite effects in vitro and in vivo. Mechanistically, KDM6B promotes GC cells proliferation and metastasis through its enzymatic activity through the induction of H3K27me3 demethylation near the CXCR4 (C-X-C chemokine receptor type 4) promoter region, resulting in the upregulation of CXCR4 expression. Furthermore, H. pylori was found to induce KDM6B expression. In conclusion, our results suggest that KDM6B is aberrantly expressed in GC and plays a key role in gastric carcinogenesis and metastasis through CXCR4 upregulation. Our work also suggests that KDM6B may be a potential oncogenic factor and a therapeutic target for GC.
Collapse
|
9
|
Ding JT, Yu XT, He JH, Chen DZ, Guo F. A Pan-Cancer Analysis Revealing the Dual Roles of Lysine (K)-Specific Demethylase 6B in Tumorigenesis and Immunity. Front Genet 2022; 13:912003. [PMID: 35783266 PMCID: PMC9246050 DOI: 10.3389/fgene.2022.912003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/03/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction: Epigenetic-targeted therapy has been increasingly applied in the treatment of cancers. Lysine (K)-specific demethylase 6B (KDM6B) is an epigenetic enzyme involved in the coordinated control between cellular intrinsic regulators and the tissue microenvironment whereas the pan-cancer analysis of KDM6B remains unavailable. Methods: The dual role of KDM6B in 33 cancers was investigated based on the GEO (Gene Expression Omnibus) and TCGA (The Cancer Genome Atlas) databases. TIMER2 and GEPIA2 were applied to investigate the KDM6B levels in different subtypes or stages of tumors. Besides, the Human Protein Atlas database allowed us to conduct a pan-cancer study of the KDM6B protein levels. GEPIA2 and Kaplan–Meier plotter were used for the prognosis analysis in different cancers. Characterization of genetic modifications of the KDM6B gene was analyzed by the cBioPortal. DNA methylation levels of different KDM6B probes in different TCGA tumors were analyzed by MEXPRESS. TIMER2 was applied to determine the association of the KDM6B expression and immune infiltration and DNA methyltransferases. Spearman correlation analysis was used to assess the association of the KDM6B expression with TMB (tumor mutation burden) and MSI (microsatellite instability). The KEGG (Kyoto encyclopedia of genes and genomes) pathway analysis and GO (Gene ontology) enrichment analysis were used to further investigate the potential mechanism of KDM6B in tumor pathophysiology. Results: KDM6B was downregulated in 11 cancer types and upregulated across five types. In KIRC (kidney renal clear cell carcinoma) and OV (ovarian serous cystadenocarcinoma), the KDM6B level was significantly associated with the pathological stage. A high level of KDM6B was related to poor OS (overall survival) outcomes for THCA (thyroid carcinoma), while a low level was correlated with poor OS and DFS (disease-free survival) prognosis of KIRC. The KDM6B expression level was associated with TMB, MSI, and immune cell infiltration, particularly cancer-associated fibroblasts, across various cancer types with different correlations. Furthermore, the enrichment analysis revealed the relationship between H3K4 and H3K27 methylation and KDM6B function. Conclusion: Dysregulation of the DNA methyltransferase activity and methylation levels of H3K4 and H3K27 may involve in the dual role of KDM6B in tumorigenesis and development. Our study offered a relatively comprehensive understanding of KDM6B’s dual role in cancer development and response to immunotherapy.
Collapse
Affiliation(s)
- Jia-Tong Ding
- Ningbo Institute for Medicine & Biomedical Engineering Combined Innovation, Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo, China
- The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Xiao-Ting Yu
- Burn Research Institute, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jin-Hao He
- Burn Research Institute, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - De-Zhi Chen
- Burn Research Institute, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Fei Guo
- Ningbo Institute for Medicine & Biomedical Engineering Combined Innovation, Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo, China
- Burn Research Institute, The First Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Fei Guo,
| |
Collapse
|
10
|
Notch signaling pathway: architecture, disease, and therapeutics. Signal Transduct Target Ther 2022; 7:95. [PMID: 35332121 PMCID: PMC8948217 DOI: 10.1038/s41392-022-00934-y] [Citation(s) in RCA: 354] [Impact Index Per Article: 177.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 02/07/2023] Open
Abstract
The NOTCH gene was identified approximately 110 years ago. Classical studies have revealed that NOTCH signaling is an evolutionarily conserved pathway. NOTCH receptors undergo three cleavages and translocate into the nucleus to regulate the transcription of target genes. NOTCH signaling deeply participates in the development and homeostasis of multiple tissues and organs, the aberration of which results in cancerous and noncancerous diseases. However, recent studies indicate that the outcomes of NOTCH signaling are changeable and highly dependent on context. In terms of cancers, NOTCH signaling can both promote and inhibit tumor development in various types of cancer. The overall performance of NOTCH-targeted therapies in clinical trials has failed to meet expectations. Additionally, NOTCH mutation has been proposed as a predictive biomarker for immune checkpoint blockade therapy in many cancers. Collectively, the NOTCH pathway needs to be integrally assessed with new perspectives to inspire discoveries and applications. In this review, we focus on both classical and the latest findings related to NOTCH signaling to illustrate the history, architecture, regulatory mechanisms, contributions to physiological development, related diseases, and therapeutic applications of the NOTCH pathway. The contributions of NOTCH signaling to the tumor immune microenvironment and cancer immunotherapy are also highlighted. We hope this review will help not only beginners but also experts to systematically and thoroughly understand the NOTCH signaling pathway.
Collapse
|
11
|
The Emerging Significance of Histone Lysine Demethylases as Prognostic Markers and Therapeutic Targets in Head and Neck Cancers. Cells 2022; 11:cells11061023. [PMID: 35326475 PMCID: PMC8946939 DOI: 10.3390/cells11061023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 02/04/2023] Open
Abstract
Epigenetic aberrations, associated with altered DNA methylation profiles and global changes in the level of histone modifications, are commonly detected in head and neck squamous cell carcinomas (HNSCC). Recently, histone lysine demethylases have been implicated in the pathogenesis of HNSCC and emerged as potential molecular targets. Histone lysine demethylases (KDMs) catalyze the removal of methyl groups from lysine residues in histones. By affecting the methylation of H3K4, H3K9, H3K27, or H3K36, these enzymes take part in transcriptional regulation, which may result in changes in the level of expression of tumor suppressor genes and protooncogenes. KDMs are involved in many biological processes, including cell cycle control, senescence, DNA damage response, and heterochromatin formation. They are also important regulators of pluripotency. The overexpression of most KDMs has been observed in HNSCC, and their inhibition affects cell proliferation, apoptosis, cell motility, invasiveness, and stemness. Of all KDMs, KDM1, KDM4, KDM5, and KDM6 proteins are currently regarded as the most promising prognostic and therapeutic targets in head and neck cancers. The aim of this review is to present up-to-date knowledge on the significance of histone lysine demethylases in head and neck carcinogenesis and to discuss the possibility of using them as prognostic markers and pharmacological targets in patients’ treatment.
Collapse
|
12
|
Yang J, Peng S, Zhang K. ARL4C depletion suppresses the resistance of ovarian cancer to carboplatin by disrupting cholesterol transport and autophagy via notch-RBP-Jκ-H3K4Me3-OSBPL5. Hum Exp Toxicol 2022; 41:9603271221135064. [DOI: 10.1177/09603271221135064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Increasing studies indicate that cholesterol plays an important role in drug resistance. ARL4C is implicated in the export and import of cholesterol, therefore this study aimed to explore the effect of ARL4C on the resistance of ovarian cancer (OVC) to Carboplatin. This study collected OVC tissue samples from patients who are sensitive or resistant to carboplatin, and established Carboplatin-resistant OVC cell lines, OVCAR3(R) and SKOV3(R) using OVCAR3 and SKOV3. High throughput sequencing was conducted to find genes that regulated by ARL4C. Cholesterol esterification was performed to evaluate the transport of cholesterol from Lysosome (LY) to Endoplasmic reticulum (ER). The fluorescence of LC3-GFP-mRFP was used to evaluate the function of autophagy flux. As indicated by PCR, western blot and Immunohistochemistry, ARL4C was increased in the Carboplatin-resistant OVC tissues and cells. Knockdown of ARL4C attenuated the resistance of OVCAR3(R) and SKOV3(R) to Carboplatin. By suppressing Notch signal, ARL4C knockdown inhibited the transcriptional function of RBP-Jκ and RBP-Jκ-induced H3K4Me3, which collectively reduced OSBPL5 expression. OSBPL5 deficiency inhibited the transport of cholesterol from LYs to ER, which led to the accumulation of cholesterol in LYs and the dysfunction of autophagy. In summary, ARL4C knockdown attenuated the resistance of OVC to Carboplatin by disrupting cholesterol transport and autophagy. This study revealed a promising target to attenuate the resistance of OVC to Carboplatin and elucidated the potential mechanism.
Collapse
Affiliation(s)
- Juan Yang
- Department of Gynecologic Oncology Ward 5, Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Shuping Peng
- NHC Key Laboratory of Carcinogenesis of Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Keqiang Zhang
- Department of Gynecologic Oncology Ward 5, Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
13
|
Hua C, Chen J, Li S, Zhou J, Fu J, Sun W, Wang W. KDM6 Demethylases and Their Roles in Human Cancers. Front Oncol 2021; 11:779918. [PMID: 34950587 PMCID: PMC8688854 DOI: 10.3389/fonc.2021.779918] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/17/2021] [Indexed: 12/31/2022] Open
Abstract
Cancer therapy is moving beyond traditional chemotherapy to include epigenetic approaches. KDM6 demethylases are dynamic regulation of gene expression by histone demethylation in response to diverse stimuli, and thus their dysregulation has been observed in various cancers. In this review, we first briefly introduce structural features of KDM6 subfamily, and then discuss the regulation of KDM6, which involves the coordinated control between cellular metabolism (intrinsic regulators) and tumor microenvironment (extrinsic stimuli). We further describe the aberrant functions of KDM6 in human cancers, acting as either a tumor suppressor or an oncoprotein in a context-dependent manner. Finally, we propose potential therapy of KDM6 enzymes based on their structural features, epigenetics, and immunomodulatory mechanisms, providing novel insights for prevention and treatment of cancers.
Collapse
Affiliation(s)
- Chunyan Hua
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | | | - Shuting Li
- Wenzhou Medical University, Wenzhou, China
| | | | - Jiahong Fu
- Wenzhou Medical University, Wenzhou, China
| | - Weijian Sun
- Department of Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wenqian Wang
- Department of Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
14
|
Liu M, Fu X, Jiang L, Ma J, Zheng X, Wang S, Guo H, Tian T, Nan K, Wang W. Colon cancer cells secreted CXCL11 via RBP-Jκ to facilitated tumour-associated macrophage-induced cancer metastasis. J Cell Mol Med 2021; 25:10575-10590. [PMID: 34655278 PMCID: PMC8581314 DOI: 10.1111/jcmm.16989] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 12/16/2022] Open
Abstract
Metastasis is the main cause of colon cancer‐related deaths. RBP‐Jκ is involved in colon cancer development, but its function in colon cancer metastasis is still unclear. Tumour‐associated macrophages are the main cell components in tumour microenvironments. Here, we aimed to determine the function of RBP‐Jκ in colon cancer metastasis and its underlying mechanisms for modulating interactions between colon cancer cell and tumour‐associated macrophages. Through bioinformation analysis, we found that RBP‐Jκ was overexpressed in colon cancer tissues and associated with advanced colon cancer phenotypes, macrophage infiltration and shorter survival overall as confirmed by our patients’ data. And our patients’ data show that RBP‐Jκ expression and tumour‐associated macrophages infiltration are associated with colon cancer metastasis and are independent prognostic factors for colon cancer patients. Tumour‐associated macrophages induced colon cancer cell migration, invasion and epithelial‐mesenchymal transition through secreting TGF‐β1. Colon cancer cells with high RBP‐Jκ expression induced the expression of TGF‐β1 in tumour‐associated macrophages by secreting CXCL11. Our research revealed that colon cancer cells secreted CXCL11 via overexpression of RBP‐Jκ to enhance the expression of TGF‐β1 in tumour‐associated macrophages to further promote metastasis of colon cancer cells.
Collapse
Affiliation(s)
- Mengjie Liu
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiao Fu
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Lili Jiang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jiequn Ma
- 1st Department of Medical Oncology, Shaanxi Provincial Tumor Hospital, Xi'an, Shaanxi, China
| | - Xiaoqiang Zheng
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Shuhong Wang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Hui Guo
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Tao Tian
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Kejun Nan
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Wenjuan Wang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
15
|
Xu X, Tassone B, Ostano P, Katarkar A, Proust T, Joseph JM, Riganti C, Chiorino G, Kutalik Z, Lefort K, Dotto GP. HSD17B7 gene in self-renewal and oncogenicity of keratinocytes from Black versus White populations. EMBO Mol Med 2021; 13:e14133. [PMID: 34185380 PMCID: PMC8261506 DOI: 10.15252/emmm.202114133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 01/09/2023] Open
Abstract
Human populations of Black African ancestry have a relatively high risk of aggressive cancer types, including keratinocyte-derived squamous cell carcinomas (SCCs). We show that primary keratinocytes (HKCs) from Black African (Black) versus White Caucasian (White) individuals have on average higher oncogenic and self-renewal potential, which are inversely related to mitochondrial electron transfer chain activity and ATP and ROS production. HSD17B7 is the top-ranked differentially expressed gene in HKCs and Head/Neck SCCs from individuals of Black African versus Caucasian ancestries, with several ancestry-specific eQTLs linked to its expression. Mirroring the differences between Black and White HKCs, modulation of the gene, coding for an enzyme involved in sex steroid and cholesterol biosynthesis, determines HKC and SCC cell proliferation and oncogenicity as well as mitochondrial OXPHOS activity. Overall, the findings point to a targetable determinant of cancer susceptibility among different human populations, amenable to prevention and management of the disease.
Collapse
Affiliation(s)
- Xiaoying Xu
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Beatrice Tassone
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Paola Ostano
- Cancer Genomics Laboratory, Fondazione Edo ed Elvo Tempia, Biella, Italy
| | - Atul Katarkar
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Tatiana Proust
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Jean-Marc Joseph
- Division of Pediatric Surgery, Women-Mother-Child Department, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Chiara Riganti
- Department of Oncology, University of Turin, Turin, Italy
| | - Giovanna Chiorino
- Cancer Genomics Laboratory, Fondazione Edo ed Elvo Tempia, Biella, Italy
| | - Zoltan Kutalik
- University Center for Primary Care and Public Health, University of Lausanne, Lausanne, Switzerland
| | - Karine Lefort
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Gian Paolo Dotto
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
- Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, MA, USA
- International Cancer Prevention Institute, Epalinges, Switzerland
| |
Collapse
|
16
|
Condorelli AG, El Hachem M, Zambruno G, Nystrom A, Candi E, Castiglia D. Notch-ing up knowledge on molecular mechanisms of skin fibrosis: focus on the multifaceted Notch signalling pathway. J Biomed Sci 2021; 28:36. [PMID: 33966637 PMCID: PMC8106838 DOI: 10.1186/s12929-021-00732-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 05/04/2021] [Indexed: 12/15/2022] Open
Abstract
Fibrosis can be defined as an excessive and deregulated deposition of extracellular matrix proteins, causing loss of physiological architecture and dysfunction of different tissues and organs. In the skin, fibrosis represents the hallmark of several acquired (e.g. systemic sclerosis and hypertrophic scars) and inherited (i.e. dystrophic epidermolysis bullosa) diseases. A complex series of interactions among a variety of cellular types and a wide range of molecular players drive the fibrogenic process, often in a context-dependent manner. However, the pathogenetic mechanisms leading to skin fibrosis are not completely elucidated. In this scenario, an increasing body of evidence has recently disclosed the involvement of Notch signalling cascade in fibrosis of the skin and other organs. Despite its apparent simplicity, Notch represents one of the most multifaceted, strictly regulated and intricate pathways with still unknown features both in health and disease conditions. Starting from the most recent advances in Notch activation and regulation, this review focuses on the pro-fibrotic function of Notch pathway in fibroproliferative skin disorders describing molecular networks, interplay with other pro-fibrotic molecules and pathways, including the transforming growth factor-β1, and therapeutic strategies under development.
Collapse
Affiliation(s)
- Angelo Giuseppe Condorelli
- Genodermatosis Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant' Onofrio 4, 00165, Rome, Italy.
| | - May El Hachem
- Dermatology Unit and Genodermatosis Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant' Onofrio 4, 00165, Rome, Italy
| | - Giovanna Zambruno
- Genodermatosis Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant' Onofrio 4, 00165, Rome, Italy
| | - Alexander Nystrom
- Department of Dermatology, Medical Faculty, Medical Center, University of Freiburg, Freiburg, Germany
| | - Eleonora Candi
- Department of Experimental Medicine, University of Rome "Tor Vergata", via Montpellier, 1, 00133, Rome, Italy.,IDI-IRCCS, via Monti di Creta 104, 00167, Rome, Italy
| | - Daniele Castiglia
- Laboratory of Molecular and Cell Biology, IDI-IRCCS, via Monti di Creta 104, 00167, Rome, Italy
| |
Collapse
|
17
|
Liu MJ, Guo H, Jiang LL, Jiao M, Wang SH, Tian T, Fu X, Wang WJ. Elevated RBP-Jκ and CXCL11 Expression in Colon Cancer is Associated with an Unfavorable Clinical Outcome. Cancer Manag Res 2021; 13:3651-3661. [PMID: 33981164 PMCID: PMC8107007 DOI: 10.2147/cmar.s298580] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/14/2021] [Indexed: 01/05/2023] Open
Abstract
Introduction This study aims at exploring the expression and significance of recombination signal-binding protein for immunoglobulin kappa J region (RBP-Jκ) and C-X-C motif chemokine 11 (CXCL11) in human colon cancer tissues. Methods The RBP-Jκ and CXCL11 expression levels were assessed by immunohistochemistry and quantitative real-time polymerase chain reaction (qRT-PCR) in patients with colon cancer, and their prognostic significance was evaluated. Results Through analyzing 342 samples of colon cancer patients treated at our institution, increased expression of RBP-Jκ and CXCL11 was found in human colon cancer specimens compared with matched paratumorous normal specimens (P<0.001). A positive correlation was found between RBP-Jκ expression and CXCL11 expression (P<0.001). High RBP-Jκ expression was significantly associated with poorly differentiated tumors (P=0.005), invasion beyond propria muscularis (P=0.025), lymph node metastases (P=0.005), distant metastasis (P<0.001), advanced tumor-node-metastasis (TNM) stage (P=0.004), and a shorter overall survival (P<0.001). An increase in CXCL11 protein expression was associated with poorly differentiated tumors (P=0.015), invasion beyond propria muscularis (P=0.029), lymph node metastases (P=0.031), distant metastasis (P=0.045), advanced TNM stage (P=0.026), and a shorter overall survival of patients (P<0.001). In multivariate Cox regression analysis, RBP-Jκ protein expression (P=0.036), CXCL11 protein expression (P=0.001), differentiation (P<0.001), depth of invasion (P=0.009), distant metastasis (P<0.001), and TNM stage (P<0.001) were independent prognostic indicators of colon cancer. Conclusion High expression of RBP-Jκ is closely associated with high CXCL11 expression, which represents a risk factor for the poor overall survival of colon cancer patients.
Collapse
Affiliation(s)
- Meng-Jie Liu
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Hui Guo
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Li-Li Jiang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Min Jiao
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Shu-Hong Wang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Tao Tian
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Xiao Fu
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Wen-Juan Wang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| |
Collapse
|
18
|
Lagunas-Rangel FA. KDM6B (JMJD3) and its dual role in cancer. Biochimie 2021; 184:63-71. [PMID: 33581195 DOI: 10.1016/j.biochi.2021.02.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/29/2021] [Accepted: 02/05/2021] [Indexed: 12/17/2022]
Abstract
Epigenetic modifications play a fundamental role in the regulation of gene expression and cell fate. During the development of cancer, epigenetic modifications appear that favor cell proliferation and migration, but at the same time prevent differentiation and apoptosis, among other processes. KDM6B is a histone demethylase that specifically removes methyl groups from H3K27me3, thus allowing re-expression of its target genes. It is currently known that KDM6B can act as both a tumor suppressor and an oncogene depending on the cellular context. Therefore, in this work we summarize the current knowledge of the role that KDM6B plays in different oncological contexts, and we try to orient it towards its clinical application.
Collapse
Affiliation(s)
- Francisco Alejandro Lagunas-Rangel
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Av. Instituto Politécnico Nacional No. 2508, San Pedro Zacatenco, Gustavo A. Madero, 07360, Mexico City, Mexico.
| |
Collapse
|
19
|
KDM6B is an androgen regulated gene and plays oncogenic roles by demethylating H3K27me3 at cyclin D1 promoter in prostate cancer. Cell Death Dis 2021; 12:2. [PMID: 33414463 PMCID: PMC7791132 DOI: 10.1038/s41419-020-03354-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023]
Abstract
Lysine (K)-specific demethylase 6B (KDM6B), a stress-inducible H3K27me3 demethylase, plays oncogenic or antitumoral roles in malignant tumors depending on the type of tumor cell. However, how this histone modifier affects the progression of prostate cancer (PCa) is still unknown. Here we analyzed sequenced gene expression data and tissue microarray to explore the expression features and prognostic value of KDM6B in PCa. Further, we performed in vitro cell biological experiments and in vivo nude mouse models to reveal the biological function, upstream and downstream regulation mechanism of KDM6B. In addition, we investigated the effects of a KDM6B inhibitor, GSK-J4, on PCa cells. We showed that KDM6B overexpression was observed in PCa, and elevated KDM6B expression was associated with high Gleason Score, low serum prostate-specific antigen level and shorted recurrence-free survival. Moreover, KDM6B prompted proliferation, migration, invasion and cell cycle progression and suppressed apoptosis in PCa cells. GSK-J4 administration could significantly suppress the biological function of KDM6B in PCa cells. KDM6B is involved in the development of castration-resistant prostate cancer (CRPC), and combination of MDV3100 plus GSK-J4 is effective for CRPC and MDV3100-resistant CRPC. Mechanism exploration revealed that androgen receptor can decrease the transcription of KDM6B and that KDM6B demethylates H3K27me3 at the cyclin D1 promoter and cooperates with smad2/3 to prompt the expression of cyclin D1. In conclusion, our study demonstrates that KDM6B is an androgen receptor regulated gene and plays oncogenic roles by promoting cyclin D1 transcription in PCa and GSK-J4 has the potential to be a promising agent for the treatment of PCa.
Collapse
|
20
|
Li Y, Li Y, Chen X. NOTCH and Esophageal Squamous Cell Carcinoma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1287:59-68. [PMID: 33034026 PMCID: PMC7895477 DOI: 10.1007/978-3-030-55031-8_5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Esophageal squamous cell carcinoma (ESCC) is a deadly disease that requires extensive research on its mechanisms, prevention, and therapy. Recent studies have shown that NOTCH mutations are commonly seen in human ESCC. This chapter summarizes our current understanding of the NOTCH pathway in normal esophagus and in ESCC. In normal esophagus, NOTCH pathway regulates the development of esophageal squamous epithelium, in particular, squamous differentiation. Exposure to extrinsic and intrinsic factors, such as gastroesophageal reflux, alcohol drinking, and inflammation, downregulates the NOTCH pathway and thus inhibits squamous differentiation of esophageal squamous epithelial cells. In ESCC, NOTCH plays a dual role as both a tumor suppressor pathway and an oncogenic pathway. In summary, further studies are warranted to develop NOTCH activators for the prevention of ESCC and NOTCH inhibitors for targeted therapy of a subset of ESCC with activated NOTCH pathway.
Collapse
Affiliation(s)
- Yong Li
- Department of Thoracic Surgery, National Cancer Center, Cancer Hospital of Chinese Academy of Medical Sciences, Beijing, China
- Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC, USA
| | - Yahui Li
- Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC, USA
| | - Xiaoxin Chen
- Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC, USA.
- Center for Gastrointestinal Biology and Disease, Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
21
|
Bordignon P, Bottoni G, Xu X, Popescu AS, Truan Z, Guenova E, Kofler L, Jafari P, Ostano P, Röcken M, Neel V, Dotto GP. Dualism of FGF and TGF-β Signaling in Heterogeneous Cancer-Associated Fibroblast Activation with ETV1 as a Critical Determinant. Cell Rep 2020; 28:2358-2372.e6. [PMID: 31461652 PMCID: PMC6718812 DOI: 10.1016/j.celrep.2019.07.092] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 06/17/2019] [Accepted: 07/24/2019] [Indexed: 12/14/2022] Open
Abstract
Heterogeneity of cancer-associated fibroblasts (CAFs) can result from activation of distinct signaling pathways. We show that in primary human dermal fibroblasts (HDFs), fibroblast growth factor (FGF) and transforming growth factor β (TGF-β) signaling oppositely modulate multiple CAF effector genes. Genetic abrogation or pharmacological inhibition of either pathway results in induction of genes responsive to the other, with the ETV1 transcription factor mediating the FGF effects. Duality of FGF/TGF-β signaling and differential ETV1 expression occur in multiple CAF strains and fibroblasts of desmoplastic versus non-desmoplastic skin squamous cell carcinomas (SCCs). Functionally, HDFs with opposite TGF-β versus FGF modulation converge on promoting cancer cell proliferation. However, HDFs with increased TGF-β signaling enhance invasive properties and epithelial-mesenchymal transition (EMT) of SCC cells, whereas HDFs with increased FGF signaling promote macrophage infiltration. The findings point to a duality of FGF versus TGF-β signaling in distinct CAF populations that promote cancer development through modulation of different processes. FGF and TGF-β signaling exert opposite control over multiple CAF effector genes ETV1 transcription factor mediates FGF effects and suppresses those of TGF-β Modulation of either pathway leads to different tumor-promoting CAF populations TGF-β-activated CAFs promote EMT, but FGF-activated CAFs increase inflammation
Collapse
Affiliation(s)
- Pino Bordignon
- Department of Biochemistry, University of Lausanne, Epalinges 1066, Switzerland
| | - Giulia Bottoni
- Department of Biochemistry, University of Lausanne, Epalinges 1066, Switzerland; Cutaneous Biology Research Center, Massachusetts General Hospital, Boston, MA 02129, USA
| | - Xiaoying Xu
- Department of Biochemistry, University of Lausanne, Epalinges 1066, Switzerland
| | - Alma S Popescu
- Department of Biochemistry, University of Lausanne, Epalinges 1066, Switzerland
| | - Zinnia Truan
- Department of Otolaryngology-Head and Neck Surgery, Lausanne University Hospital and University of Lausanne, Lausanne 1011, Switzerland
| | - Emmanuella Guenova
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich 8091, Switzerland
| | - Lukas Kofler
- Department of Dermatology, Eberhard Karls University, Tübingen 72076, Germany
| | - Paris Jafari
- Department of Biochemistry, University of Lausanne, Epalinges 1066, Switzerland; Cutaneous Biology Research Center, Massachusetts General Hospital, Boston, MA 02129, USA; International Cancer Prevention Institute, Epalinges 1066, Switzerland
| | - Paola Ostano
- Cancer Genomics Laboratory, Edo and Elvo Tempia Valenta Foundation, Biella 13900, Italy
| | - Martin Röcken
- Department of Dermatology, Eberhard Karls University, Tübingen 72076, Germany
| | - Victor Neel
- Department of Dermatology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - G Paolo Dotto
- Department of Biochemistry, University of Lausanne, Epalinges 1066, Switzerland; Cutaneous Biology Research Center, Massachusetts General Hospital, Boston, MA 02129, USA; International Cancer Prevention Institute, Epalinges 1066, Switzerland.
| |
Collapse
|
22
|
Li L, Xu Y, Wang Y, Liu M, Deng S, Yu X, Cong B, Wang W. Effects of Low Molecular Weight Fucoidan on the Proliferation and Apoptosis of Dysplastic Oral Keratinocyte and Oral Squamous Cell Carcinoma Cells. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20921681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most common malignant tumors with high incidence, rapid progress, and high mortality. There are still some defects in the treatments of OSCC, which seriously affect the quality of patients’ life. Therefore, it is urgent to find a safer and more effective treatment for OSCC. Low molecular weight fucoidan (LMWF) has various biological activities, such as antitumor, anti-inflammatory, and antithrombotic, and has no obvious side effects, but the effect of LMWF on OSCC has not been reported. In this study, the effects of LMWF on dysplastic oral keratinocyte (DOK) and OSCC cells SCC-9 and SCC-25 were detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, flow cytometry, TUNEL, colony formation, and wound healing assay, and the expression levels of Notch-1 and Jagged-1 treated with LMWF were detected by RT-qPCR. The results showed that LMWF could inhibit the proliferation and migration of DOK and SCC-9, and promote apoptosis. Low molecular weight fucoidan upregulated the expression of Notch-1 and Jagged-1 in DOK and SCC-9 cells. It indicated that LMWF might promote the apoptosis of DOK and SCC-9 by upregulating the Notch signal pathway, thereby inhibiting cell proliferation and playing an antitumor role. It provided theoretical basis to develop LMWF as a novel therapeutic drug for oral cancer.
Collapse
Affiliation(s)
- Lulu Li
- School of Stomatology of Qingdao University, Shandong, China
| | - Yingjie Xu
- Department of Oral Medicine, Qingdao Stomatological Hospital, Shandong, China
| | - Yixue Wang
- School of Stomatology of Nanjing Medical University, Jiangsu, China
| | - Mengjia Liu
- School of Stomatology of Qingdao University, Shandong, China
| | - Songsong Deng
- School of Stomatology of Qingdao University, Shandong, China
| | - Xixi Yu
- Department of Oral Medicine, Qingdao Stomatological Hospital, Shandong, China
| | - Beibei Cong
- Department of Oral Medicine, Qingdao Stomatological Hospital, Shandong, China
| | - Wanchun Wang
- Department of Oral Medicine, Qingdao Stomatological Hospital, Shandong, China
| |
Collapse
|
23
|
Hooiveld-Noeken J, Fehrmann R, de Vries E, Jalving M. Driving innovation for rare skin cancers: utilizing common tumours and machine learning to predict immune checkpoint inhibitor response. IMMUNO-ONCOLOGY TECHNOLOGY 2019; 4:1-7. [PMID: 35755000 PMCID: PMC9216707 DOI: 10.1016/j.iotech.2019.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 11/15/2019] [Accepted: 11/19/2019] [Indexed: 12/30/2022]
Abstract
Metastatic Merkel cell carcinoma (MCC) and cutaneous squamous cell carcinoma (cSCC) are rare and both show impressive responses to immune checkpoint inhibitor treatment. However, at least 40% of patients do not respond to these expensive and potentially toxic drugs. Development of predictive biomarkers of response and rational, effective combination treatment strategies in these rare, often frail patient populations is challenging. This review discusses the pathophysiology and treatment of MCC and cSCC, with a particular focus on potential biomarkers of response to immunotherapy, and discusses how transfer learning using big data collected from patients with common tumours can be used in combination with deep phenotyping of rare tumours to develop predictive biomarkers and elucidate novel treatment targets. Metastatic Merkel cell carcinoma and cutaneous squamous cell carcinoma are rare tumours. Immunotherapy gives impressive responses but most patients do not survive long term. Small patient numbers prevent extensive biomarker research in clinical trials. Pooled data from common and rare tumours can be used to train neural networks. In rare cancers, neural networks can help identify biomarkers and novel treatment targets.
Collapse
|
24
|
Liu H, Chen D, Liu P, Xu S, Lin X, Zeng R. Secondary analysis of existing microarray data reveals potential gene drivers of cutaneous squamous cell carcinoma. J Cell Physiol 2019; 234:15270-15278. [PMID: 30697722 DOI: 10.1002/jcp.28172] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/10/2019] [Indexed: 01/24/2023]
Abstract
Cutaneous squamous-cell carcinoma (cSCC) is the second most common skin cancer, with an increasing incidence in recent years. To define the molecular basis that drive cSCC development and progression, this study aimed at identifying potential novel molecular targets for the diagnosis and therapy of patients with cSCC. Two data sets with the accession number GSE45164 and GSE66359 were downloaded from Gene Expression Omnibus (GEO) database. After the identification of differentially expressed genes (DEGs) from these two data sets, respectively, between cSCC samples and controls, a combination of DEGs from these two data sets were subjected to the following analyses, including functional annotation, protein-protein interaction (PPI) network and module construction, transcription factor (TF)-target regulation prediction, and drug-gene interaction predictive analysis. A total of 204 upregulated genes and 213 downregulated genes were found in two data sets which were used for the follow-up analysis. Upregulated and downregulated genes were mainly involved in the functions such as cell division, mitotic nuclear division, cell cycle, and p53 signaling pathway. Interferon induced protein family members and proteasome subunit members were involved in the TF-target regulatory network, such as PSMB8, CXCL10, and IFIT3. Eight upregulated genes ( TOP2A, CXCL8, RRM2, PSMB8, PSMB9, PBK, CXCL10, and ISG15) that were hub genes in the PPI network and significant modules were identified in the predicted drug-gene interaction. In conclusion, TOP2A, CXCL8, RRM2, PSMB8, PSMB9, PBK, CXCL10, and ISG15 may be potential targets for the diagnosis and therapy of patients with cSCC.
Collapse
Affiliation(s)
- Haibo Liu
- Division of Plastic and Reconstructive Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Daxiang Chen
- Department of Laboratory Medicine, Dermatology Hospital, Southern Medical University, Guangzhou, China.,Department of Laboratory Medicine, Guangdong Provincial Dermatology Hospital, Guangzhou, China
| | - Ping Liu
- Department of Laboratory Medicine, General Hospital of Southern Theatre Command of PLA, Guangzhou, China
| | - Shuqia Xu
- Division of Plastic and Reconstructive Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xunxun Lin
- Division of Plastic and Reconstructive Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Ruixi Zeng
- Division of Plastic and Reconstructive Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|