1
|
Binding of clozapine to the GABA B receptor: clinical and structural insights. Mol Psychiatry 2020; 25:1910-1919. [PMID: 32203158 DOI: 10.1038/s41380-020-0709-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 02/18/2020] [Accepted: 03/02/2020] [Indexed: 12/30/2022]
Abstract
Clozapine is the gold-standard agent for treatment resistant schizophrenia but its mechanism of action remains unclear. There is emerging evidence of the potential role of the GABAB receptor in the pathogenesis of schizophrenia. It has been hypothesised that clozapine can mediate its actions via the GABAB receptor. Baclofen is currently recognised as the prototype GABAB receptor agonist. There are some potential clinical similarities between clozapine and baclofen. Indeed, baclofen has been previously proposed for use as an antipsychotic agent. Our analysis of the X-ray crystal structure of GABAB receptor along with molecular docking calculations, suggests that clozapine could directly bind to the GABAB receptor similar to that of baclofen. This finding could lead to a better understanding of the pharmacological uniqueness of clozapine, potential development of a biomarker for treatment resistant schizophrenia and the development of more targeted treatments leading to personalisation of treatment.
Collapse
|
2
|
Fatemi SH, Folsom TD. GABA receptor subunit distribution and FMRP-mGluR5 signaling abnormalities in the cerebellum of subjects with schizophrenia, mood disorders, and autism. Schizophr Res 2015; 167:42-56. [PMID: 25432637 PMCID: PMC5301472 DOI: 10.1016/j.schres.2014.10.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 10/06/2014] [Accepted: 10/08/2014] [Indexed: 12/24/2022]
Abstract
Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the brain. GABAergic receptor abnormalities have been documented in several major psychiatric disorders including schizophrenia, mood disorders, and autism. Abnormal expression of mRNA and protein for multiple GABA receptors has also been observed in multiple brain regions leading to alterations in the balance between excitatory/inhibitory signaling in the brain with potential profound consequences for normal cognition and maintenance of mood and perception. Altered expression of GABAA receptor subunits has been documented in fragile X mental retardation 1 (FMR1) knockout mice, suggesting that loss of its protein product, fragile X mental retardation protein (FMRP), impacts GABAA subunit expression. Recent postmortem studies from our laboratory have shown reduced expression of FMRP in the brains of subjects with schizophrenia, bipolar disorder, major depression, and autism. FMRP acts as a translational repressor and, under normal conditions, inhibits metabotropic glutamate receptor 5 (mGluR5)-mediated signaling. In fragile X syndrome (FXS), the absence of FMRP is hypothesized to lead to unregulated mGluR5 signaling, ultimately resulting in the behavioral and intellectual impairments associated with this disorder. Our laboratory has identified changes in mGluR5 expression in autism, schizophrenia, and mood disorders. In the current review article, we discuss our postmortem data on GABA receptors, FMRP, and mGluR5 levels and compare our results with other laboratories. Finally, we discuss the interactions between these molecules and the potential for new therapeutic interventions that target these interconnected signaling systems.
Collapse
Affiliation(s)
- S Hossein Fatemi
- Department of Psychiatry, Division of Neuroscience Research, University of Minnesota Medical School, 420 Delaware St SE, MMC 392, Minneapolis, MN 55455, USA; Department of Neuroscience, University of Minnesota Medical School, 321 Church St. SE, Minneapolis, MN 55455, USA.
| | - Timothy D Folsom
- Department of Psychiatry, Division of Neuroscience Research, University of Minnesota Medical School, 420 Delaware St SE, MMC 392, Minneapolis, MN 55455, USA.
| |
Collapse
|
3
|
Agabio R, Preti A, Gessa GL. Efficacy and tolerability of baclofen in substance use disorders: a systematic review. Eur Addict Res 2013; 19:325-45. [PMID: 23775042 DOI: 10.1159/000347055] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND It has been reported that baclofen, a drug used in the treatment of spasticity, reduces the severity of withdrawal symptoms and substance use disorders (SUDs) for some psychoactive drugs. AIMS AND METHODS To evaluate the effectiveness and safety of baclofen in the treatment of withdrawal syndrome and/or SUDs, providing (1) an outline of its pharmacological features; (2) a summary of studies that have suggested its possible effectiveness in the treatment of SUDs, and (3) a review of randomized, controlled trials (RCTs) on baclofen and SUDs. RESULTS Baclofen tolerability is generally considered to be good. Eleven RCTs investigated its effectiveness in the treatment of SUDs. Of these, 5 RCTs found that baclofen is effective, 5 RCTs found that it is ineffective and the results of 1 RCT were not appreciable because it did not achieve the preplanned level of participation. CONCLUSIONS The number of RCTs on baclofen and SUDs is still low, and their results are divergent. Further RCTs should be undertaken, particularly with higher doses of baclofen. Its administration may be suggested in patients who fail to respond to other approved drugs or who are affected by liver disease that prevents their administration, or in patients affected by SUDs for which no approved drugs are available. Treatment should be conducted under strict medical supervision.
Collapse
Affiliation(s)
- Roberta Agabio
- Department of Biomedical Sciences, Section of Neuroscience, Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | | | | |
Collapse
|
4
|
Gandal MJ, Sisti J, Klook K, Ortinski PI, Leitman V, Liang Y, Thieu T, Anderson R, Pierce RC, Jonak G, Gur RE, Carlson G, Siegel SJ. GABAB-mediated rescue of altered excitatory-inhibitory balance, gamma synchrony and behavioral deficits following constitutive NMDAR-hypofunction. Transl Psychiatry 2012; 2:e142. [PMID: 22806213 PMCID: PMC3410621 DOI: 10.1038/tp.2012.69] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Reduced N-methyl-D-aspartate-receptor (NMDAR) signaling has been associated with schizophrenia, autism and intellectual disability. NMDAR-hypofunction is thought to contribute to social, cognitive and gamma (30-80 Hz) oscillatory abnormalities, phenotypes common to these disorders. However, circuit-level mechanisms underlying such deficits remain unclear. This study investigated the relationship between gamma synchrony, excitatory-inhibitory (E/I) signaling, and behavioral phenotypes in NMDA-NR1(neo-/-) mice, which have constitutively reduced expression of the obligate NR1 subunit to model disrupted developmental NMDAR function. Constitutive NMDAR-hypofunction caused a loss of E/I balance, with an increase in intrinsic pyramidal cell excitability and a selective disruption of parvalbumin-expressing interneurons. Disrupted E/I coupling was associated with deficits in auditory-evoked gamma signal-to-noise ratio (SNR). Gamma-band abnormalities predicted deficits in spatial working memory and social preference, linking cellular changes in E/I signaling to target behaviors. The GABA(B)-receptor agonist baclofen improved E/I balance, gamma-SNR and broadly reversed behavioral deficits. These data demonstrate a clinically relevant, highly translatable neural-activity-based biomarker for preclinical screening and therapeutic development across a broad range of disorders that share common endophenotypes and disrupted NMDA-receptor signaling.
Collapse
Affiliation(s)
- M J Gandal
- Translational Neuroscience Program, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - J Sisti
- Translational Neuroscience Program, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - K Klook
- Translational Neuroscience Program, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA,Department of Psychiatry and Psychotherapy, RWTH Aachen University, Aachen, Germany
| | - P I Ortinski
- Center for Neurobiology and Behavior, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - V Leitman
- Translational Neuroscience Program, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Y Liang
- Translational Neuroscience Program, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - T Thieu
- Translational Neuroscience Program, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - R Anderson
- Translational Neuroscience Program, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - R C Pierce
- Center for Neurobiology and Behavior, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - G Jonak
- Translational Neuroscience Program, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - R E Gur
- Neuropsychiatry Program, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - G Carlson
- Center for Neurobiology and Behavior, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - S J Siegel
- Translational Neuroscience Program, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA,Director, Translational Neuroscience Program, Department of Psychiatry, University of Pennsylvania, Translational Research Laboratories, 125 S. 31st Street, Philadelphia, PA 19104, USA. E-mail: or
| |
Collapse
|
5
|
Fatemi SH, Folsom TD, Thuras PD. Deficits in GABA(B) receptor system in schizophrenia and mood disorders: a postmortem study. Schizophr Res 2011; 128:37-43. [PMID: 21303731 PMCID: PMC3085603 DOI: 10.1016/j.schres.2010.12.025] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 12/14/2010] [Accepted: 12/20/2010] [Indexed: 11/15/2022]
Abstract
Postmortem and genetic studies have clearly demonstrated changes in GABA(B) receptors in neuropsychiatric disorders such as autism, bipolar disorder, major depression, and schizophrenia. Moreover, a number of recent studies have stressed the importance of cerebellar dysfunction in these same disorders. In the current study, we examined protein levels of the two GABA(B) receptor subunits GABBR1 and GABBR2 in lateral cerebella from a well-characterized cohort of subjects with schizophrenia (n=15), bipolar disorder (n=14), major depression (n=13) and healthy controls (n=12). We found significant reductions in protein for both GABBR1 and GABBR2 in lateral cerebella from subjects with schizophrenia, bipolar disorder and major depression when compared with controls. These results provide further evidence of GABAergic dysfunction in these three disorders as well as identify potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- S. Hossein Fatemi
- Department of Psychiatry, Division of Neuroscience Research, University of Minnesota Medical School, 420 Delaware St SE, MMC 392, Minneapolis, MN 55455
- Department of Pharmacology, University of Minnesota Medical School, 310 Church St. SE, Minneapolis, MN 55455
- Department of Neuroscience, University of Minnesota Medical School, 310 Church St. SE, Minneapolis, MN 55455
| | - Timothy D. Folsom
- Department of Psychiatry, Division of Neuroscience Research, University of Minnesota Medical School, 420 Delaware St SE, MMC 392, Minneapolis, MN 55455
| | - Paul D. Thuras
- VA Medical Center, Department of Psychiatry, 1 Veterans Drive, Minneapolis, MN 55417
| |
Collapse
|
6
|
|
7
|
Prefrontal GABA(B) receptor activation attenuates phencyclidine-induced impairments of prepulse inhibition: involvement of nitric oxide. Neuropsychopharmacology 2009; 34:1673-84. [PMID: 19145229 DOI: 10.1038/npp.2008.225] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Recent theories propose that both GABA and glutamate signaling are compromised in patients with schizophrenia. These deficits can be observed in several brain regions including the prefrontal cortex (PFC), an area extensively linked to the cognitive dysfunction in this disease and notably affected by NMDA receptor antagonists such as phencyclidine (PCP). We have previously demonstrated that inhibition of the nitric oxide (NO) pathways in the brain, particularly in the PFC, prevents a wide range of PCP-induced behavioral deficits including disruption of prepulse inhibition (PPI). This study investigated the role of GABA(B) receptor signaling and NO in the effects of PCP on PPI. Mice received systemic or prefrontal injections of the GABA(B) receptor agonist baclofen (2.5-5 mg/kg and 1 mM) before PCP treatment (5 mg/kg) and were thereafter tested for PPI. GABA/NO interactions were studied by combining baclofen and the NO synthase inhibitor L-NAME (20 mg/kg) in subthreshold doses. The role of GABA(B) receptors for NO production in vivo was assessed using NO-sensors implanted into the rat PFC. PCP-induced PPI deficits were attenuated in an additive manner by systemic baclofen treatment, whereas prefrontal microinjections of baclofen completely blocked the effects of PCP, without affecting PPI per se. The combination of baclofen and L-NAME was more effective in preventing the effects of PCP than any compound by itself. Additionally, baclofen decreased NO release in the PFC in a dose-related manner. This study proposes a role for GABA(B) receptor signaling in the effects of PCP, with altered NO levels as a downstream consequence. Thus, prefrontal NO signaling mirrors an altered level of cortical inhibition that may be of importance for information processing deficits in schizophrenia.
Collapse
|
8
|
Agabio R, Marras P, Addolorato G, Carpiniello B, Gessa GL. Baclofen suppresses alcohol intake and craving for alcohol in a schizophrenic alcohol-dependent patient: a case report. J Clin Psychopharmacol 2007; 27:319-20. [PMID: 17502794 DOI: 10.1097/01.jcp.0000270079.84758.fe] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
9
|
Abstract
BACKGROUND A converging body of evidence implicates the gamma-aminobutyric acid (GABA) neurotransmitter system in the pathogenesis of schizophrenia. METHODS The authors review neuroscience literature and clinical studies investigating the role of the GABA system in the pathophysiology of schizophrenia. First, a background on the GABA system is provided, including GABA pharmacology and neuroanatomy of GABAergic neurons. Results from basic science schizophrenia animal models and human studies are reviewed. The role of GABA in cognitive dysfunction in schizophrenia is then presented, followed by a discussion of GABAergic compounds used in monotherapy or adjunctively in clinical schizophrenia studies. RESULTS In basic studies, reductions in GABAergic neuronal density and abnormalities in receptors and reuptake sites have been identified in several cortical and subcortical GABA systems. A model has been developed suggesting GABA's role (including GABA-dopamine interactions) in schizophrenia. In several clinical studies, the use of adjunctive GABA agonists was associated with greater improvement in core schizophrenia symptoms. CONCLUSIONS Alterations in the GABA neurotransmitter system are found in clinical and basic neuroscience schizophrenia studies as well as animal models and may be involved in the pathophysiology of schizophrenia. The interaction of GABA with other well-characterized neurotransmitter abnormalities remains to be understood. Future studies should elucidate the potential therapeutic role for GABA ligands in schizophrenia treatment.
Collapse
Affiliation(s)
- Adel Wassef
- University of Texas Health Sciences Center, Room 2C-07, Houston-Harris County Psychiatric Center, 2800 South MacGregor Way, Houston, TX 77021, USA.
| | | | | |
Collapse
|
10
|
Migler BM, Warawa EJ, Malick JB. Seroquel: behavioral effects in conventional and novel tests for atypical antipsychotic drug. Psychopharmacology (Berl) 1993; 112:299-307. [PMID: 7871034 DOI: 10.1007/bf02244925] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Seroquel was compared to clozapine and several other antipsychotic agents in tests predictive of antipsychotic activity or extrapyramidal symptoms. In the conditioned avoidance test in squirrel monkeys as well as several paradigms using apomorphine or amphetamine-induced behavioral alterations, seroquel displayed the profile of a drug with potential antipsychotic activity. In these paradigms the potency of seroquel was somewhat less than clozapine in rodent tests, while the reverse was true in higher species, i.e. monkeys, cats. In tests designed to evaluate the propensity to induce EPS or tardive dyskinesia, for example, the production of dyskinetic reactions in haloperidol-sensitized cebus monkeys, seroquel displayed a profile similar to clozapine and disparate from typical antipsychotic drugs. In drug-naive cebus monkeys seroquel sensitized significantly fewer monkeys than haloperidol and the dyskinetic reactions were of significantly less intensity. It is anticipated that this novel antipsychotic agent will have a significantly reduced propensity to produce extrapyramidal symptoms and tardive dyskinesia than typical antipsychotics.
Collapse
Affiliation(s)
- B M Migler
- ICI Pharmaceuticals Group, Department of Chemistry, ICI Americas Inc., Wilmington, DE 19897
| | | | | |
Collapse
|
11
|
Swigar ME, Bowers MB. Baclofen withdrawal and neuropsychiatric symptoms: a case report and review of other case literature. Compr Psychiatry 1986; 27:396-400. [PMID: 3731773 DOI: 10.1016/0010-440x(86)90016-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
12
|
Cohen BM, Lipinski JF. Treatment of acute psychosis with non-neuroleptic agents. PSYCHOSOMATICS 1986; 27:7-16. [PMID: 2869544 DOI: 10.1016/s0033-3182(86)72733-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
13
|
|
14
|
Swahn CG, Beving H, Sedvall G. Mass fragmentographic determination of 4-amino-3-p-chlorophenylbutyric acid (baclofen) in cerebrospinal fluid and serum. JOURNAL OF CHROMATOGRAPHY 1979; 162:433-8. [PMID: 528610 DOI: 10.1016/s0378-4347(00)81532-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
15
|
Abstract
In a controlled trial, baclofen (mean dose 45 mg daily) signficantly increased disability from Parkinsonism in 12 patients with the long-term levodopa syndrome. Peak dose choreoathetosis was not improved but benefit was observed in all four patients with "off period dystonia." Adverse side effects were common and severe, and included visual hallucinations, vomiting, and dizziness.
Collapse
|