Ultrasound biomicroscopy (UBM) and scanning acoustic microscopy (SAM) for the assessment of hernia mesh integration: a comparison to standard histology in an experimental model.
Hernia 2013;
18:579-85. [PMID:
24346242 DOI:
10.1007/s10029-013-1201-9]
[Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 12/03/2013] [Indexed: 10/25/2022]
Abstract
BACKGROUND
Mesh integration is a key parameter for reliable and safe hernia repair. So far, its assessment is based on histology obtained from rare second-look operations or experimental research. Therefore, non-invasive high-resolution imaging techniques would be of great value. Ultrasound biomicroscopy (UBM) and scanning acoustic microscopy (SAM) have shown potential in the imaging of hard and soft tissues. This experimental study compared the detection of mesh integration, foreign body reaction and scar formation in UBM/SAM with standard histology.
MATERIALS AND METHODS
Ten titanized polypropylene meshes were implanted in rats in a model of onlay repair. 17 days postoperative animals were killed and samples were paraffin embedded for histology (H&E, Cresyl violet) or processed for postmortem UBM/SAM. The observation period was uneventful and meshes appeared well integrated.
RESULTS
Relocation of neighboring cross-sectional levels could easily be achieved with the 40-MHz UBM and granulation tissue could be distinguished from adjacent muscle tissue layers. The spatial resolution of approximately 8 μm of the 200-MHz UBM system images was comparable to standard histology (2.5-5× magnification) and allowed a clear identification of mesh fibers and different tissue types, e.g., scar, fat, granulation, and muscle tissues, as well as vessels, abscedations, and foreign body giant cell clusters.
CONCLUSION
This pilot study demonstrates the potential of high-frequency ultrasound to assess hernia mesh integration non-invasively. Although the methods lack cell-specific information, tissue integration could reliably be assessed. The possibility of conducting UBM in vivo advocates this method as a guidance tool for the indication of second-look operations and subsequent elaborate histological analyses.
Collapse