1
|
Zhang Y, Zhou Y, Jia Y, Wang T, Meng D. Adverse effects of hyperbaric oxygen therapy: a systematic review and meta-analysis. Front Med (Lausanne) 2023; 10:1160774. [PMID: 37275378 PMCID: PMC10232961 DOI: 10.3389/fmed.2023.1160774] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/24/2023] [Indexed: 06/07/2023] Open
Abstract
Introduction Hyperbaric oxygen therapy (HBOT) is one of the common clinical treatments, but adverse effects have hampered and limited the clinical application and promotion of hyperbaric oxygen therapy. A systematic review and meta-analysis of the adverse effects of hyperbaric oxygen therapy have conducted by our group to provide a theoretical basis for clinical treatment. Methods Three electronic databases (PubMed, Web of Science, and The Cochrane Library) were comprehensively searched for randomized clinical trials (RCTs) from March 2012 to October 2022. Two reviewers independently screened titles and abstracts for eligibility and assessed the quality of the included studies. The meta-analysis was performed using RevMan 5.3. Results A total of 24 RCTs involving 1,497 participants were identified. ① The HBOT group reported more adverse effects (30.11% vs. 10.43%, p < 0.05). ② The most frequent side effect of HBOT is ear discomfort (113 cases). ③ When the course of hyperbaric oxygen was >10 sessions, the incidence of adverse effects was higher than that of the control group; when the course of HBOT was ≤10 sessions, the adverse effects caused by hyperbaric oxygen were comparatively lower. ④ When the chamber pressure is above 2.0 ATA, the incidence of adverse effects is higher than that of the control group. While the chamber pressure is lower than 2.0 ATA, HBOT is relatively safe compared with the previous one. Conclusion Hyperbaric oxygen therapy (HBOT) is more likely to cause adverse reactions when the chamber pressure is above 2.0 ATA. More attention should be paid to the possible occurrence of related adverse effects if the treatment course is >10 sessions. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42022316605.
Collapse
Affiliation(s)
- Yuyao Zhang
- School of Rehabilitation Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yijun Zhou
- School of Rehabilitation Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuanyuan Jia
- School of Rehabilitation Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tiantian Wang
- School of Rehabilitation Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Dianhuai Meng
- First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
2
|
Latusek K, Słotwińska-Pawlaczyk A, Warakomska A, Kubicka-Musiał M, Wiench R, Orzechowska-Wylęgała B. Pilot Study: The Effectiveness of Hyperbaric Oxygen Therapy in the Treatment of Periodontitis in Patients with Type 2 Diabetes. Healthcare (Basel) 2023; 11:healthcare11091344. [PMID: 37174886 PMCID: PMC10178066 DOI: 10.3390/healthcare11091344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/23/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Periodontitis is a chronic inflammatory disease with multifactorial aetiology. The relationship between periodontal disease and systemic diseases such as diabetes, obesity, metabolic syndrome, atherosclerotic, cardiovascular disease, and cognitive disorders has been the subject of many studies. The purpose of this study was to evaluate the effectiveness of hyperbaric oxygen therapy on periodontal health in patients suffering from periodontitis and type 2 diabetes. The study was conducted with 14 patients. A total of 369 periodontal pockets in the study group and 431 in the control group were examined. For further analysis, the pockets were classified as moderately deep (4-5 mm) and deep (≥6 mm). All patients received standard non-surgical treatment: scaling and root planing (SRP). Additionally, a series of 30 hyperbaric chamber sessions was carried out in the study group. The following parameters were compared between groups: PD (probing depth), CAL (clinical attachment level), and BOP (bleeding on probing). The results of the study showed significantly better results in terms of PD reduction and CAL gain in the study group in comparison to the control group. Both groups showed a reduction in BOP (bleeding on probing) after treatment. The use of hyperbaric oxygen therapy seems to have considerable benefits in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Katarzyna Latusek
- Department of Pediatric Otolaryngology, Head and Neck Surgery, Chairs of Pediatric Surgery, The Independent Public Clinical Hospital No. 6 of the Medical University of Silesia in Katowice, John Paul II Upper Silesian Child Health Centre, 40-055 Katowice, Poland
| | - Adrianna Słotwińska-Pawlaczyk
- Department of Pediatric Otolaryngology, Head and Neck Surgery, Chairs of Pediatric Surgery, The Independent Public Clinical Hospital No. 6 of the Medical University of Silesia in Katowice, John Paul II Upper Silesian Child Health Centre, 40-055 Katowice, Poland
| | - Aleksandra Warakomska
- Department of Periodontal Diseases and Oral Mucosa Diseases, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia in Katowice, Pl. Traugutta 2, 41-800 Zabrze, Poland
| | - Magdalena Kubicka-Musiał
- Department of Periodontal Diseases and Oral Mucosa Diseases, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia in Katowice, Pl. Traugutta 2, 41-800 Zabrze, Poland
| | - Rafał Wiench
- Department of Periodontal Diseases and Oral Mucosa Diseases, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia in Katowice, Pl. Traugutta 2, 41-800 Zabrze, Poland
| | - Bogusława Orzechowska-Wylęgała
- Department of Pediatric Otolaryngology, Head and Neck Surgery, Chairs of Pediatric Surgery, The Independent Public Clinical Hospital No. 6 of the Medical University of Silesia in Katowice, John Paul II Upper Silesian Child Health Centre, 40-055 Katowice, Poland
| |
Collapse
|
3
|
The use of innovative targeted angiogenic therapies for ischemic diabetic foot ulcer repair: From nanomedicine and microRNAs toward hyperbaric oxygen therapy. Porto Biomed J 2023; 8:e187. [DOI: 10.1097/j.pbj.0000000000000187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/19/2022] [Accepted: 04/28/2022] [Indexed: 02/10/2023] Open
|
4
|
Troisi N, D'Oria M, Fernandes E Fernandes J, Angelides N, Avgerinos E, Liapis C, Hussein E, Sen I, Gloviczki P, Poredos P, Pandey S, Biscetti F, Juszynski M, Zlatanovic P, Ferraresi R, Piaggesi A, Peinado Cebrian J, Mansilha A, Antignani PL. International Union of Angiology Position Statement on no-option chronic limb threatening ischemia. INT ANGIOL 2022; 41:382-404. [PMID: 36053161 DOI: 10.23736/s0392-9590.22.04933-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
This position paper, written by members of International Union of Angiology (IUA) Youth Committee and senior experts, shows an overview of therapeutical approaches for patients with chronic limb-threatening ischemia (CLTI) and absence of 'standard' solutions for revascularization. The aim was to demonstrate the accurate management of the 'no-option' CLTI patient including the wound treatment and the rehabilitation, considering always the goal of the increase of quality of life of the patients.
Collapse
Affiliation(s)
- Nicola Troisi
- Unit of Vascular Surgery, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy -
| | - Mario D'Oria
- Division of Vascular and Endovascular Surgery, Cardiovascular Department, University Hospital of Trieste, Trieste, Italy
| | | | - Nikos Angelides
- Cardiovascular Unit, Old Nicosia General Hospital, University of Nicosia, Nicosia, Cyprus
| | - Efthymios Avgerinos
- Clinic of Vascular and Endovascular Surgery, Athens Medical Center, Athens, Greece
| | - Christos Liapis
- Clinic of Vascular and Endovascular Surgery, Athens Medical Center, Athens, Greece
| | - Emad Hussein
- Department of Vascular and Endovascular Surgery, Ain Shams University, Cairo, Egypt
| | - Indrani Sen
- Division of Vascular and Endovascular Surgery, Mayo Clinic, Rochester, MN, USA
| | - Peter Gloviczki
- Division of Vascular and Endovascular Surgery, Mayo Clinic, Rochester, MN, USA
| | - Pavel Poredos
- Department for Vascular Disease, University of Ljubljana, Ljubljana, Slovenia
| | | | - Federico Biscetti
- Cardiovascular Internal Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Michal Juszynski
- Department of Vascular Surgery and Angiology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Petar Zlatanovic
- Clinic for Vascular and Endovascular Surgery, Clinical Center of Serbia, Belgrade, Serbia
| | - Roberto Ferraresi
- Clinic of Diabetic Foot, San Carlo Clinic, Paderno Dugnano, Milan, Italy
| | - Alberto Piaggesi
- Section of Diabetic Foot, Department of Medicine, University of Pisa, Pisa, Italy
| | - Javier Peinado Cebrian
- Department of Vascular and Endovascular Surgery, Hospital Universitario de Toledo, Toledo, Spain
| | - Armando Mansilha
- Department of Vascular Surgery, Faculty of Medicine of University of Porto, Hospital São João, Porto, Portugal
| | | |
Collapse
|
5
|
Ashrafizadeh M, Kumar AP, Aref AR, Zarrabi A, Mostafavi E. Exosomes as Promising Nanostructures in Diabetes Mellitus: From Insulin Sensitivity to Ameliorating Diabetic Complications. Int J Nanomedicine 2022; 17:1229-1253. [PMID: 35340823 PMCID: PMC8943613 DOI: 10.2147/ijn.s350250] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/07/2022] [Indexed: 12/11/2022] Open
Abstract
Diabetes mellitus (DM) is among the chronic metabolic disorders that its incidence rate has shown an increase in developed and wealthy countries due to lifestyle and obesity. The treatment of DM has always been of interest, and significant effort has been made in this field. Exosomes belong to extracellular vesicles with nanosized features (30-150 nm) that are involved in cell-to-cell communication and preserving homeostasis. The function of exosomes is different based on their cargo, and they may contain lipids, proteins, and nucleic acids. The present review focuses on the application of exosomes in the treatment of DM; both glucose and lipid levels are significantly affected by exosomes, and these nanostructures enhance lipid metabolism and decrease its deposition. Furthermore, exosomes promote glucose metabolism and affect the level of glycolytic enzymes and glucose transporters in DM. Type I DM results from the destruction of β cells in the pancreas, and exosomes can be employed to ameliorate apoptosis and endoplasmic reticulum (ER) stress in these cells. The exosomes have dual functions in mediating insulin resistance/sensitivity, and M1 macrophage-derived exosomes inhibit insulin secretion. The exosomes may contain miRNAs, and by transferring among cells, they can regulate various molecular pathways such as AMPK, PI3K/Akt, and β-catenin to affect DM progression. Noteworthy, exosomes are present in different body fluids such as blood circulation, and they can be employed as biomarkers for the diagnosis of diabetic patients. Future studies should focus on engineering exosomes derived from sources such as mesenchymal stem cells to treat DM as a novel strategy.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, 34956, Istanbul, Turkey
| | - Alan Prem Kumar
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Translational Sciences, Xsphera Biosciences Inc., Boston, MA, 02210, USA
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, 34396, Turkey
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
6
|
Li Y, Li B, Wang B, Liu M, Zhang X, Li A, Zhang J, Zhang H, Xiu R. Integrated pancreatic microcirculatory profiles of streptozotocin-induced and insulin-administrated type 1 diabetes mellitus. Microcirculation 2021; 28:e12691. [PMID: 33655585 PMCID: PMC8365673 DOI: 10.1111/micc.12691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/17/2021] [Accepted: 02/24/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE As an integrated system, pancreatic microcirculatory disturbance plays a vital role in the pathogenesis of type 1 diabetes mellitus (T1DM), which involves changes in microcirculatory oxygen and microhemodynamics. Therefore, we aimed to release type 1 diabetic and insulin-administrated microcirculatory profiles of the pancreas. METHODS BALB/c mice were assigned to control, T1DM, and insulin-administrated groups randomly. T1DM was induced by intraperitoneal injection of streptozotocin (STZ). 1.5 IU insulin was administrated subcutaneously to keep the blood glucose within the normal range. After anesthetizing by isoflurane, the raw data set of pancreatic microcirculation was collected by the multimodal device- and computer algorithm-based microcirculatory evaluating system. After adjusting outliers and normalization, pancreatic microcirculatory oxygen and microhemodynamic data sets were imported into the three-dimensional module and compared. RESULTS Microcirculatory profiles of the pancreas in T1DM exhibited a loss of microhemodynamic coherence (significantly decreased microvascular blood perfusion) accompanied by an impaired oxygen balance (significantly decreased PO2 , SO2 , and rHb). More importantly, with insulin administration, the pathological microcirculatory profiles were partially restored. Meanwhile, there were correlations between pancreatic microcirculatory blood perfusion and PO2 levels. CONCLUSIONS Our findings establish the first integrated three-dimensional pancreatic microcirculatory profiles of STZ-induced and insulin-administrated T1DM.
Collapse
Affiliation(s)
- Yuan Li
- Institute of Microcirculation, Key Laboratory of Microcirculation, Ministry of Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Bingwei Li
- Institute of Microcirculation, Key Laboratory of Microcirculation, Ministry of Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Bing Wang
- Institute of Microcirculation, Key Laboratory of Microcirculation, Ministry of Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Mingming Liu
- Institute of Microcirculation, Key Laboratory of Microcirculation, Ministry of Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Diabetes Research Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaoyan Zhang
- Institute of Microcirculation, Key Laboratory of Microcirculation, Ministry of Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ailing Li
- Institute of Microcirculation, Key Laboratory of Microcirculation, Ministry of Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jian Zhang
- Institute of Microcirculation, Key Laboratory of Microcirculation, Ministry of Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Diabetes Research Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Honggang Zhang
- Institute of Microcirculation, Key Laboratory of Microcirculation, Ministry of Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ruijuan Xiu
- Institute of Microcirculation, Key Laboratory of Microcirculation, Ministry of Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|