1
|
Czaja M, Skirlińska-Nosek K, Adamczyk O, Sofińska K, Wilkosz N, Rajfur Z, Szymoński M, Lipiec E. Raman Research on Bleomycin-Induced DNA Strand Breaks and Repair Processes in Living Cells. Int J Mol Sci 2022; 23:3524. [PMID: 35408885 PMCID: PMC8998246 DOI: 10.3390/ijms23073524] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/20/2022] [Accepted: 03/22/2022] [Indexed: 01/27/2023] Open
Abstract
Even several thousands of DNA lesions are induced in one cell within one day. DNA damage may lead to mutations, formation of chromosomal aberrations, or cellular death. A particularly cytotoxic type of DNA damage is single- and double-strand breaks (SSBs and DSBs, respectively). In this work, we followed DNA conformational transitions induced by the disruption of DNA backbone. Conformational changes of chromatin in living cells were induced by a bleomycin (BLM), an anticancer drug, which generates SSBs and DSBs. Raman micro-spectroscopy enabled to observe chemical changes at the level of single cell and to collect hyperspectral images of molecular structure and composition with sub-micrometer resolution. We applied multivariate data analysis methods to extract key information from registered data, particularly to probe DNA conformational changes. Applied methodology enabled to track conformational transition from B-DNA to A-DNA upon cellular response to BLM treatment. Additionally, increased expression of proteins within the cell nucleus resulting from the activation of repair processes was demonstrated. The ongoing DNA repair process under the BLM action was also confirmed with confocal laser scanning fluorescent microscopy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ewelina Lipiec
- M. Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland; (M.C.); (K.S.-N.); (O.A.); (K.S.); (N.W.); (Z.R.); (M.S.)
| |
Collapse
|
2
|
Spencer P, Ye Q, Kamathewatta NJB, Woolfolk SK, Bohaty BS, Misra A, Tamerler C. Chemometrics-Assisted Raman Spectroscopy Characterization of Tunable Polymer-Peptide Hybrids for Dental Tissue Repair. FRONTIERS IN MATERIALS 2021; 8:681415. [PMID: 34113623 PMCID: PMC8186416 DOI: 10.3389/fmats.2021.681415] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The interfaces that biological tissues form with biomaterials are invariably defective and frequently the location where failure initiates. Characterizing the phenomena that lead to failure is confounded by several factors including heterogeneous material/tissue interfaces. To seamlessly analyze across these diverse structures presents a wealth of analytical challenges. This study aims to develop a molecular-level understanding of a peptide-functionalized adhesive/collagen hybrid biomaterial using Raman spectroscopy combined with chemometrics approach. An engineered hydroxyapatite-binding peptide (HABP) was copolymerized in dentin adhesive and dentin was demineralized to provide collagen matrices that were partially infiltrated with the peptide-functionalized adhesive. Partial infiltration led to pockets of exposed collagen-a condition that simulates defects in adhesive/dentin interfaces. The spectroscopic results indicate that co-polymerizable HABP tethered to the adhesive promoted remineralization of the defects. The spatial distribution of collagen, adhesive, and mineral as well as crystallinity of the mineral across this heterogeneous material/tissue interface was determined using micro-Raman spectroscopy combined with chemometrics approach. The success of this combined approach in the characterization of material/tissue interfaces stems from its ability to extract quality parameters that are related to the essential and relevant portions of the spectral data, after filtering out noise and non-relevant information. This ability is critical when it is not possible to separate components for analysis such as investigations focused on, in situ chemical characterization of interfaces. Extracting essential information from complex bio/material interfaces using data driven approaches will improve our understanding of heterogeneous material/tissue interfaces. This understanding will allow us to identify key parameters within the interfacial micro-environment that should be harnessed to develop durable biomaterials.
Collapse
Affiliation(s)
- Paulette Spencer
- Institute for Bioengineering Research, University of Kansas, Lawrence, KS, United States
- Department of Mechanical Engineering, University of Kansas, Lawrence, KS, United States
- Bioengineering Program, University of Kansas, Lawrence, KS, United States
- Correspondence: Paulette Spencer, , Qiang Ye,
| | - Qiang Ye
- Institute for Bioengineering Research, University of Kansas, Lawrence, KS, United States
- Correspondence: Paulette Spencer, , Qiang Ye,
| | - Nilan J. B. Kamathewatta
- Institute for Bioengineering Research, University of Kansas, Lawrence, KS, United States
- Bioengineering Program, University of Kansas, Lawrence, KS, United States
| | - Sarah K. Woolfolk
- Institute for Bioengineering Research, University of Kansas, Lawrence, KS, United States
- Bioengineering Program, University of Kansas, Lawrence, KS, United States
| | - Brenda S. Bohaty
- Department of Pediatric Dentistry, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, United States
| | - Anil Misra
- Institute for Bioengineering Research, University of Kansas, Lawrence, KS, United States
- Department of Civil Engineering, University of Kansas, Lawrence, KS, United States
| | - Candan Tamerler
- Institute for Bioengineering Research, University of Kansas, Lawrence, KS, United States
- Department of Mechanical Engineering, University of Kansas, Lawrence, KS, United States
- Bioengineering Program, University of Kansas, Lawrence, KS, United States
| |
Collapse
|
3
|
Wen X, Ou YC, Bogatcheva G, Thomas G, Mahadevan-Jansen A, Singh B, Lin EC, Bardhan R. Probing metabolic alterations in breast cancer in response to molecular inhibitors with Raman spectroscopy and validated with mass spectrometry. Chem Sci 2020; 11:9863-9874. [PMID: 34094246 PMCID: PMC8162119 DOI: 10.1039/d0sc02221g] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/19/2020] [Indexed: 01/07/2023] Open
Abstract
Rapid and accurate response to targeted therapies is critical to differentiate tumors that are resistant to treatment early in the regimen. In this work, we demonstrate a rapid, noninvasive, and label-free approach to evaluate treatment response to molecular inhibitors in breast cancer (BC) cells with Raman spectroscopy (RS). Metabolic reprogramming in BC was probed with RS and multivariate analysis was applied to classify the cells into responsive or nonresponsive groups as a function of drug dosage, drug type, and cell type. Metabolites identified with RS were then validated with mass spectrometry (MS). We treated triple-negative BC cells with Trametinib, an inhibitor of the extracellular-signal-regulated kinase (ERK) pathway. Changes measured with both RS and MS corresponding to membrane phospholipids, amino acids, lipids and fatty acids indicated that these BC cells were responsive to treatment. Comparatively, minimal metabolic changes were observed post-treatment with Alpelisib, an inhibitor of the mammalian target of rapamycin (mTOR) pathway, indicating treatment resistance. These findings were corroborated with cell viability assay and immunoblotting. We also showed estrogen receptor-positive MCF-7 cells were nonresponsive to Trametinib with minimal metabolic and viability changes. Our findings support that oncometabolites identified with RS will ultimately enable rapid drug screening in patients ensuring patients receive the most effective treatment at the earliest time point.
Collapse
Affiliation(s)
- Xiaona Wen
- Department of Chemical and Biomolecular Engineering, Vanderbilt University Nashville TN 37235 USA
| | - Yu-Chuan Ou
- Department of Chemical and Biomolecular Engineering, Vanderbilt University Nashville TN 37235 USA
| | - Galina Bogatcheva
- Department of Medicine, Vanderbilt University Medical Center Nashville TN 37232 USA
| | - Giju Thomas
- Vanderbilt Biophotonics Center, Vanderbilt University Nashville TN 37232 USA
| | | | - Bhuminder Singh
- Department of Medicine, Vanderbilt University Medical Center Nashville TN 37232 USA
| | - Eugene C Lin
- Department of Chemistry and Biochemistry, National Chung Cheng University Chiayi 62106 Taiwan
| | - Rizia Bardhan
- Department of Chemical and Biological Engineering, Iowa State University Ames IA 50012 USA
- Nanovaccine Institute, Iowa State University Ames IA 50012 USA
| |
Collapse
|
6
|
Sinjab F, Liao Z, Notingher I. Applications of Spatial Light Modulators in Raman Spectroscopy. APPLIED SPECTROSCOPY 2019; 73:727-746. [PMID: 30987431 DOI: 10.1177/0003702819834575] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Advances in consumer display screen technologies have historically been adapted by researchers across the fields of optics as they can be used as electronically controlled spatial light modulators (SLMs) for a variety of uses. The performance characteristics of such SLM devices based on liquid crystal (LC) and digital micromirror device (DMD) technologies, in particular, has developed to the point where they are compatible with increasingly sensitive instrumental applications, for example, Raman spectroscopy. Spatial light modulators provide additional flexibility, from modulation of the laser excitation (including multiple laser foci patterns), manipulation of microscopic samples (optical trapping), or selection of sampling volume (adaptive optics or spatially offset Raman spectroscopy), to modulation in the spectral domain for high-resolution spectral filtering or multiplexed/compressive fast detection. Here, we introduce the benefits of different SLM devices as a part of Raman instrumentation and provide a variety of recent example applications which have benefited from their incorporation into a Raman system.
Collapse
Affiliation(s)
- Faris Sinjab
- 1 School of Physics and Astronomy, University of Nottingham, Nottingham, UK
- 2 Current affiliation: Department of Physics, University of Tokyo, Tokyo, Japan
| | - Zhiyu Liao
- 1 School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Ioan Notingher
- 1 School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| |
Collapse
|
7
|
Morais CM, Shore RF, Pereira MG, Martin FL. Assessing Binary Mixture Effects from Genotoxic and Endocrine Disrupting Environmental Contaminants Using Infrared Spectroscopy. ACS OMEGA 2018; 3:13399-13412. [PMID: 30411037 PMCID: PMC6217637 DOI: 10.1021/acsomega.8b01916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/04/2018] [Indexed: 05/15/2023]
Abstract
Benzo[a]pyrene (B[a]P), polychlorinated biphenyls (PCBs), and polybrominated diphenyl ethers (PBDEs) are persistent contaminants and concern has arisen over co-exposure of organisms when the chemicals exist in mixtures. Herein, attenuated total reflection Fourier transform infrared spectroscopy was used to identify biochemical alterations induced in cells by single and binary mixtures of these environmental chemicals. It was also investigated as a method to identify if interactions are occurring in mixtures and as a possible tool to predict mixture effects. Mallard fibroblasts were treated with single and binary mixtures of B[a]P, PCB126, PCB153, BDE47, and BDE209. Comparison of observed spectra from cells treated with binary mixtures with expected additive spectra, which were created from individual exposure spectra, indicated that in many areas of the spectrum, less-than-additive binary mixture effects may occur. However, possible greater-than-additive alterations were identified in the 1650-1750 cm-1 lipid region and may demonstrate a common mechanism of B[a]P and PCBs or PBDEs, which can enhance toxicity in mixtures.
Collapse
Affiliation(s)
- Camilo
L. M. Morais
- School
of Pharmacy and Biomedical Sciences, University
of Central Lancashire (UCLan), Preston PR1 2HE, U.K.
| | - Richard F. Shore
- Centre
of Ecology & Hydrology, Lancaster Environment
Centre, Lancaster LA1 4AP, U.K.
| | - M. Glória Pereira
- Centre
of Ecology & Hydrology, Lancaster Environment
Centre, Lancaster LA1 4AP, U.K.
| | - Francis L. Martin
- School
of Pharmacy and Biomedical Sciences, University
of Central Lancashire (UCLan), Preston PR1 2HE, U.K.
- E-mail:
| |
Collapse
|