1
|
Rohman A, Irnawati, Windarsih A, Riswanto FDO, Indrayanto G, Fadzillah NA, Riyanto S, Bakar NKA. Application of Chromatographic and Spectroscopic-Based Methods for Analysis of Omega-3 (ω-3 FAs) and Omega-6 (ω-6 FAs) Fatty Acids in Marine Natural Products. Molecules 2023; 28:5524. [PMID: 37513396 PMCID: PMC10383577 DOI: 10.3390/molecules28145524] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Omega-3 fatty acids v(ω-3 FAs) such as EPA (eicosapentaenoic acid) and DHA (docosahexaenoic acid) and omega-6 fatty acids (ω-6 FAs) such as linoleic acid and arachidonic acid are important fatty acids responsible for positive effects on human health. The main sources of ω-3 FAs and ω-6 FAs are marine-based products, especially fish oils. Some food, supplements, and pharmaceutical products would include fish oils as a source of ω-3 FAs and ω-6 FAs; therefore, the quality assurance of these products is highly required. Some analytical methods mainly based on spectroscopic and chromatographic techniques have been reported. Molecular spectroscopy such as Infrared and Raman parallel to chemometrics has been successfully applied for quantitative analysis of individual and total ω-3 FAs and ω-6 FAs. This spectroscopic technique is typically applied as the alternative method to official methods applying chromatographic methods. Due to the capability to provide the separation of ω-3 FAs and ω-6 FAs from other components in the products, gas and liquid chromatography along with sophisticated detectors such as mass spectrometers are ideal analytical methods offering sensitive and specific results that are suitable for routine quality control.
Collapse
Affiliation(s)
- Abdul Rohman
- Halal Center, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Irnawati
- Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Study Program of Pharmacy, Faculty of Pharmacy, Halu Oleo University, Kendari 93232, Indonesia
| | - Anjar Windarsih
- Research Center for Food Technology and Processing (PRTPP), National Research and Innovation Agency (BRIN), Yogyakarta 55861, Indonesia
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | | | | | - Nurrulhidayah A Fadzillah
- International Institute for Halal Research and Training, International Islamic University Malaysia, Kuala Lumpur 53100, Malaysia
| | - Sugeng Riyanto
- Study Program of Pharmacy, Faculty of Health Sciences and Pharmacy, Universitas Gunadarma, Jakarta 16451, Indonesia
| | - Nor Kartini Abu Bakar
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
2
|
Muhieddine A, Fournier N, Dakroub H, Assi A, Paul JL, Tfayli A, Chaminade P, Tfaili S. In vitro Raman imaging of human macrophages: Impact of eicosapentaenoic acid on the hydrolysis of cholesterol esters in lipid droplets. Talanta 2023; 256:124314. [PMID: 36753884 DOI: 10.1016/j.talanta.2023.124314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023]
Abstract
Atherosclerosis - a cardiovascular disease and the primary cause of morbidity and mortality in industrialized countries - is linked to the existence of atherosclerotic plaques characterized by cholesterol-laden macrophages called foam cells. In these cells, cholesterol esters associated with triglycerides form lipid droplets (LD). The only way to remove this excess cholesterol is to promote free cholesterol efflux from macrophages to specific acceptors. It has been shown recently that eicosapentaenoic acid (EPA) reduces efflux on cholesterol-loaded THP-1 macrophages in vitro due to decreased cholesterol esters hydrolysis. These in vitro observations could reflect EPA's difficulty in facilitating in vivo the antiatherogenic process of cholesterol efflux within advanced atherosclerotic plaques. This work aims to study in vitro the impact of EPA on cholesterol esters hydrolysis in the LD of human THP-1 macrophages using vibrational Raman microspectroscopy. For this, we used deuterated EPA and recorded spectral images at the cell scale after different hydrolysis times. RESULTS: showed that EPA is involved in forming triglycerides and phospholipids of LD. Hydrolysis kinetics slowed down after 24 h, triglycerides increased, and the intensity of the characteristic bands linked to deuteration decreased. The size of LD without hydrolysis (H0) is higher than that after 24 h (H1) or 48 h (H2) of hydrolysis. The size decrease is sharper when going from H0 to H1 than from H1 to H2. Principal component analysis illustrated data' projection according to the cellular compartment, the hydrolysis time, and the supplementation of the medium.
Collapse
Affiliation(s)
- Ali Muhieddine
- Lip(Sys)(2) - Chimie Analytique Pharmaceutique, UFR Pharmacie, Université Paris-Saclay, Orsay, France
| | - Natalie Fournier
- Lip(Sys)(2) - Equipe de Biologie, UFR Pharmacie, Université Paris-Saclay, Orsay, France
| | - Hani Dakroub
- Lip(Sys)(2) - Equipe de Biologie, UFR Pharmacie, Université Paris-Saclay, Orsay, France
| | - Ali Assi
- Lip(Sys)(2) - Chimie Analytique Pharmaceutique, UFR Pharmacie, Université Paris-Saclay, Orsay, France
| | - Jean-Louis Paul
- Lip(Sys)(2) - Equipe de Biologie, UFR Pharmacie, Université Paris-Saclay, Orsay, France
| | - Ali Tfayli
- Lip(Sys)(2) - Chimie Analytique Pharmaceutique, UFR Pharmacie, Université Paris-Saclay, Orsay, France
| | - Pierre Chaminade
- Lip(Sys)(2) - Chimie Analytique Pharmaceutique, UFR Pharmacie, Université Paris-Saclay, Orsay, France
| | - Sana Tfaili
- Lip(Sys)(2) - Chimie Analytique Pharmaceutique, UFR Pharmacie, Université Paris-Saclay, Orsay, France.
| |
Collapse
|
3
|
Authentication of fish oil (omega-3) supplements using class-oriented chemometrics and comprehensive two-dimensional gas chromatography coupled to mass spectrometry. Anal Bioanal Chem 2022; 415:2601-2611. [PMID: 36374319 DOI: 10.1007/s00216-022-04428-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/31/2022] [Accepted: 11/04/2022] [Indexed: 11/16/2022]
Abstract
Food supplement authentication is an important concern worldwide due to the ascending consumption related to health benefits and its lack of effective regulation in underdeveloped countries, making it a target of fraudulent activities. In this context, this study evaluated fish oil supplements by comprehensive two-dimensional gas chromatography coupled to mass spectrometry (GC×GC-MS) to obtain fingerprints, which were used to build predictive models for automated authentication of the most popular products sold in Brazil. The authentication process relied on a one-class classifier model using data-driven soft independent modeling of class analogy (DD-SIMCA). The output of the model was a binary classifier: certified IFOS fish oils and non-certified ones - regardless of the source of adulteration. The compositional analysis showed a significant variation in the samples, which validated the need for reliable statistical models. The DD-SIMCA algorithm is still incipient in GC×GC studies, but it proved to be an excellent tool for authenticity purposes, achieving a chemometric model with a sensitivity of 100%, specificity of 98.6%, and accuracy of 99.0% for fish oil authentication. Finally, orthogonalized partial least square discriminant analysis (OPLS-DA) was used to identify the features that distinguished the groups, which ascertained the results of the DD-SIMCA model that IFOS-certified oils are positively correlated to omega-3 fatty acids, including eicosapentaenoic acid (EPA, C20:5 n-3) and docosahexaenoic acid (DHA, C22:6 n-3).
Collapse
|
4
|
Ahmmed F, Killeen DP, Gordon KC, Fraser-Miller SJ. Rapid Quantitation of Adulterants in Premium Marine Oils by Raman and IR Spectroscopy: A Data Fusion Approach. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27144534. [PMID: 35889406 PMCID: PMC9319805 DOI: 10.3390/molecules27144534] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/12/2022] [Accepted: 07/12/2022] [Indexed: 11/30/2022]
Abstract
This study uses Raman and IR spectroscopic methods for the detection of adulterants in marine oils. These techniques are used individually and as low-level fused spectroscopic data sets. We used cod liver oil (CLO) and salmon oil (SO) as the valuable marine oils mixed with common adulterants, such as palm oil (PO), omega-3 concentrates in ethyl ester form (O3C), and generic fish oil (FO). We showed that support vector machines (SVM) can classify the adulterant present in both CLO and SO samples. Furthermore, partial least squares regression (PLSR) may be used to quantify the adulterants present. For example, PO and O3C adulterated samples could be detected with a RMSEP value less than 4%. However, the FO adulterant was more difficult to quantify because of its compositional similarity to CLO and SO. In general, data fusion improved the RMSEP for PO and O3C detection. This shows that Raman and IR spectroscopy can be used in concert to provide a useful analytical test for common adulterants in CLO and SO.
Collapse
Affiliation(s)
- Fatema Ahmmed
- Dodd-Walls Centre for Photonic and Quantum Technologies, Department of Chemistry, University of Otago, Dunedin 9016, New Zealand; (F.A.); (K.C.G.)
| | - Daniel P. Killeen
- Seafood Technologies, The New Zealand Institute for Plant and Food Research Limited, Nelson 7010, New Zealand;
| | - Keith C. Gordon
- Dodd-Walls Centre for Photonic and Quantum Technologies, Department of Chemistry, University of Otago, Dunedin 9016, New Zealand; (F.A.); (K.C.G.)
| | - Sara J. Fraser-Miller
- Dodd-Walls Centre for Photonic and Quantum Technologies, Department of Chemistry, University of Otago, Dunedin 9016, New Zealand; (F.A.); (K.C.G.)
- Correspondence:
| |
Collapse
|
5
|
Prediction of fatty acids composition in the rainbow trout Oncorhynchus mykiss by using Raman micro-spectroscopy. Anal Chim Acta 2022; 1191:339212. [PMID: 35033269 DOI: 10.1016/j.aca.2021.339212] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/26/2021] [Accepted: 10/23/2021] [Indexed: 11/21/2022]
Abstract
The importance of poly-unsaturated fatty acids (PUFAs) in food is crucial for the animal and human development and health. As a complementary strategy to nutrition approaches, genetic selection has been suggested to improve fatty acids (FAs) composition in farmed fish. Gas chromatography (GC) is used as a reference method for the quantification of FAs; nevertheless, the high cost prevents large scale phenotyping as needed in breeding programs. Therefore, a calibration by means of Raman scattering spectrometry has been established in order to predict FA composition of visceral adipose tissue in rainbow trout Onchorhynchus mykiss. FA composition was analyzed by both GC and Raman micro-spectrometry techniques on 268 individuals fed with three different feeds, which have different FA compositions. Among the possible regression methods, the ridge regression method, was found to be efficient to establish calibration models from the GC and spectral data. The best cross-validated R2 values were obtained for total PUFAs, omega-6 (Ω-6) and omega-3 (Ω-3) PUFA (0.79, 0.83 and 0.66, respectively). For individual Ω-3 PUFAs, α-linolenic acid (ALA, C18:3), eicosapentaenoic acid (EPA, C20:5) and docosahexenoic acid (DHA, C22:6) were found to have the best R2 values (0.82, 0.76 and 0.81, respectively). This study demonstrates that Raman spectroscopy could be used to predict PUFAs with good correlation coefficients on adipocytes, for future on adipocytes physiology or for large scale and high throughput phenotyping in rainbow trout.
Collapse
|
6
|
Rice HB, Bannenberg G. Letter to the editor regarding "Omega-3 fats in pregnancy: could a targeted approach lead to better metabolic health for children?". Nutr Rev 2021; 80:136-137. [PMID: 34263316 DOI: 10.1093/nutrit/nuab026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The purpose of our letter to the editor is to offer additional perspective regarding 4 statements that do not fully represent the totality of the available scientific evidence. The 4 statements are as follows: (1) "Multiple studies have shown that n-3 PUFA products frequently have less n-3 PUFA content than labelled"; (2) "Recently, krill oil supplementation was shown to induce insulin resistance, indicating that it is potentially harmful"; (3) "… fish oil products are frequently oxidized at the time of purchase"; and (4) "In rats, supplementation with oxidized fish oil during pregnancy induced persistent maternal insulin resistance and increased neonatal mortality rate." We respectfully request the authors' future publications consider the totality of the available scientific evidence.
Collapse
Affiliation(s)
- Harry B Rice
- H.B. Rice and G. Bannenberg are with the Global Organization for EPA and DHA Omega-3s (GOED), Salt Lake City, Utah, United States
| | - Gerard Bannenberg
- H.B. Rice and G. Bannenberg are with the Global Organization for EPA and DHA Omega-3s (GOED), Salt Lake City, Utah, United States
| |
Collapse
|
7
|
The employment of analytical techniques and chemometrics for authentication of fish oils: A review. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.107864] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
8
|
Phung AS, Bannenberg G, Vigor C, Reversat G, Oger C, Roumain M, Galano JM, Durand T, Muccioli GG, Ismail A, Wang SC. Chemical Compositional Changes in Over-Oxidized Fish Oils. Foods 2020; 9:foods9101501. [PMID: 33092165 PMCID: PMC7590219 DOI: 10.3390/foods9101501] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/12/2020] [Accepted: 10/16/2020] [Indexed: 02/07/2023] Open
Abstract
A recent study has reported that the administration during gestation of a highly rancid hoki liver oil, obtained by oxidation through sustained exposure to oxygen gas and incident light for 30 days, causes newborn mortality in rats. This effect was attributed to lipid hydroperoxides formed in the omega-3 long-chain polyunsaturated fatty acid-rich oil, while other chemical changes in the damaged oil were overlooked. In the present study, the oxidation condition employed to damage the hoki liver oil was replicated, and the extreme rancidity was confirmed. A detailed analysis of temporal chemical changes resulting from the sustained oxidative challenge involved measures of eicosapentaenoic acid/docosahexaenoic acid (EPA/DHA) omega-3 oil oxidative quality (peroxide value, para-anisidine value, total oxidation number, acid value, oligomers, antioxidant content, and induction time) as well as changes in fatty acid content, volatiles, isoprostanoids, and oxysterols. The chemical description was extended to refined anchovy oil, which is a more representative ingredient oil used in omega-3 finished products. The present study also analyzed the effects of a different oxidation method involving thermal exposure in the dark in contact with air, which is an oxidation condition that is more relevant to retail products. The two oils had different susceptibility to the oxidation conditions, resulting in distinct chemical oxidation signatures that were determined primarily by antioxidant protection as well as specific methodological aspects of the applied oxidative conditions. Unique isoprostanoids and oxysterols were formed in the over-oxidized fish oils, which are discussed in light of their potential biological activities.
Collapse
Affiliation(s)
- Austin S. Phung
- Department of Chemistry, University of California, Davis, CA 95616, USA;
| | - Gerard Bannenberg
- Global Organization for EPA and DHA Omega-3s (GOED), Salt Lake City, UT 84105, USA;
- Correspondence: (G.B.); (S.C.W.)
| | - Claire Vigor
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, 34093 Montpellier, France; (C.V.); (G.R.); (C.O.); (J.-M.G.); (T.D.)
| | - Guillaume Reversat
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, 34093 Montpellier, France; (C.V.); (G.R.); (C.O.); (J.-M.G.); (T.D.)
| | - Camille Oger
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, 34093 Montpellier, France; (C.V.); (G.R.); (C.O.); (J.-M.G.); (T.D.)
| | - Martin Roumain
- Louvain Drug Research Institute, Université Catholique de Louvain, 1200 Brussels, Belgium; (M.R.); (G.G.M.)
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, 34093 Montpellier, France; (C.V.); (G.R.); (C.O.); (J.-M.G.); (T.D.)
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, 34093 Montpellier, France; (C.V.); (G.R.); (C.O.); (J.-M.G.); (T.D.)
| | - Giulio G. Muccioli
- Louvain Drug Research Institute, Université Catholique de Louvain, 1200 Brussels, Belgium; (M.R.); (G.G.M.)
| | - Adam Ismail
- Global Organization for EPA and DHA Omega-3s (GOED), Salt Lake City, UT 84105, USA;
| | - Selina C. Wang
- Department of Food Science and Technology, University of California, Davis, CA 95616, USA
- Correspondence: (G.B.); (S.C.W.)
| |
Collapse
|
9
|
Rapid detection of the aspergillosis biomarker triacetylfusarinine C using interference-enhanced Raman spectroscopy. Anal Bioanal Chem 2020; 412:6351-6360. [PMID: 32170382 PMCID: PMC7442771 DOI: 10.1007/s00216-020-02571-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/20/2020] [Accepted: 03/02/2020] [Indexed: 11/02/2022]
Abstract
Triacetylfusarinine C (TAFC) is a siderophore produced by certain fungal species and might serve as a highly useful biomarker for the fast diagnosis of invasive aspergillosis. Due to its renal elimination, the biomarker is found in urine samples of patients suffering from Aspergillus infections. Accordingly, non-invasive diagnosis from this easily obtainable body fluid is possible. Within our contribution, we demonstrate how Raman microspectroscopy enables a sensitive and specific detection of TAFC. We characterized the TAFC iron complex and its iron-free form using conventional and interference-enhanced Raman spectroscopy (IERS) and compared the spectra with the related compound ferrioxamine B, which is produced by bacterial species. Even though IERS only offers a moderate enhancement of the Raman signal, the employment of respective substrates allowed lowering the detection limit to reach the clinically relevant range. The achieved limit of detection using IERS was 0.5 ng of TAFC, which is already well within the clinically relevant range. By using an extraction protocol, we were able to detect 1.4 μg/mL TAFC via IERS from urine within less than 3 h including sample preparation and data analysis. We could further show that TAFC and ferrioxamine B can be clearly distinguished by means of their Raman spectra even in very low concentrations.
Collapse
|