1
|
Pagano F, Picchio V, Bordin A, Cavarretta E, Nocella C, Cozzolino C, Floris E, Angelini F, Sordano A, Peruzzi M, Miraldi F, Biondi-Zoccai G, De Falco E, Carnevale R, Sciarretta S, Frati G, Chimenti I. Progressive stages of dysmetabolism are associated with impaired biological features of human cardiac stromal cells mediated by the oxidative state and autophagy. J Pathol 2022; 258:136-148. [PMID: 35751644 PMCID: PMC9542980 DOI: 10.1002/path.5985] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/01/2022] [Accepted: 06/23/2022] [Indexed: 11/11/2022]
Abstract
Cardiac stromal cells (CSCs) are the main players in fibrosis. Dysmetabolic conditions (metabolic syndrome—MetS, and type 2 diabetes mellitus—DM2) are strong pathogenetic contributors to cardiac fibrosis. Moreover, modulation of the oxidative state (OxSt) and autophagy is a fundamental function affecting the fibrotic commitment of CSCs, that are adversely modulated in MetS/DM2. We aimed to characterize CSCs from dysmetabolic patients, and to obtain a beneficial phenotypic setback from such fibrotic commitment by modulation of OxSt and autophagy. CSCs were isolated from 38 patients, stratified as MetS, DM2, or controls. Pharmacological modulation of OxSt and autophagy was obtained by treatment with trehalose and NOX4/NOX5 inhibitors (TREiNOX). Flow‐cytometry and real‐time quantitative polymerase chain reaction (RT‐qPCR) analyses showed significantly increased expression of myofibroblasts markers in MetS‐CSCs at baseline (GATA4, ACTA2, THY1/CD90) and after starvation (COL1A1, COL3A1). MetS‐ and DM2‐CSCs displayed a paracrine profile distinct from control cells, as evidenced by screening of 30 secreted cytokines, with a significant reduction in vascular endothelial growth factor (VEGF) and endoglin confirmed by enzyme‐linked immunoassay (ELISA). DM2‐CSCs showed significantly reduced support for endothelial cells in angiogenic assays, and significantly increased H2O2 release and NOX4/5 expression levels. Autophagy impairment after starvation (reduced ATG7 and LC3‐II proteins) was also detectable in DM2‐CSCs. TREiNOX treatment significantly reduced ACTA2, COL1A1, COL3A1, and NOX4 expression in both DM2‐ and MetS‐CSCs, as well as GATA4 and THY1/CD90 in DM2, all versus control cells. Moreover, TREiNOX significantly increased VEGF release by DM2‐CSCs, and VEGF and endoglin release by both MetS‐ and DM2‐CSCs, also recovering the angiogenic support to endothelial cells by DM2‐CSCs. In conclusion, DM2 and MetS worsen microenvironmental conditioning by CSCs. Appropriate modulation of autophagy and OxSt in human CSCs appears to restore these features, mostly in DM2‐CSCs, suggesting a novel strategy against cardiac fibrosis in dysmetabolic patients. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Francesca Pagano
- Institute of Biochemistry and Cell Biology, National Council of Research (IBBC-CNR), Monterotondo (RM), Italy
| | - Vittorio Picchio
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University, Latina, Italy
| | - Antonella Bordin
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University, Latina, Italy
| | - Elena Cavarretta
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University, Latina, Italy.,Mediterranea Cardiocentro, Napoli, Italy
| | - Cristina Nocella
- Department of Clinical, Internal Medicine, Anesthesiology and Cardiovascular Sciences, Sapienza University, Rome, Italy
| | - Claudia Cozzolino
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University, Latina, Italy
| | - Erica Floris
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University, Latina, Italy
| | - Francesco Angelini
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University, Latina, Italy
| | - Alessia Sordano
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University, Latina, Italy
| | - Mariangela Peruzzi
- Mediterranea Cardiocentro, Napoli, Italy.,Department of Clinical, Internal Medicine, Anesthesiology and Cardiovascular Sciences, Sapienza University, Rome, Italy
| | - Fabio Miraldi
- Department of Clinical, Internal Medicine, Anesthesiology and Cardiovascular Sciences, Sapienza University, Rome, Italy
| | - Giuseppe Biondi-Zoccai
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University, Latina, Italy.,Mediterranea Cardiocentro, Napoli, Italy
| | - Elena De Falco
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University, Latina, Italy.,Mediterranea Cardiocentro, Napoli, Italy
| | - Roberto Carnevale
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University, Latina, Italy.,Mediterranea Cardiocentro, Napoli, Italy
| | - Sebastiano Sciarretta
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University, Latina, Italy.,Department of AngioCardioNeurology, IRCCS Neuromed, Pozzilli, Italy
| | - Giacomo Frati
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University, Latina, Italy.,Department of AngioCardioNeurology, IRCCS Neuromed, Pozzilli, Italy
| | - Isotta Chimenti
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University, Latina, Italy.,Mediterranea Cardiocentro, Napoli, Italy
| |
Collapse
|
2
|
Maslovaric M, Fatic N, Delević E. State of the art of stem cell therapy for ischaemic cardiomyopathy. Part 2. ANGIOLOGII︠A︡ I SOSUDISTAI︠A︡ KHIRURGII︠A︡ = ANGIOLOGY AND VASCULAR SURGERY 2020; 25:7-26. [PMID: 31855197 DOI: 10.33529/angio2019414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Ischemic cardiomyopathy is becoming a leading cause of morbidity and mortality in the whole world. Stem cell-based therapy is emerging as a promising option for treatment of ischemic cardiomyopathy. Several stem cell types, including cardiac-derived stem cells, bone marrow-derived stem cells, mesenchymal stem cells, skeletal myoblasts, CD34+ and CD133+ stem cells have been used in clinical trials. Clinical effects mostly depend on transdifferentiation and paracrine factors. One important issue is that a low survival and residential rate of transferred stem cells blocks the effective advances in cardiac improvement. Many other factors associated with the efficacy of cell replacement therapy for ischemic cardiomyopathy mainly including the route of delivery, the type and number of stem cell infusion, the timing of injection, patient's physical conditions, the particular microenvironment onto which the cells are delivered, and clinical conditions remain to be addressed. Here we provide an overview of modern methods of stem cell delivery, types of stem cells and discuss the current state of their therapeutic potential.
Collapse
Affiliation(s)
- Milica Maslovaric
- Prona-Montenegrin Science Promotion Foundation, Podgorica, Montenegro
| | - Nikola Fatic
- Department of Vascular Surgery, Clinical Centre of Montenegro, Podgorica, Montenegro
| | - Emilija Delević
- Medical Faculty in Podgorica, University of Montenegro, Podgorica, Montenegro
| |
Collapse
|
3
|
Ng WH, Yong YK, Ramasamy R, Ngalim SH, Lim V, Shaharuddin B, Tan JJ. Human Wharton's Jelly-Derived Mesenchymal Stem Cells Minimally Improve the Growth Kinetics and Cardiomyocyte Differentiation of Aged Murine Cardiac c-kit Cells in In Vitro without Rejuvenating Effect. Int J Mol Sci 2019; 20:ijms20225519. [PMID: 31698679 PMCID: PMC6887783 DOI: 10.3390/ijms20225519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 09/30/2019] [Accepted: 09/30/2019] [Indexed: 01/09/2023] Open
Abstract
Cardiac c-kit cells show promise in regenerating an injured heart. While heart disease commonly affects elderly patients, it is unclear if autologous cardiac c-kit cells are functionally competent and applicable to these patients. This study characterised cardiac c-kit cells (CCs) from aged mice and studied the effects of human Wharton’s Jelly-derived mesenchymal stem cells (MSCs) on the growth kinetics and cardiac differentiation of aged CCs in vitro. CCs were isolated from 4-week- and 18-month-old C57/BL6N mice and were directly co-cultured with MSCs or separated by transwell insert. Clonogenically expanded aged CCs showed comparable telomere length to young CCs. However, these cells showed lower Gata4, Nkx2.5, and Sox2 gene expressions, with changes of 2.4, 3767.0, and 4.9 folds, respectively. Direct co-culture of both cells increased aged CC migration, which repopulated 54.6 ± 4.4% of the gap area as compared to aged CCs with MSCs in transwell (42.9 ± 2.6%) and CCs without MSCs (44.7 ± 2.5%). Both direct and transwell co-culture improved proliferation in aged CCs by 15.0% and 16.4%, respectively, as traced using carboxyfluorescein succinimidyl ester (CFSE) for three days. These data suggest that MSCs can improve the growth kinetics of aged CCs. CCs retaining intact telomere are present in old hearts and could be obtained based on their self-renewing capability. Although these aged CCs with reduced growth kinetics are improved by MSCs via cell–cell contact, the effect is minimal.
Collapse
Affiliation(s)
- Wai Hoe Ng
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam 13200, Kepala Batas, Penang, Malaysia; (W.H.N.); (S.H.N.); (V.L.); (B.S.)
| | - Yoke Keong Yong
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor Darul Ehsan, Malaysia;
| | - Rajesh Ramasamy
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor Darul Ehsan, Malaysia;
| | - Siti Hawa Ngalim
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam 13200, Kepala Batas, Penang, Malaysia; (W.H.N.); (S.H.N.); (V.L.); (B.S.)
| | - Vuanghao Lim
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam 13200, Kepala Batas, Penang, Malaysia; (W.H.N.); (S.H.N.); (V.L.); (B.S.)
| | - Bakiah Shaharuddin
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam 13200, Kepala Batas, Penang, Malaysia; (W.H.N.); (S.H.N.); (V.L.); (B.S.)
| | - Jun Jie Tan
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam 13200, Kepala Batas, Penang, Malaysia; (W.H.N.); (S.H.N.); (V.L.); (B.S.)
- Correspondence: ; Tel.: +045622422
| |
Collapse
|
4
|
Gerisch M, Smettan J, Ebert S, Athelogou M, Brand-Saberi B, Spindler N, Mueller WC, Giri S, Bader A. Qualitative and Quantitative Analysis of Cardiac Progenitor Cells in Cases of Myocarditis and Cardiomyopathy. Front Genet 2018; 9:72. [PMID: 29559994 PMCID: PMC5845648 DOI: 10.3389/fgene.2018.00072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 02/16/2018] [Indexed: 11/24/2022] Open
Abstract
We aimed to identify and quantify CD117+ and CD90+ endogenous cardiac progenitor cells (CPC) in human healthy and diseased hearts. We hypothesize that these cells perform a locally acting, contributing function in overcoming medical conditions of the heart by endogenous means. Human myocardium biopsies were obtained from 23 patients with the following diagnoses: Dilatative cardiomyopathy (DCM), ischemic cardiomyopathy (ICM), myocarditis, and controls from healthy cardiac patients. High-resolution scanning microscopy of the whole slide enabled a computer-based immunohistochemical quantification of CD117 and CD90. Those signals were evaluated by Definiens Tissue Phenomics® Technology. Co-localization of CD117 and CD90 was determined by analyzing comparable serial sections. CD117+/CD90+ cardiac cells were detected in all biopsies. The highest expression of CD90 was revealed in the myocarditis group. CD117 was significantly higher in all patient groups, compared to healthy specimens (*p < 0.05). The highest co-expression was found in the myocarditis group (6.75 ± 3.25 CD90+CD117+ cells/mm2) followed by ICM (4 ± 1.89 cells/mm2), DCM (1.67 ± 0.58 cells/mm2), and healthy specimens (1 ± 0.43 cells/mm2). We conclude that the human heart comprises a fraction of local CD117+ and CD90+ cells. We hypothesize that these cells are part of local endogenous progenitor cells due to the co-expression of CD90 and CD117. With novel digital image analysis technologies, a quantification of the CD117 and CD90 signals is available. Our experiments reveal an increase of CD117 and CD90 in patients with myocarditis.
Collapse
Affiliation(s)
- Marie Gerisch
- Applied Stem Cell Biology and Cell Technology, Biomedical and Biotechnological Center, University of Leipzig, Leipzig, Germany
| | - Jan Smettan
- Division of Cardiology and Angiology, Department of Internal Medicine, Neurology and Dermatology, University Hospital Leipzig, Leipzig, Germany
| | - Sabine Ebert
- Applied Stem Cell Biology and Cell Technology, Biomedical and Biotechnological Center, University of Leipzig, Leipzig, Germany
| | | | - Beate Brand-Saberi
- Department of Anatomy and Molecular Embryology, Institute of Anatomy, Faculty of Medicine, Ruhr-University Bochum, Bochum, Germany
| | - Nick Spindler
- Department of Orthopedics, Trauma and Plastic Surgery, University Hospital Leipzig, Leipzig, Germany
| | - Wolf C Mueller
- Department of Neuropathology, University Hospital Leipzig, Leipzig, Germany
| | - Shibashish Giri
- Applied Stem Cell Biology and Cell Technology, Biomedical and Biotechnological Center, University of Leipzig, Leipzig, Germany.,Department of Plastic and Hand Surgery, University Hospital Rechts der Isar, Munich Technical University, Munich, Germany
| | - Augustinus Bader
- Applied Stem Cell Biology and Cell Technology, Biomedical and Biotechnological Center, University of Leipzig, Leipzig, Germany
| |
Collapse
|
5
|
Rizzo P, Bollini S, Bertero E, Ferrari R, Ameri P. Beyond cardiomyocyte loss: Role of Notch in cardiac aging. J Cell Physiol 2018; 233:5670-5683. [PMID: 29271542 DOI: 10.1002/jcp.26417] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 12/05/2017] [Accepted: 12/18/2017] [Indexed: 12/12/2022]
Abstract
The knowledge of the cellular events occurring in the aging heart has dramatically expanded in the last decade and is expected to further grow in years to come. It is now clear that impaired function and loss of cardiomyocytes are major features of cardiac aging, but other events are likewise important. In particular, accumulating experimental evidence highlights the importance of fibroblast and cardiac progenitor cell (CPC) dysfunction. The Notch pathway regulates cardiomyocyte, fibroblast, and CPC activity and, thus, may be critically involved in heart disease associated with advanced age, especially heart failure. In a translational perspective, thorough investigation of the Notch system in the aging myocardium may lead to the identification of molecular targets for novel therapies for age-related cardiac disease.
Collapse
Affiliation(s)
- Paola Rizzo
- Department of Morphology, Surgery, and Experimental Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy.,Maria Cecilia Hospital, GVM Care and Research, E.S. Health Science Foundation, Cotignola, Italy
| | - Sveva Bollini
- Department of Experimental Medicine, Regenerative Medicine Laboratory, University of Genova, Genova, Italy
| | - Edoardo Bertero
- Department of Internal Medicine, Laboratory of Cardiovascular Biology, University of Genova and Ospedale Policlinico San Martino IRCCS per Oncologia, Genova, Italy
| | - Roberto Ferrari
- Maria Cecilia Hospital, GVM Care and Research, E.S. Health Science Foundation, Cotignola, Italy
| | - Pietro Ameri
- Department of Internal Medicine, Laboratory of Cardiovascular Biology, University of Genova and Ospedale Policlinico San Martino IRCCS per Oncologia, Genova, Italy
| |
Collapse
|
6
|
Combined Analysis of Endothelial, Hematopoietic, and Mesenchymal Stem Cell Compartments Shows Simultaneous but Independent Effects of Age and Heart Disease. Stem Cells Int 2017; 2017:5237634. [PMID: 28819363 PMCID: PMC5551513 DOI: 10.1155/2017/5237634] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 05/24/2017] [Accepted: 06/06/2017] [Indexed: 12/22/2022] Open
Abstract
Clinical trials using stem cell therapy for heart diseases have not reproduced the initial positive results obtained with animal models. This might be explained by a decreased regenerative capacity of stem cells collected from the patients. This work aimed at the simultaneous investigation of endothelial stem/progenitor cells (EPCs), mesenchymal stem/progenitor cells (MSCs), and hematopoietic stem/progenitor cells (HSCs) in sternal bone marrow samples of patients with ischemic or valvular heart disease, using flow cytometry and colony assays. The study included 36 patients referred for coronary artery bypass grafting or valve replacement surgery. A decreased frequency of stem cells was observed in both groups of patients. Left ventricular dysfunction, diabetes, and intermediate risk in EuroSCORE and SYNTAX score were associated with lower EPCs frequency, and the use of aspirin and β-blockers correlated with a higher frequency of HSCs and EPCs, respectively. Most importantly, the distribution of frequencies in the three stem cell compartments showed independent patterns. The combined investigation of the three stem cell compartments in patients with cardiovascular diseases showed that they are independently affected by the disease, suggesting the investigation of prognostic factors that may be used to determine when autologous stem cells may be used in cell therapy.
Collapse
|
7
|
The Clinical Status of Stem Cell Therapy for Ischemic Cardiomyopathy. Stem Cells Int 2015; 2015:135023. [PMID: 26101528 PMCID: PMC4460238 DOI: 10.1155/2015/135023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 05/06/2015] [Indexed: 12/14/2022] Open
Abstract
Ischemic cardiomyopathy (ICM) is becoming a leading cause of morbidity and mortality in the whole world. Stem cell-based therapy is emerging as a promising option for treatment of ICM. Several stem cell types including cardiac-derived stem cells (CSCs), bone marrow-derived stem cells, mesenchymal stem cells (MSCs), skeletal myoblasts (SMs), and CD34(+) and CD 133(+) stem cells have been applied in clinical researches. The clinical effect produced by stem cell administration in ICM mainly depends on the transdifferentiation and paracrine effect. One important issue is that low survival and residential rate of transferred stem cells in the infracted myocardium blocks the effective advances in cardiac improvement. Many other factors associated with the efficacy of cell replacement therapy for ICM mainly including the route of delivery, the type and number of stem cell infusion, the timing of injection, patient's physical condition, the particular microenvironment onto which the cells are delivered, and clinical condition remain to be addressed. Here we provide an overview of the pros and cons of these transferred cells and discuss the current state of their therapeutic potential. We believe that stem cell translation will be an ideal option for patients following ischemic heart disease in the future.
Collapse
|
8
|
Abstract
This review article discusses the mechanisms of cardiomyogenesis in the adult heart. They include the re-entry of cardiomyocytes into the cell cycle; dedifferentiation of pre-existing cardiomyocytes, which assume an immature replicating cell phenotype; transdifferentiation of hematopoietic stem cells into cardiomyocytes; and cardiomyocytes derived from activation and lineage specification of resident cardiac stem cells. The recognition of the origin of cardiomyocytes is of critical importance for the development of strategies capable of enhancing the growth response of the myocardium; in fact, cell therapy for the decompensated heart has to be based on the acquisition of this fundamental biological knowledge.
Collapse
Affiliation(s)
- Annarosa Leri
- From the Departments of Anesthesia and Medicine and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA.
| | - Marcello Rota
- From the Departments of Anesthesia and Medicine and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Francesco S Pasqualini
- From the Departments of Anesthesia and Medicine and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Polina Goichberg
- From the Departments of Anesthesia and Medicine and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Piero Anversa
- From the Departments of Anesthesia and Medicine and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
9
|
Marx C, Silveira MD, Beyer Nardi N. Adipose-derived stem cells in veterinary medicine: characterization and therapeutic applications. Stem Cells Dev 2015; 24:803-13. [PMID: 25556829 DOI: 10.1089/scd.2014.0407] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells, considered one of the most promising cell types for therapeutic applications due to their capacity to secrete regenerative bioactive molecules, are present in all tissues. Stem cells derived from the adipose tissue have been increasingly used for cell therapy in humans and animals, both as freshly isolated, stromal vascular fraction (SVF) cells, or as cultivated adipose-derived stem cells (ASCs). ASCs have been characterized in different animal species for proliferation, differentiation potential, immunophenotype, gene expression, and potential for tissue engineering. Whereas canine and equine ASCs are well studied, feline cells are still poorly known. Many companies around the world offer ASC therapy for dogs, cats, and horses, although in most countries these activities are not yet controlled by regulatory agencies. This is the first study to review the characterization and clinical use of SVF and ASCs in spontaneously occurring diseases in veterinary patients. Although a relatively large number of studies investigating ASC therapy in induced lesions are available in the literature, a surprisingly small number of reports describe ASC therapy for naturally affected dogs, cats, and horses. A total of seven studies were found with dogs, only two studies in cats, and four in horses. Taken as a whole, the results do not allow a conclusion on the effect of this therapy, due to the generally small number of patients included, diversity of cell populations used, and lack of adequate controls. Further controlled studies are clearly needed to establish the real potential of ASC in veterinary medicine.
Collapse
Affiliation(s)
- Camila Marx
- 1 Laboratory of Stem Cells and Tissue Engineering, Universidade Luterana do Brasil , Canoas, RS, Brazil
| | | | | |
Collapse
|