1
|
Kilianova Z, Cizmarova I, Spaglova M, Piestansky J. Recent Trends in Therapeutic Drug Monitoring of Peptide Antibiotics. J Sep Sci 2024; 47:e202400583. [PMID: 39400453 DOI: 10.1002/jssc.202400583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 10/15/2024]
Abstract
Antimicrobial peptides take a specific position in the field of antibiotics (ATBs), however, from a large number of available molecules only a few of them were approved and are used in clinics. These therapeutic modalities play a crucial role in the management of diseases caused by multidrug-resistant bacterial pathogens and represent the last-line therapy for bacterial infections. Therefore, there is a demand for a rationale use of such ATBs based on optimization of the dosing strategy to minimize the risk of resistance and ensure the sustainable efficacy of the drug in real clinical practice. Therapeutic drug monitoring, as a measurement of drug concentration in the body fluids or tissues, results in the optimization of the patient´s medication and therapy outcome. This strategy is beneficial and could result in tailored therapy for different types of infection and the prolongation of the use and efficacy of ATBs in hospitals. This review paper provides an actual overview of approved antimicrobial peptides used in clinical practice and covers current trends in their analysis by convenient and advanced methodologies used for their identification and/or quantitation in biological matrices for therapeutic drug monitoring purposes. Special emphasis is given to the methods with perspective clinical outcomes.
Collapse
Affiliation(s)
- Zuzana Kilianova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Ivana Cizmarova
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Miroslava Spaglova
- Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Juraj Piestansky
- Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovak Republic
- Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovak Republic
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| |
Collapse
|
2
|
Gamaletsou MN, Rammaert B, Brause B, Bueno MA, Dadwal SS, Henry MW, Katragkou A, Kontoyiannis DP, McCarthy MW, Miller AO, Moriyama B, Pana ZD, Petraitiene R, Petraitis V, Roilides E, Sarkis JP, Simitsopoulou M, Sipsas NV, Taj-Aldeen SJ, Zeller V, Lortholary O, Walsh TJ. Osteoarticular Mycoses. Clin Microbiol Rev 2022; 35:e0008619. [PMID: 36448782 PMCID: PMC9769674 DOI: 10.1128/cmr.00086-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Osteoarticular mycoses are chronic debilitating infections that require extended courses of antifungal therapy and may warrant expert surgical intervention. As there has been no comprehensive review of these diseases, the International Consortium for Osteoarticular Mycoses prepared a definitive treatise for this important class of infections. Among the etiologies of osteoarticular mycoses are Candida spp., Aspergillus spp., Mucorales, dematiaceous fungi, non-Aspergillus hyaline molds, and endemic mycoses, including those caused by Histoplasma capsulatum, Blastomyces dermatitidis, and Coccidioides species. This review analyzes the history, epidemiology, pathogenesis, clinical manifestations, diagnostic approaches, inflammatory biomarkers, diagnostic imaging modalities, treatments, and outcomes of osteomyelitis and septic arthritis caused by these organisms. Candida osteomyelitis and Candida arthritis are associated with greater events of hematogenous dissemination than those of most other osteoarticular mycoses. Traumatic inoculation is more commonly associated with osteoarticular mycoses caused by Aspergillus and non-Aspergillus molds. Synovial fluid cultures are highly sensitive in the detection of Candida and Aspergillus arthritis. Relapsed infection, particularly in Candida arthritis, may develop in relation to an inadequate duration of therapy. Overall mortality reflects survival from disseminated infection and underlying host factors.
Collapse
Affiliation(s)
- Maria N. Gamaletsou
- Laiko General Hospital of Athens and Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Blandine Rammaert
- Université de Poitiers, Faculté de médecine, CHU de Poitiers, INSERM U1070, Poitiers, France
| | - Barry Brause
- Hospital for Special Surgery, Weill Cornell Medicine, New York, New York, USA
| | - Marimelle A. Bueno
- Far Eastern University-Dr. Nicanor Reyes Medical Foundation, Manilla, Philippines
| | | | - Michael W. Henry
- Hospital for Special Surgery, Weill Cornell Medicine, New York, New York, USA
| | - Aspasia Katragkou
- Nationwide Children’s Hospital, Columbus, Ohio, USA
- The Ohio State University School of Medicine, Columbus, Ohio, USA
| | | | - Matthew W. McCarthy
- Weill Cornell Medicine of Cornell University, New York, New York, USA
- New York Presbyterian Hospital, New York, New York, USA
| | - Andy O. Miller
- Hospital for Special Surgery, Weill Cornell Medicine, New York, New York, USA
| | | | - Zoi Dorothea Pana
- Hippokration General Hospital, Aristotle University School of Health Sciences, Thessaloniki, Greece
- Faculty of Medicine, Aristotle University School of Health Sciences, Thessaloniki, Greece
| | - Ruta Petraitiene
- Weill Cornell Medicine of Cornell University, New York, New York, USA
| | | | - Emmanuel Roilides
- Hippokration General Hospital, Aristotle University School of Health Sciences, Thessaloniki, Greece
- Faculty of Medicine, Aristotle University School of Health Sciences, Thessaloniki, Greece
| | | | - Maria Simitsopoulou
- Hippokration General Hospital, Aristotle University School of Health Sciences, Thessaloniki, Greece
- Faculty of Medicine, Aristotle University School of Health Sciences, Thessaloniki, Greece
| | - Nikolaos V. Sipsas
- Laiko General Hospital of Athens and Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Valérie Zeller
- Groupe Hospitalier Diaconesses-Croix Saint-Simon, Paris, France
| | - Olivier Lortholary
- Université de Paris, Faculté de Médecine, APHP, Hôpital Necker-Enfants Malades, Paris, France
- Institut Pasteur, Unité de Mycologie Moléculaire, CNRS UMR 2000, Paris, France
| | - Thomas J. Walsh
- Hospital for Special Surgery, Weill Cornell Medicine, New York, New York, USA
- Weill Cornell Medicine of Cornell University, New York, New York, USA
- New York Presbyterian Hospital, New York, New York, USA
- Center for Innovative Therapeutics and Diagnostics, Richmond, Virginia, USA
| |
Collapse
|
3
|
Kably B, Launay M, Derobertmasure A, Lefeuvre S, Dannaoui E, Billaud EM. Antifungal Drugs TDM: Trends and Update. Ther Drug Monit 2022; 44:166-197. [PMID: 34923544 DOI: 10.1097/ftd.0000000000000952] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 12/09/2021] [Indexed: 11/25/2022]
Abstract
PURPOSE The increasing burden of invasive fungal infections results in growing challenges to antifungal (AF) therapeutic drug monitoring (TDM). This review aims to provide an overview of recent advances in AF TDM. METHODS We conducted a PubMed search for articles during 2016-2020 using "TDM" or "pharmacokinetics" or "drug-drug-interaction" with "antifungal," consolidated for each AF. Selection was limited to English language articles with human data on drug exposure. RESULTS More than 1000 articles matched the search terms. We selected 566 publications. The latest findings tend to confirm previous observations in real-life clinical settings. The pharmacokinetic variability related to special populations is not specific but must be considered. AF benefit-to-risk ratio, drug-drug interaction (DDI) profiles, and minimal inhibitory concentrations for pathogens must be known to manage at-risk situations and patients. Itraconazole has replaced ketoconazole in healthy volunteers DDI studies. Physiologically based pharmacokinetic modeling is widely used to assess metabolic azole DDI. AF prophylactic use was studied more for Aspergillus spp. and Mucorales in oncohematology and solid organ transplantation than for Candida (already studied). Emergence of central nervous system infection and severe infections in immunocompetent individuals both merit special attention. TDM is more challenging for azoles than amphotericin B and echinocandins. Fewer TDM requirements exist for fluconazole and isavuconazole (ISZ); however, ISZ is frequently used in clinical situations in which TDM is recommended. Voriconazole remains the most challenging of the AF, with toxicity limiting high-dose treatments. Moreover, alternative treatments (posaconazole tablets, ISZ) are now available. CONCLUSIONS TDM seems to be crucial for curative and/or long-term maintenance treatment in highly variable patients. TDM poses fewer cost issues than the drugs themselves or subsequent treatment issues. The integration of clinical pharmacology into multidisciplinary management is now increasingly seen as a part of patient care.
Collapse
Affiliation(s)
- Benjamin Kably
- Laboratoire de Pharmacologie-Toxicologie, Hôpital Européen Georges Pompidou, AP-HP Centre
- Faculté de Médecine, Université de Paris, Paris, France
| | - Manon Launay
- Laboratoire de Pharmacologie-Toxicologie-Gaz du sang, Hôpital Nord-CHU Saint Etienne, Saint-Etienne
| | - Audrey Derobertmasure
- Laboratoire de Pharmacologie-Toxicologie, Hôpital Européen Georges Pompidou, AP-HP Centre
| | - Sandrine Lefeuvre
- Laboratoire de Toxicologie et Pharmacocinétique, CHU de Poitiers, Poitiers; and
| | - Eric Dannaoui
- Faculté de Médecine, Université de Paris, Paris, France
- Unité de Parasitologie-Mycologie, Laboratoire de Microbiologie, Hôpital Européen Georges Pompidou, Paris, France
| | - Eliane M Billaud
- Laboratoire de Pharmacologie-Toxicologie, Hôpital Européen Georges Pompidou, AP-HP Centre
- Faculté de Médecine, Université de Paris, Paris, France
| |
Collapse
|
4
|
Xu L, Cheng X, Zhu G, Hu J, Li Q, Fan G. Therapeutic drug monitoring of amikacin: quantification in plasma by liquid chromatography-tandem mass spectrometry and work experience of clinical pharmacists. Eur J Hosp Pharm 2021; 29:e77-e82. [PMID: 34789474 PMCID: PMC8899631 DOI: 10.1136/ejhpharm-2021-003049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/25/2021] [Indexed: 11/14/2022] Open
Abstract
Objectives As part of the service provided by clinical pharmacists in our hospital, an assay for plasma amikacin quantification by liquid chromatography-tandem mass spectrometry (LC-MS/MS) has been established for clinical use since 2018. This study was undertaken to describe: (1) the establishment of this assay; (2) the application and results of the testing; and (3) the analysis and impact for patients. Methods The amikacin quantification assay was validated and the plasma amikacin concentration data were extracted and analysed. The clinical data for related patients were collected from electronic health and medical records. Results 121 plasma samples from 53 patients were included in this statistical analysis. The use of amikacin was mostly monitored in the intensive care unit and the haematology department, and the monitoring range of amikacin concentrations were about 0.1–57µg/mL. The main indications for amikacin concentration detection were combined medications, impaired renal function, or people over 65 years old, which may increase the incidence of adverse reactions. Amikacin prescribing decisions were diversified due to the combination of assay results and clinical disease progression, and the effective rate of amikacin administration was about 52.8% (28/53). Conclusions The assay for plasma amikacin concentration has been successfully established to monitor the clinical use of amikacin, and the assay results served as one of the references for amikacin prescribing decisions.
Collapse
Affiliation(s)
- Lijie Xu
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuefang Cheng
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guanhua Zhu
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Juanni Hu
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qin Li
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guorong Fan
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Advani M, Seetharaman R, Pawar S, Mali S, Lokhande J. Past, present and future perspectives of therapeutic drug monitoring in India. Int J Clin Pract 2021; 75:e14189. [PMID: 33774900 DOI: 10.1111/ijcp.14189] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/23/2021] [Accepted: 03/25/2021] [Indexed: 01/18/2023] Open
Abstract
Therapeutic drug monitoring (TDM) is the clinical practice of performing drug assays and interpreting results to maintain constant therapeutic concentrations in patients' bloodstream. Conventional TDM was started way back in the 1960s and served to optimise pharmacotherapy by maximising therapeutic efficacy by evaluating efficacy failure and monitoring drug compliance, while minimising adverse events, in drugs with a narrow therapeutic range. Currently, the scope of TDM has been extended to additional indications which are of importance to India. Apart from the conventional indications, TDM can also help combat drug resistance amongst patients treated with antimicrobials, including anti-tubercular drugs and critically ill patients with compromised pharmacokinetics. TDM is also indicated for patients on antiretroviral drugs under specific clinical scenarios and is of high importance to India. Target concentration intervention (TCI) and apriori TDM (by merging TDM with pharmacogenomics) are emerging fields explored in developed nations. The authors sought to assess the evolution of TDM in India and evaluate the potential impact of newer indications in rationalising pharmacotherapy. In the mid-1980s, TDM was presented to India. Despite showing some initial progress, its use is limited to conventional indications. Its utility is also challenged by cost and higher reliance on conventional prescribing practices. However, the newer indications such as antimicrobial resistance, tuberculosis and HIV, with their high prevalence in developing nations, present an opportunity for the growth of TDM in these countries. Indian clinician's awareness and buoyant demands alongside expert contributions from clinical pharmacologists could widen its scope.
Collapse
Affiliation(s)
- Manjari Advani
- Department of Pharmacology, Lokmanya Tilak Municipal Medical College & General Hospital, Mumbai, India
| | - Rajmohan Seetharaman
- Department of Pharmacology, Lokmanya Tilak Municipal Medical College & General Hospital, Mumbai, India
| | - Sudhir Pawar
- Department of Pharmacology, Lokmanya Tilak Municipal Medical College & General Hospital, Mumbai, India
| | - Smita Mali
- Department of Pharmacology, Lokmanya Tilak Municipal Medical College & General Hospital, Mumbai, India
| | - Jaisen Lokhande
- Department of Pharmacology, Lokmanya Tilak Municipal Medical College & General Hospital, Mumbai, India
| |
Collapse
|
6
|
Kai M, Tanaka R, Suzuki Y, Goto K, Ohchi Y, Yasuda N, Tatsuta R, Kitano T, Itoh H. Simultaneous quantification of plasma levels of 12 antimicrobial agents including carbapenem, anti-methicillin-resistant Staphylococcus aureus agent, quinolone and azole used in intensive care unit using UHPLC-MS/MS method. Clin Biochem 2021; 90:40-49. [PMID: 33539809 DOI: 10.1016/j.clinbiochem.2021.01.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 12/29/2022]
Abstract
OBJECTIVES Critically ill patients in intensive care unit (ICU) are susceptible to infectious diseases, thus empirical therapy is recommended. However, the therapeutic effect in ICU patients is difficult to predict due to fluctuation in pharmacokinetics because of various factors. This problem can be solved by developing personalized medicine through therapeutic drug monitoring. However, when different measurement systems are used for various drugs, measurements are complicated and time consuming in clinical practice. In this study, we aimed to develop an assay using ultra-high performance liquid chromatography coupled with tandem mass spectrometry for simultaneous quantification of 12 antimicrobial agents commonly used in ICU: doripenem, meropenem, linezolid, tedizolid, daptomycin, ciprofloxacin, levofloxacin, pazufloxacin, fluconazole, voriconazole, voriconazole N-oxide which is a major metabolite of voriconazole, and posaconazole. DESIGN & METHODS Plasma protein was precipitated by adding acetonitrile and 50% MeOH containing standard and labeled IS. The analytes were separated with an ACQUITY UHPLC CSH C18 column, under a gradient mobile phase consisting of water and acetonitrile containing 0.1% formic acid and 2 mM ammonium formate. RESULTS The method fulfilled the criteria of US Food and Drug Administration for assay validation. The recovery rate was more than 84.8%. Matrix effect ranged from 79.1% to 119.3%. All the calibration curves showed good linearity (back calculation of calibrators: relative error ≤ 15%) over wide concentration ranges, which allowed determination of Cmax and Ctrough. Clinical applicability of the novel method was confirmed. CONCLUSIONS We have developed an assay for simultaneous quantification of 12 antimicrobial agents using a small sample volume of 50 μL with a short assay time of 7 min. Our novel method may contribute to simultaneous calculation of pharmacokinetic and pharmacodynamic parameters.
Collapse
Affiliation(s)
- Makoto Kai
- Department of Clinical Pharmacy, Oita University Hospital, Yufu-shi, Oita, Japan.
| | - Ryota Tanaka
- Department of Clinical Pharmacy, Oita University Hospital, Yufu-shi, Oita, Japan
| | - Yosuke Suzuki
- Department of Clinical Pharmacy, Oita University Hospital, Yufu-shi, Oita, Japan; Department of Medication Use Analysis and Clinical Research, Meiji Pharmaceutical University, Tokyo, Japan
| | - Koji Goto
- Department of Anesthesiology and Intensive Care, Faculty of Medicine, Oita University, Yufu-shi, Oita, Japan
| | - Yoshifumi Ohchi
- Department of Anesthesiology and Intensive Care, Faculty of Medicine, Oita University, Yufu-shi, Oita, Japan
| | - Norihisa Yasuda
- Department of Anesthesiology and Intensive Care, Faculty of Medicine, Oita University, Yufu-shi, Oita, Japan
| | - Ryosuke Tatsuta
- Department of Clinical Pharmacy, Oita University Hospital, Yufu-shi, Oita, Japan
| | - Takaaki Kitano
- Department of Anesthesiology and Intensive Care, Faculty of Medicine, Oita University, Yufu-shi, Oita, Japan
| | - Hiroki Itoh
- Department of Clinical Pharmacy, Oita University Hospital, Yufu-shi, Oita, Japan
| |
Collapse
|
7
|
Impact of Therapeutic Drug Monitoring on Once-Daily Regimen of Amikacin in Patients With Urinary Tract Infection: A Prospective Observational Study. Ther Drug Monit 2020; 42:841-847. [PMID: 32947556 DOI: 10.1097/ftd.0000000000000800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Amikacin is a semisynthetic antibiotic used in the treatment of gram-negative bacterial infections and has a narrow therapeutic index. Although therapeutic drug monitoring is recommended for amikacin, it is not routinely performed because of the use of a less toxic once-daily regimen. Only few studies have evaluated the role of therapeutic drug monitoring in patients treated with amikacin. The objective of our study was to find an association between the pharmacokinetic parameters of amikacin and the time required for a clinical cure, creatinine clearance, and frequency of ototoxicity in patients with urinary tract infection treated for 7 or more days. METHODS A prospective study was conducted on patients with urinary tract infections who were administered amikacin for 7 or more days. Blood samples were obtained from the patients to measure the maximum drug concentration (Cmax) and trough concentration (Ctrough). Minimum inhibitory concentration (MIC) values were determined for patients with positive urine cultures. Serum creatinine levels were estimated every 3 days. The auditory assessment was performed using pure tone audiometry at baseline and weekly until the patients were discharged. Levels of amikacin were analyzed using a validated liquid chromatography-tandem mass spectrometry method. RESULTS Of 125 patients analyzed, the median time required for a clinical cure was less in the group of patients who achieved a Cmax/MIC ratio ≥8 than it was in those who did not achieve this level [7 versus 8 days (P = 0.02)]. The Ctrough of amikacin was associated with the change in serum creatinine level (P = 0.01) and the incidence of nephrotoxicity (P = 0.004). CONCLUSIONS In patients receiving short-term amikacin therapy, Cmax/MIC value can be used to predict the time required for a clinical cure. Ctrough can be used to predict the occurrence of nephrotoxicity in patients receiving amikacin therapy.
Collapse
|
8
|
Garzón V, Bustos RH, G. Pinacho D. Personalized Medicine for Antibiotics: The Role of Nanobiosensors in Therapeutic Drug Monitoring. J Pers Med 2020; 10:E147. [PMID: 32993004 PMCID: PMC7712907 DOI: 10.3390/jpm10040147] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/05/2020] [Accepted: 09/07/2020] [Indexed: 01/01/2023] Open
Abstract
Due to the high bacterial resistance to antibiotics (AB), it has become necessary to adjust the dose aimed at personalized medicine by means of therapeutic drug monitoring (TDM). TDM is a fundamental tool for measuring the concentration of drugs that have a limited or highly toxic dose in different body fluids, such as blood, plasma, serum, and urine, among others. Using different techniques that allow for the pharmacokinetic (PK) and pharmacodynamic (PD) analysis of the drug, TDM can reduce the risks inherent in treatment. Among these techniques, nanotechnology focused on biosensors, which are relevant due to their versatility, sensitivity, specificity, and low cost. They provide results in real time, using an element for biological recognition coupled to a signal transducer. This review describes recent advances in the quantification of AB using biosensors with a focus on TDM as a fundamental aspect of personalized medicine.
Collapse
Affiliation(s)
- Vivian Garzón
- PhD Biosciences Program, Universidad de La Sabana, Chía 140013, Colombia;
| | - Rosa-Helena Bustos
- Therapeutical Evidence Group, Clinical Pharmacology, Universidad de La Sabana, Chía 140013, Colombia;
| | - Daniel G. Pinacho
- Therapeutical Evidence Group, Clinical Pharmacology, Universidad de La Sabana, Chía 140013, Colombia;
| |
Collapse
|
9
|
Landry S, Chen CN, Patel N, Tseng A, Lalonde RG, Thibeault D, Sanche S, Sheehan NL. Therapeutic drug monitoring in treatment-experienced HIV-infected patients receiving darunavir-based salvage regimens: A case series. Antiviral Res 2018; 152:111-116. [PMID: 29458132 DOI: 10.1016/j.antiviral.2018.02.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 02/10/2018] [Accepted: 02/12/2018] [Indexed: 12/19/2022]
Abstract
Therapeutic drug monitoring (TDM) constitutes a compelling approach for the optimization of antiretroviral therapy in treatment-experienced HIV-1 patients. While various inhibitory indices have been proposed to predict virologic outcome, there is a lack of consensus on the clinical value of TDM. Here, we report the comparative results of TDM in 14 HIV-1-infected patients who had previously received at least two different PI-based regimens and who initiated darunavir (DRV)-based salvage therapy. Pharmacokinetic/pharmacodynamics (PK/PD) parameters were calculated for each subject. Seventy-nine percent of subjects had a viral load <50 copies/mL at 48 weeks. The only subject with two consecutive viral loads >50 copies/mL at the end of the study period was the patient with the lowest instantaneous inhibitory potential (IIP). The sample size was insufficient to show an association between any of the PK/PD parameters and virologic response. Based on our observations, we suggest that the utility of IIP for antiretroviral combinations for the prediction of virologic outcome in HIV-1 drug-experienced patients should be studied further.
Collapse
Affiliation(s)
- Sébastien Landry
- Faculté de pharmacie, Université de Montréal, C.P. 6128, succ. Centre-ville, Montréal, Québec, H3C 3J7, Canada; Chronic Viral Illness Service, McGill University Health Centre, 1001 boulevard Décarie, D02.4110, Montréal, Québec, H4A 3J1, Canada
| | - Chi-Nan Chen
- Chronic Viral Illness Service, McGill University Health Centre, 1001 boulevard Décarie, D02.4110, Montréal, Québec, H4A 3J1, Canada
| | - Nimish Patel
- Department of Pharmacy Practice, Albany College of Pharmacy & Health Sciences, 106 New Scotland Avenue, Albany, NY, 12208, USA
| | - Alice Tseng
- Immunodeficiency Clinic, University Health Network, 585 University Avenue, Toronto, ON, M5G 2N2, Canada; Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, ON, M5S 3M2, Canada
| | - Richard G Lalonde
- Chronic Viral Illness Service, McGill University Health Centre, 1001 boulevard Décarie, D02.4110, Montréal, Québec, H4A 3J1, Canada
| | - Denis Thibeault
- Biochemistry Laboratory, McGill University Health Center, 1001 boul. Décarie, E04.1510, Montréal, Québec, H4A 3J1, Canada
| | - Steven Sanche
- Faculté de pharmacie, Université de Montréal, C.P. 6128, succ. Centre-ville, Montréal, Québec, H3C 3J7, Canada
| | - Nancy L Sheehan
- Faculté de pharmacie, Université de Montréal, C.P. 6128, succ. Centre-ville, Montréal, Québec, H3C 3J7, Canada; Chronic Viral Illness Service, McGill University Health Centre, 1001 boulevard Décarie, D02.4110, Montréal, Québec, H4A 3J1, Canada; Pharmacy Department, McGill University Health Centre, 1001 boulevard Décarie, CRC.6004, Montréal, Québec, H4A 3J1, Canada.
| |
Collapse
|
10
|
Wadsworth JM, Milan AM, Anson J, Davison AS. Development of a liquid chromatography tandem mass spectrometry method for the simultaneous measurement of voriconazole, posaconazole and itraconazole. Ann Clin Biochem 2017; 54:686-695. [PMID: 27941128 DOI: 10.1177/0004563216686378] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Background Azole-based antifungals are the first-line therapy for some of the most common mycoses and are now also being used prophylactically to protect immunocompromised patients. However, due to variability in both their metabolism and bioavailability, therapeutic drug monitoring is essential to avoid toxicity but still gain maximum efficacy. Methods Following protein precipitation of serum with acetonitrile, 20 µL of extract was injected onto a 2.1 × 50 mm Waters Atlantis dC18 3 µm column. Detection was via a Waters Quattro Premier XE tandem mass spectrometer operating in ESI-positive mode. Multiple reaction monitoring (MRM) detected two product ions for each compound and one for each isotopically labelled internal standard. Ion suppression, linearity, stability, matrix effects, recovery, imprecision, lower limits of measuring interval and detection were all assessed. Results Optimal chromatographic separation was achieved using gradient elution over 8 minutes. Voriconazole, posaconazole and itraconazole eluted at 1.71, 2.73 and 3.41 min, respectively. The lower limits of measuring interval for all three compounds was 0.1 mg/L. The assay was linear to 10 mg/L for voriconazole (R2 = 0.995) and 5 mg/L for posaconazole (R2 = 0.990) and itraconazole (R2 = 0.991). The assay was both highly accurate and precise with % bias of voriconazole, posaconazole and itraconazole, respectively, when compared with previous NEQAS samples. The intra-assay precision (CV%) was 1.6%, 2.5% and 1.9% for voriconazole, posaconazole and itraconazole, respectively, across the linear range. Conclusion A simple and robust method has been validated for azole antifungal therapeutic drug monitoring. This new assay will result in a greatly improved sample turnaround time and will therefore vastly increase the clinical utility of azole antifungal drug monitoring.
Collapse
Affiliation(s)
- John M Wadsworth
- 1 Department of Clinical Biochemistry and Metabolic Medicine, Liverpool Clinical Laboratories, Royal Liverpool and Broadgreen University Hospitals Trust, Liverpool, UK
| | - Anna M Milan
- 1 Department of Clinical Biochemistry and Metabolic Medicine, Liverpool Clinical Laboratories, Royal Liverpool and Broadgreen University Hospitals Trust, Liverpool, UK
| | - James Anson
- 2 Department of Infection and Immunity, Liverpool Clinical Laboratories, Royal Liverpool and Broadgreen University Hospitals Trust, Liverpool, UK
| | - Andrew S Davison
- 1 Department of Clinical Biochemistry and Metabolic Medicine, Liverpool Clinical Laboratories, Royal Liverpool and Broadgreen University Hospitals Trust, Liverpool, UK
| |
Collapse
|
11
|
Oellerich M, Kanzow P, Walson PD. Therapeutic drug monitoring - Key to personalized pharmacotherapy. Clin Biochem 2017; 50:375-379. [PMID: 28095311 DOI: 10.1016/j.clinbiochem.2017.01.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 01/13/2017] [Indexed: 01/06/2023]
Affiliation(s)
- Michael Oellerich
- Department of Clinical Pharmacology, University Medical Center Göttingen, Göttingen, Germany.
| | - Philipp Kanzow
- Department of Clinical Pharmacology, University Medical Center Göttingen, Göttingen, Germany.
| | - Philip D Walson
- Department of Clinical Pharmacology, University Medical Center Göttingen, Göttingen, Germany.
| |
Collapse
|