1
|
Hosztafi S, Galambos AR, Köteles I, Karádi DÁ, Fürst S, Al-Khrasani M. Opioid-Based Haptens: Development of Immunotherapy. Int J Mol Sci 2024; 25:7781. [PMID: 39063024 PMCID: PMC11277321 DOI: 10.3390/ijms25147781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/11/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Over the past decades, extensive preclinical research has been conducted to develop vaccinations to protect against substance use disorder caused by opioids, nicotine, cocaine, and designer drugs. Morphine or fentanyl derivatives are small molecules, and these compounds are not immunogenic, but when conjugated as haptens to a carrier protein will elicit the production of antibodies capable of reacting specifically with the unconjugated hapten or its parent compound. The position of the attachment in opioid haptens to the carrier protein will influence the specificity of the antiserum produced in immunized animals with the hapten-carrier conjugate. Immunoassays for the determination of opioid drugs are based on the ability of drugs to inhibit the reaction between drug-specific antibodies and the corresponding drug-carrier conjugate or the corresponding labelled hapten. Pharmacological studies of the hapten-carrier conjugates resulted in the development of vaccines for treating opioid use disorders (OUDs). Immunotherapy for opioid addiction includes the induction of anti-drug vaccines which are composed of a hapten, a carrier protein, and adjuvants. In this review we survey the design of opioid haptens, the development of the opioid radioimmunoassay, and the results of immunotherapy for OUDs.
Collapse
Affiliation(s)
- Sándor Hosztafi
- Department of Pharmaceutical Chemistry, Semmelweis University, Hogyes Endre u. 9., H-1092 Budapest, Hungary;
| | - Anna Rita Galambos
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvá-rad tér 4., H-1445 Budapest, Hungary; (A.R.G.); (D.Á.K.); (S.F.)
| | - István Köteles
- Department of Pharmaceutical Chemistry, Semmelweis University, Hogyes Endre u. 9., H-1092 Budapest, Hungary;
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96 Gothenburg, Sweden
| | - Dávid Á Karádi
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvá-rad tér 4., H-1445 Budapest, Hungary; (A.R.G.); (D.Á.K.); (S.F.)
- Department of Anesthesiology and Intensive Therapy, Semmelweis University, Üllői út 78., H-1082 Budapest, Hungary
| | - Susanna Fürst
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvá-rad tér 4., H-1445 Budapest, Hungary; (A.R.G.); (D.Á.K.); (S.F.)
| | - Mahmoud Al-Khrasani
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvá-rad tér 4., H-1445 Budapest, Hungary; (A.R.G.); (D.Á.K.); (S.F.)
| |
Collapse
|
2
|
Choi J, Kim C, Choi MJ. Effects of the competitor on antibody-hapten binding in immunoassays. J Immunoassay Immunochem 2002; 23:69-83. [PMID: 11848102 DOI: 10.1081/ias-120002275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The effects of competitors on antibody (Ab)-hapten binding in an immunoassay were investigated using a goat antimethamphetamine (MA) antibody (Ab). An N-4-aminobutyl derivative of methamphetamine (4-ABMA) was conjugated with keyhole limpet hemocyanine (KLH) and used as an immunogen. The antiserum was purified by affinity chromatography with various ligands, including 4-ABMA-protein conjugates, free haptens, and protein G. Direct and indirect competitive enzyme-linked immunosorbent assays (ELISA) were conducted with a competitor of 4-ABMA-fluorescein isothiocyanate (4-ABMA-FITC). The results were compared to those of ELISA with a different competing antigen, 4-ABMA-ovalbumin (4-ABMA-OVA), in terms of sensitivity and specificity. In both direct and indirect assay formats, the sensitivity was much improved with 4-ABMA-FITC, compared to that with 4-ABMA-OVA, suggesting that different labels on the same haptenic moiety for competitors considerably influence the assay performance. All the purified Abs also showed a distinct feature of strong affinity for benzphetamine with 4-ABMA-FITC, whereas they had their respective binding specificities with 4-ABMA-OVA. Comparing the results to those from other assay systems, we determined that the assay sensitivity was dependent on both the system and the competitor employed, and that the specificity was primarily dependent on the competitor used.
Collapse
Affiliation(s)
- Jeongeun Choi
- Bioanalysis & Biotransformation Research Center, Korea Institute of Science and Technology, Seoul.
| | | | | |
Collapse
|
3
|
Meng QC, Cepeda MS, Kramer T, Zou H, Matoka DJ, Farrar J. High-performance liquid chromatographic determination of morphine and its 3- and 6-glucuronide metabolites by two-step solid-phase extraction. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL SCIENCES AND APPLICATIONS 2000; 742:115-23. [PMID: 10892590 DOI: 10.1016/s0378-4347(00)00146-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To provide more accurate measurement of morphine and its metabolites for a study of the genetic differences on morphine response, a method for the analysis of morphine and its metabolites is described which has the advantages of increased sensitivity and specificity by using a cleaner extraction. The new extraction method involves both the hydrophobic isolation on a carbon cartridge and ion-exchange isolation on ion-exchange resin which has not preliminary been described for morphine analysis. The combination of these two steps successfully purified drugs from human plasma with maximum removal of interfering substance comparing with a conventional C18 cartridge alone. The analytes are quantified by high-performance liquid chromatography on a reversed-phase C18 column employing a mobile phase consisting of 25% acetonitrile in 0.05 M phosphate buffer (pH 2.1), and 2.5 mM sodium dodecyl sulfate as the pairing ion with a combination of electrochemical and fluorometric detections. The recoveries for morphine (M), morphine-3-glucuronide (M3G), morphine-6-glucuronide (M6G) and hydromorphone after the SPE procedure were 86+/-7.1%, 82+/-6.9%, 79+/-6.0% and 85+/-6.0%, respectively. Limits of detection for this method are 0.1 ng/ml for M, and 0.18 ng/ml for M3G and M6G. Limits of quantitation were approximately 0.25 ng/ml for M, and 0.45 ng/ml for M3G and M6G. The present assay was applied to measure M, M3G and M6G content in human plasma to test the applicability and suitability of this method for clinical and research use.
Collapse
Affiliation(s)
- Q C Meng
- Center for Research in Anesthesia and Anesthesia, Department of Anesthesia, University of Pennsylvania Health System, Philadelphia 19104, USA
| | | | | | | | | | | |
Collapse
|
4
|
Naidong W, Lee JW, Jiang X, Wehling M, Hulse JD, Lin PP. Simultaneous assay of morphine, morphine-3-glucuronide and morphine-6-glucuronide in human plasma using normal-phase liquid chromatography-tandem mass spectrometry with a silica column and an aqueous organic mobile phase. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL SCIENCES AND APPLICATIONS 1999; 735:255-69. [PMID: 10670739 DOI: 10.1016/s0378-4347(99)00429-6] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Morphine (MOR) is an opioid analgesic used for the treatment of moderate to severe pain. MOR is extensively metabolized to morphine-3-glucuronide (M3G) and morphine-6-glucuronide (M6G). A rapid and sensitive method that was able to reliably detect at least 0.5 ng/ml of MOR and 1.0 ng/ml of M6G was required to define their pharmacokinetic profiles. An LC-MS-MS method was developed in our laboratory to quantify all three analytes with the required sensitivity and a rapid turnaround time. A solid-phase extraction (SPE) was used to isolate MOR, M3G, M6G, and their corresponding deuterated internal standards from heparinized plasma. The extract was injected on a LC tandem mass spectrometer with a turbo ion-spray interface. Baseline chromatographic separation among MOR, M3G, and M6G peaks was achieved on a silica column with an aqueous organic mobile phase consisting of formic acid, water, and acetonitrile. The total chromatographic run time was 3 min per injection, with retention times of 1.5, 1.9 and 2.4 min for MOR, M6G, and M3G, respectively. Chromatographic separation of M3G and M6G from MOR was paramount in establishing the LC-MS-MS method selectivity because of fragmentation of M3G and M6G to MOR at the LC-MS interface. The standard curve range in plasma was 0.5-50 ng/ml for MOR, 1.0-100 ng/ml for M6G, and 10-1000 ng/ml for M3G. The inter-day precision and accuracy of the quality control (QC) samples were <7% relative standard deviation (RSD) and <6% relative error (R.E.) for MOR, <9% RSD and <5% R.E. for M6G, and <3% RSD and <6% R.E. for M3G. Analyte stability during sample processing and storage were established. Method ruggedness was demonstrated by the reproducible performance from multiple analysts using several LC-MS-MS systems to analyze over one thousand samples from clinical trials.
Collapse
|
5
|
Hain RD, Hardcastle A, Pinkerton CR, Aherne GW. Morphine and morphine-6-glucuronide in the plasma and cerebrospinal fluid of children. Br J Clin Pharmacol 1999; 48:37-42. [PMID: 10383558 PMCID: PMC2014881 DOI: 10.1046/j.1365-2125.1999.00948.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/1997] [Accepted: 02/12/1999] [Indexed: 11/20/2022] Open
Abstract
AIMS To measure morphine and morphine-6-glucuronide in the plasma and cerebrospinal fluid of children following a single intravenous dose of morphine. METHODS Twenty-nine paired samples of cerebrospinal fluid and plasma were collected from children with leukaemia undergoing therapeutic lumbar puncture. An intravenous dose of morphine was administered at selected intervals before the procedure. Concentrations of morphine and morphine-6-glucuronide (M6G) were measured in each sample. Morphine was measured using a specific radioimmunoassay (r.i.a.) and M6G was measured using a novel enzyme-linked immunosorbent assay (ELISA). RESULTS The ELISA for measuring M6G was highly sensitive. The intra-and interassay variations were less than 15%. Using a two-compartment model for plasma morphine, the area under the curve to infinity (AUC, 7143 ng ml-1 min), volume of distribution (3.6 l kg-1 ) and elimination half-life (88 min) were comparable with those reported in adults. Clearance (35 ml min-1 ) was higher than that in adults. Morphine-6-glucuronide was readily synthesized by the children in this study. The elimination half-life (321 min) and AUC (35507 ng ml-1 min) of plasma M6G were much greater than those of morphine. CONCLUSIONS Extensive metabolism of morphine to M6G in children with cancer has been demonstrated. These data provide further evidence to support the importance of M6G accumulation after multiple doses. There was no evidence that morphine passed more easily into the CSF of children than adults.
Collapse
Affiliation(s)
- R D Hain
- Departments of Paediatric Oncology and Palliative Care, Llandough and Community NHS Trust, Penlan Road, Cardiff CF64 2XX, UK
| | | | | | | |
Collapse
|
6
|
Zheng M, McErlane KM, Ong MC. High-performance liquid chromatography-mass spectrometry-mass spectrometry analysis of morphine and morphine metabolites and its application to a pharmacokinetic study in male Sprague-Dawley rats. J Pharm Biomed Anal 1998; 16:971-80. [PMID: 9547700 DOI: 10.1016/s0731-7085(97)00094-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A high-performance liquid chromatography tandem mass spectrometry-mass spectrometry (LC-MS-MS) assay was developed for the analyses of morphine, morphine glucuronides and normorphine in plasma samples from rats. The analytes were extracted by using C2 solid-phase extraction cartridges. The extraction recoveries were 100% for morphine, 84% for morphine-3-glucuronide, 64% for morphine-6-glucuronide and 88% for normorphine. Both intra- and inter-assay variabilities were below 11%. Using a plasma sample size of 100 microliters, the limits of detection were 13 nmol l-1 (3.8 ng ml-1) for morphine, 12 nmol l-1 (5.5 ng ml-1) for morphine-3-glucuronide, 26 nmol l-1 (12 ng ml-1) for morphine-6-glucuronide and 18 nmol l-1 (5.0 ng ml-1) for normorphine, at a signal-to-noise ratio of 3. The present assay was applied to a pharmacokinetic study in rats after intraperitoneal administration of morphine.
Collapse
Affiliation(s)
- M Zheng
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada
| | | | | |
Collapse
|
7
|
Affiliation(s)
- T A Brettell
- Forensic Science Bureau, New Jersey State Police, West Trenton 08628-0088, USA
| | | |
Collapse
|
8
|
Milne RW, Nation RL, Somogyi AA. The disposition of morphine and its 3- and 6-glucuronide metabolites in humans and animals, and the importance of the metabolites to the pharmacological effects of morphine. Drug Metab Rev 1996; 28:345-472. [PMID: 8875123 DOI: 10.3109/03602539608994011] [Citation(s) in RCA: 164] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- R W Milne
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | | | | |
Collapse
|
9
|
Brown RT, Carter NK, Lumbard KW, Scheinmann F. Synthesis of a morphine-6-glucuronide hapten, N-(4-aminobutyl)normorphine-6-glucuronide, and related haptens. Tetrahedron Lett 1995. [DOI: 10.1016/0040-4039(95)01786-h] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|