1
|
Hoy BA, Bi M, Lam M, Krishnasamy G, Abdalmalak A, Fenesi B. Hyperactivity in ADHD: Friend or Foe? Brain Sci 2024; 14:719. [PMID: 39061459 PMCID: PMC11274564 DOI: 10.3390/brainsci14070719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Hyperactivity may play a functional role in upregulating prefrontal cortical hypoarousal and executive functioning in ADHD. This study investigated the neurocognitive impact of movement during executive functioning on children with ADHD. METHODS Twenty-four children with and without ADHD completed a Stroop task and self-efficacy ratings while remaining stationary (Stationary condition) and while desk cycling (Movement condition). Simultaneous functional near-infrared spectroscopy (fNIRS) recorded oxygenated and deoxygenated changes in hemoglobin within the left dorsolateral prefrontal cortex (DLPFC). RESULTS Among children with ADHD, the Movement condition produced superior Stroop reaction time compared to the Stationary condition (p = 0.046, d = 1.00). Self-efficacy improved in the Movement condition (p = 0.033, d = 0.41), whereas it did not in the Stationary condition (p = 0.323). Seventy-eight percent of participants showed greater oxygenation in the left DLPFC during the Movement condition vs. the Stationary condition. Among children without ADHD, there were no differences in Stroop or self-efficacy outcomes between Stationary and Movement conditions (ps > 0.085, ts < 1.45); 60% of participants showed greater oxygenation in the left DLPFC during the Movement vs. the Stationary condition. CONCLUSIONS This work provides supportive evidence that hyperactivity in ADHD may be a compensatory mechanism to upregulate PFC hypoarousal to support executive functioning and self-efficacy.
Collapse
Affiliation(s)
- Beverly-Ann Hoy
- Faculty of Education, Western University, London, ON N6G 1G7, Canada; (B.-A.H.); (M.B.); (M.L.); (G.K.)
| | - Michelle Bi
- Faculty of Education, Western University, London, ON N6G 1G7, Canada; (B.-A.H.); (M.B.); (M.L.); (G.K.)
| | - Matthew Lam
- Faculty of Education, Western University, London, ON N6G 1G7, Canada; (B.-A.H.); (M.B.); (M.L.); (G.K.)
| | - Gayuni Krishnasamy
- Faculty of Education, Western University, London, ON N6G 1G7, Canada; (B.-A.H.); (M.B.); (M.L.); (G.K.)
| | - Androu Abdalmalak
- Department of Physiology and Pharmacology, Western University, London, ON N6A 5C1, Canada;
| | - Barbara Fenesi
- Faculty of Education, Western University, London, ON N6G 1G7, Canada; (B.-A.H.); (M.B.); (M.L.); (G.K.)
| |
Collapse
|
2
|
Salazar de Pablo G, Iniesta R, Bellato A, Caye A, Dobrosavljevic M, Parlatini V, Garcia-Argibay M, Li L, Cabras A, Haider Ali M, Archer L, Meehan AJ, Suleiman H, Solmi M, Fusar-Poli P, Chang Z, Faraone SV, Larsson H, Cortese S. Individualized prediction models in ADHD: a systematic review and meta-regression. Mol Psychiatry 2024:10.1038/s41380-024-02606-5. [PMID: 38783054 DOI: 10.1038/s41380-024-02606-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 04/30/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
There have been increasing efforts to develop prediction models supporting personalised detection, prediction, or treatment of ADHD. We overviewed the current status of prediction science in ADHD by: (1) systematically reviewing and appraising available prediction models; (2) quantitatively assessing factors impacting the performance of published models. We did a PRISMA/CHARMS/TRIPOD-compliant systematic review (PROSPERO: CRD42023387502), searching, until 20/12/2023, studies reporting internally and/or externally validated diagnostic/prognostic/treatment-response prediction models in ADHD. Using meta-regressions, we explored the impact of factors affecting the area under the curve (AUC) of the models. We assessed the study risk of bias with the Prediction Model Risk of Bias Assessment Tool (PROBAST). From 7764 identified records, 100 prediction models were included (88% diagnostic, 5% prognostic, and 7% treatment-response). Of these, 96% and 7% were internally and externally validated, respectively. None was implemented in clinical practice. Only 8% of the models were deemed at low risk of bias; 67% were considered at high risk of bias. Clinical, neuroimaging, and cognitive predictors were used in 35%, 31%, and 27% of the studies, respectively. The performance of ADHD prediction models was increased in those models including, compared to those models not including, clinical predictors (β = 6.54, p = 0.007). Type of validation, age range, type of model, number of predictors, study quality, and other type of predictors did not alter the AUC. Several prediction models have been developed to support the diagnosis of ADHD. However, efforts to predict outcomes or treatment response have been limited, and none of the available models is ready for implementation into clinical practice. The use of clinical predictors, which may be combined with other type of predictors, seems to improve the performance of the models. A new generation of research should address these gaps by conducting high quality, replicable, and externally validated models, followed by implementation research.
Collapse
Affiliation(s)
- Gonzalo Salazar de Pablo
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Child and Adolescent Mental Health Services, South London and Maudsley NHS Foundation Trust, London, UK
- Institute of Psychiatry and Mental Health. Department of Child and Adolescent Psychiatry, Hospital General Universitario Gregorio Marañón School of Medicine, Universidad Complutense, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), CIBERSAM, Madrid, Spain
| | - Raquel Iniesta
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neurosciences, King's College London, London, UK
- King's Institute for Artificial Intelligence, King's College London, London, UK
| | - Alessio Bellato
- School of Psychology, University of Nottingham, Nottingham, Malaysia
- Centre for Innovation in Mental Health-Developmental Lab, School of Psychology, University of Southampton, Southampton, UK
- School of Psychology, University of Southampton, Southampton, UK
| | - Arthur Caye
- Post-Graduate Program of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- National Center for Research and Innovation (CISM), University of São Paulo, São Paulo, Brazil
- ADHD Outpatient Program, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Maja Dobrosavljevic
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Valeria Parlatini
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Centre for Innovation in Mental Health-Developmental Lab, School of Psychology, University of Southampton, Southampton, UK
- School of Psychology, University of Southampton, Southampton, UK
- Solent NHS Trust, Southampton, UK
| | - Miguel Garcia-Argibay
- Centre for Innovation in Mental Health-Developmental Lab, School of Psychology, University of Southampton, Southampton, UK
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Lin Li
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Anna Cabras
- Department of Neurology and Psychiatry, University of Rome La Sapienza, Rome, Italy
| | - Mian Haider Ali
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neurosciences, King's College London, London, UK
| | - Lucinda Archer
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
- National Institute for Health and Care Research (NIHR), Birmingham Biomedical Research Centre, Birmingham, UK
| | - Alan J Meehan
- Department of Psychology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Yale Child Study Center, Yale School of Medicine, New Haven, CT, USA
| | - Halima Suleiman
- Departments of Psychiatry and of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, Syracuse, NY, USA
| | - Marco Solmi
- Centre for Innovation in Mental Health-Developmental Lab, School of Psychology, University of Southampton, Southampton, UK
- Department of Psychiatry, University of Ottawa, Ottawa, ON, Canada
- Department of Mental Health, The Ottawa Hospital, Ottawa, ON, Canada
- Hospital Research Institute (OHRI) Clinical Epidemiology Program University of Ottawa, Ontario, ON, Canada
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany
| | - Paolo Fusar-Poli
- Early Psychosis: Interventions and Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Outreach and Support in South-London (OASIS) service, South London and Maudsley NHS Foundation Trust, London, UK
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilian-University (LMU), Munich, Germany
| | - Zheng Chang
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Stephen V Faraone
- Departments of Psychiatry and of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, Syracuse, NY, USA
| | - Henrik Larsson
- School of Psychology, University of Southampton, Southampton, UK
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Samuele Cortese
- Centre for Innovation in Mental Health-Developmental Lab, School of Psychology, University of Southampton, Southampton, UK.
- Solent NHS Trust, Southampton, UK.
- Clinical and Experimental Sciences (CNS and Psychiatry), Faculty of Medicine, University of Southampton, Southampton, UK.
- Hassenfeld Children's Hospital at NYU Langone, New York University Child Study Center, New York City, NY, USA.
- DiMePRe-J-Department of Precision and Rigenerative Medicine-Jonic Area, University of Bari "Aldo Moro", Bari, Italy.
| |
Collapse
|
3
|
Blasco-Fontecilla H, Li C, Vizcaino M, Fernández-Fernández R, Royuela A, Bella-Fernández M. A Nomogram for Predicting ADHD and ASD in Child and Adolescent Mental Health Services (CAMHS). J Clin Med 2024; 13:2397. [PMID: 38673670 PMCID: PMC11051553 DOI: 10.3390/jcm13082397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/08/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
Objectives: To enhance the early detection of Attention Deficit/Hyperactivity Disorder (ADHD) and Autism Spectrum Disorder (ASD) by leveraging clinical variables collected at child and adolescent mental health services (CAMHS). Methods: This study included children diagnosed with ADHD and/or ASD (n = 857). Three logistic regression models were developed to predict the presence of ADHD, its subtypes, and ASD. The analysis began with univariate logistic regression, followed by a multicollinearity diagnostic. A backward logistic regression selection strategy was then employed to retain variables with p < 0.05. Ethical approval was obtained from the local ethics committee. The models' internal validity was evaluated based on their calibration and discriminative abilities. Results: The study produced models that are well-calibrated and validated for predicting ADHD (incorporating variables such as physical activity, history of bone fractures, and admissions to pediatric/psychiatric services) and ASD (including disability, gender, special education needs, and Axis V diagnoses, among others). Conclusions: Clinical variables can play a significant role in enhancing the early identification of ADHD and ASD.
Collapse
Affiliation(s)
- Hilario Blasco-Fontecilla
- Instituto de Investigación, Transferencia e Innovación, Ciencias de la Saludy Escuela de Doctorado, Universidad Internacional de La Rioja, 26006 Logroño, Spain
- Center of Biomedical Network Research on Mental Health (CIBERSAM), Carlos III Institute of Health, 28029 Madrid, Spain
| | - Chao Li
- Faculty of Medicine, Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| | | | | | - Ana Royuela
- Biostatistics Unit, Hospital Universitario Puerta de Hierro Majadahonda, 28222 Majadahonda, Spain;
| | - Marcos Bella-Fernández
- Puerta de Hierro University Hospital, 28222 Majadahonda, Spain;
- Faculty of Psychology, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|