1
|
Ferro F, Azzolin F, Spelat R, Bevilacqua L, Maglione M. Considering the Value of 3D Cultures for Enhancing the Understanding of Adhesion, Proliferation, and Osteogenesis on Titanium Dental Implants. Biomolecules 2023; 13:1048. [PMID: 37509084 PMCID: PMC10377630 DOI: 10.3390/biom13071048] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Individuals with pathologic conditions and restorative deficiencies might benefit from a combinatorial approach encompassing stem cells and dental implants; however, due to the various surface textures and coatings, the influence of titanium dental implants on cells exhibits extensive, wide variations. Three-dimensional (3D) cultures of stem cells on whole dental implants are superior in testing implant properties and were used to examine their capabilities thoroughly. MATERIALS AND METHODS The surface micro-topography of five titanium dental implants manufactured by sandblasting with titanium, aluminum, corundum, or laser sintered and laser machined was compared in this study. After characterization, including particle size distribution and roughness, the adhesion, proliferation, and viability of adipose-derived stem cells (ADSCs) cultured on the whole-body implants were tested at three time points (one to seven days). Finally, the capacity of the implant to induce ADSCs' spontaneous osteoblastic differentiation was examined at the same time points, assessing the gene expression of collagen type 1 (coll-I), osteonectin (osn), alkaline phosphatase (alp), and osteocalcin (osc). RESULTS Laser-treated (Laser Mach and Laser Sint) implants exhibited the highest adhesion degree; however, limited proliferation was observed, except for Laser Sint implants, while viability differences were seen throughout the three time points, except for Ti Blast implants. Sandblasted surfaces (Al Blast, Cor Blast, and Ti Blast) outpaced the laser-treated ones, inducing higher amounts of coll-I, osn, and alp, but not osc. Among the sandblasted surfaces, Ti Blast showed moderate roughness and the highest superficial texture density, favoring the most significant spontaneous differentiation relative to all the other implant surfaces. CONCLUSIONS The results indicate that 3D cultures of stem cells on whole-body titanium dental implants is a practical and physiologically appropriate way to test the biological characteristics of the implants, revealing peculiar differences in ADSCs' adhesion, proliferation, and activity toward osteogenic commitment in the absence of specific osteoinductive cues. In addition, the 3D method would allow researchers to test various implant surfaces more thoroughly. Integrating with preconditioned stem cells would inspire a more substantial combinatorial approach to promote a quicker recovery for patients with restorative impairments.
Collapse
Affiliation(s)
- Federico Ferro
- Department of Medical and Biological Sciences, University of Udine, 33100 Udine, Italy
| | - Federico Azzolin
- Department of Medical, Surgery and Health Sciences, University of Trieste, 34125 Trieste, Italy
| | - Renza Spelat
- Neurobiology Sector, International School for Advanced Studies (SISSA), 34136 Trieste, Italy
| | - Lorenzo Bevilacqua
- Department of Medical, Surgery and Health Sciences, University of Trieste, 34125 Trieste, Italy
| | - Michele Maglione
- Department of Medical, Surgery and Health Sciences, University of Trieste, 34125 Trieste, Italy
| |
Collapse
|
2
|
Ferro F, Azzolin F, Spelat R, Bevilacqua L, Maglione M. Assessing the Efficacy of Whole-Body Titanium Dental Implant Surface Modifications in Inducing Adhesion, Proliferation, and Osteogenesis in Human Adipose Tissue Stem Cells. J Funct Biomater 2022; 13:jfb13040206. [PMID: 36412847 PMCID: PMC9680380 DOI: 10.3390/jfb13040206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/13/2022] [Accepted: 10/25/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Although the influence of titanium implants' micro-surface properties on titanium discs has been extensively investigated, the research has not taken into consideration their whole-body effect, which may be considered possible using a combinatorial approach. METHODS Five titanium dental implants with a similar moderate roughness and different surface textures were thoroughly characterized. The cell adhesion and proliferation were assessed after adipose-tissue-derived stem cells (ADSCs) were seeded on whole-body implants. The implants' inductive properties were assessed by evaluating the osteoblastic gene expression. RESULTS The surface micro-topography was analyzed, showing that hydroxyapatite (HA)-blasted and bland acid etching implants had the highest roughness and a lower number of surface particles. Cell adhesion was observed after 24 h on all the implants, with the highest score registered for the HA-blasted and bland acid etching implants. Cell proliferation was observed only on the laser-treated and double-acid-etched surfaces. The ADSCs expressed collagen type I, osteonectin, and alkaline phosphatase on all the implant surfaces, with high levels on the HA-treated surfaces, which also triggered osteocalcin expression on day seven. CONCLUSIONS The findings of this study show that the morphology and treatment of whole titanium dental implants, primarily HA-treated and bland acid etching implants, impact the adherence and activity of ADSCs in osteogenic differentiation in the absence of specific osteo-inductive signals.
Collapse
Affiliation(s)
- Federico Ferro
- Department of Medical and Biological Sciences, University of Udine, 33100 Udine, Italy
- Correspondence:
| | - Federico Azzolin
- Department of Medical, Surgery and Health Sciences, University of Trieste, 34125 Trieste, Italy
| | - Renza Spelat
- Neurobiology Sector, International School for Advanced Studies (SISSA), 34136 Trieste, Italy
| | - Lorenzo Bevilacqua
- Department of Medical, Surgery and Health Sciences, University of Trieste, 34125 Trieste, Italy
| | - Michele Maglione
- Department of Medical, Surgery and Health Sciences, University of Trieste, 34125 Trieste, Italy
| |
Collapse
|
3
|
Yu K, Jiang Z, Miao X, Yu Z, Du X, Lai K, Wang Y, Yang G. circRNA422 enhanced osteogenic differentiation of bone marrow mesenchymal stem cells during early osseointegration through the SP7/LRP5 axis. Mol Ther 2022; 30:3226-3240. [PMID: 35642253 PMCID: PMC9552913 DOI: 10.1016/j.ymthe.2022.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 04/27/2022] [Accepted: 05/21/2022] [Indexed: 10/18/2022] Open
Abstract
Circular RNAs (circRNAs) play an important role in biological activities, especially in regulating osteogenic differentiation of stem cells. However, no studies have reported the role of circRNAs in early osseointegration. Here we identified a new circRNA, circRNA422, from rat bone marrow mesenchymal stem cells (BMSCs) cultured on sandblasted, large-grit, acid-etched titanium surfaces. The results showed that circRNA422 significantly enhanced osteogenic differentiation of BMSCs with increased expression levels of alkaline phosphatase, the SP7 transcription factor (SP7/osterix), and lipoprotein receptor-related protein 5 (LRP5). Silencing of circRNA422 had opposite effects. There were two SP7 binding sites on the LRP5 promoter, indicating a direct regulatory relationship between SP7 and LRP5. circRNA422 could regulate early osseointegration in in vivo experiments. These findings revealed an important function of circRNA422 during early osseointegration. Therefore, circRNA422 may be a potential therapeutic target for enhancing implant osseointegration.
Collapse
Affiliation(s)
- Ke Yu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Zhiwei Jiang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Xiaoyan Miao
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Zhou Yu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Xue Du
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Kaichen Lai
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Ying Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Guoli Yang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China.
| |
Collapse
|
4
|
Cao X, Wang C, Yuan D, Chen S, Wang X. The effect of implants loaded with stem cells from human exfoliated deciduous teeth on early osseointegration in a canine model. BMC Oral Health 2022; 22:238. [PMID: 35715777 PMCID: PMC9206344 DOI: 10.1186/s12903-022-02264-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/02/2022] [Indexed: 11/17/2022] Open
Abstract
Background This in vivo experimental study investigated the effect of stem cells from human exfoliated deciduous teeth (SHEDs) on early osteogenesis around implants. Methods In four healthy adult male Beagle dogs, the left mandibular received implants and SHED as the experimental group, and the right mandibular received implants and phosphate-buffered saline as the control group. The Beagle dogs were randomly divided into groups A and B, which were sacrificed at 2 and 4 weeks after implantation. Micro-computed tomography and histological analysis were used to investigate the effect of SHED-loading on the early osseointegration around the implants. Results The total bone-to-implant contact (BIC%) and interthread bone improved significantly. The analysis of the bone volume fraction and trabecular thickness showed that the bone trabecula around the implants in the SHEDs group was thicker and denser than that in the control group, suggesting a better osseointegration. Conclusions The application of implants pre-adhered with SHEDs improved and accelerated early osseointegration around the implant, resulting in thicker and denser trabecular bone.
Collapse
Affiliation(s)
- Xu Cao
- Laboratory of Biomaterials and Biomechanics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Caiyun Wang
- Laboratory of Biomaterials and Biomechanics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Dingxiang Yuan
- Laboratory of Biomaterials and Biomechanics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Su Chen
- Laboratory of Biomaterials and Biomechanics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Xin Wang
- Laboratory of Biomaterials and Biomechanics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
5
|
Song A, Jiang F, Wang Y, Wang M, Wu Y, Zheng Y, Song X, Zhang W, Zhou J. Semaphorin3A promotes osseointegration of titanium implants in osteoporotic rabbits. Clin Oral Investig 2022; 26:969-979. [PMID: 34363102 DOI: 10.1007/s00784-021-04081-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 07/13/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE In the present study, we intend to assess the function of Sema3A in osteointegration of titanium implants both in vivo and in vitro. MATERIAL AND METHODS Briefly, Sema3A was transfected in HBMSCs cells to detect its effect on osteogenesis. Subsequently, an in vivo rabbit model was established. Eighteen female rabbits were randomly assigned into three groups (n=6), and rabbits in the two treatment groups (OVX groups) were subjected to bilateral ovariectomy, while those in the control group were treated with sham operation. Twelve weeks later, we first examined expression levels of Sema3A in rabbits of the three groups. Titanium implants were implanted in rabbit proximal tibia. Specifically, rabbits in sham group were implanted with Matrigel, while the remaining in the OVX experimental group (OVX+Sema3A group) and OVX group were implanted with Matrigel containing Sema3A adeno-associated virus or empty vector, respectively. RESULTS Histomorphometry results uncovered that rabbits in the OVX+Sema3A group had a significantly higher BIC compared with those of the OVX group on the 12th week of post-implantation. And compared with the OVX group, the maximum push-out force increased by 89.4%, and the stiffness increased by 39.4%, the toughness increased by 63.8% in the OVX+Sema3A group at 12 weeks. CONCLUSION Sema3A has a positive effect on promoting early osseointegration of titanium implants in osteoporotic rabbits. CLINICAL RELEVANCE Our research found that Sema3A can improve the osteogenic ability of bone marrow stem cells and promotes osseointegration during osteoporosis.
Collapse
Affiliation(s)
- An Song
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
- Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province and Stomatological Institute of Nanjing Medical University, No.1, Shanghai Road, Gulou District, Nanjing, 210029, Jiangsu, People's Republic of China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Feng Jiang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
- Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province and Stomatological Institute of Nanjing Medical University, No.1, Shanghai Road, Gulou District, Nanjing, 210029, Jiangsu, People's Republic of China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Yi Wang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
- Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province and Stomatological Institute of Nanjing Medical University, No.1, Shanghai Road, Gulou District, Nanjing, 210029, Jiangsu, People's Republic of China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Ming Wang
- Department of Stomatology, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, No.179, Xiaolingwei Road, Xuanwu District, Nanjing, 210014, Jiangsu, China
| | - Yanhui Wu
- Department of Stomatology, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, No.179, Xiaolingwei Road, Xuanwu District, Nanjing, 210014, Jiangsu, China
| | - Yang Zheng
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
- Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province and Stomatological Institute of Nanjing Medical University, No.1, Shanghai Road, Gulou District, Nanjing, 210029, Jiangsu, People's Republic of China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Xiaomeng Song
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
- Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province and Stomatological Institute of Nanjing Medical University, No.1, Shanghai Road, Gulou District, Nanjing, 210029, Jiangsu, People's Republic of China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Wei Zhang
- Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province and Stomatological Institute of Nanjing Medical University, No.1, Shanghai Road, Gulou District, Nanjing, 210029, Jiangsu, People's Republic of China.
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China.
| | - Junbo Zhou
- Department of Stomatology, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, No.179, Xiaolingwei Road, Xuanwu District, Nanjing, 210014, Jiangsu, China.
| |
Collapse
|
6
|
Teraoka K, Watazu A, Sonoda T. Observation of Cells on a Simulated Titanium Surface with Transparency. J Dent Res 2021; 100:833-838. [PMID: 33754877 DOI: 10.1177/00220345211000272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The main driving force of osseointegration on titanium implants is believed to be the calcification caused by cellular activity. However, owing to the opacity of bulk titanium, live cells on titanium surfaces cannot be observed using an inverted microscope. To overcome this limitation, this study proposes a transparent titanium thin layer as a simulated titanium surface that allows live-cell observation from below. The titanium layer was fabricated on a polystyrene culture dish by magnetron DC sputtering using a pure Ti(JIS1) target. The titanium layer was characterized by transparency, composition, structure, and wettability. Osteoblast-like cells were cultured in the titanium-coated dishes. The cell culture was observed periodically using an inverted microscope, and the images were compiled into time-lapse videos. Cells on the titanium layer were characterized by movement speeds and doubling times. The titanium-coated dish was transparent gray, and its transmittance profile was consistent with that of the polystyrene dish. The titanium layer showed similarities to bulk titanium surfaces in terms of composition and structure; that is, it showed an oxidized titanium outermost layer and titanium metal basal layer. The wettability of the titanium layer was hydrophilic with mean contact angles of 67.52°. Osteoblast-like cells successfully adhered to the titanium layer and proliferated to confluence. The time-lapse videos demonstrated active movement of the cells on the titanium layer, which suggested the involvement of the titanium surface in cellular motility. The cell culture on the titanium layer can be considered cell culture on a titanium surface. In short, the titanium layer enabled the acquisition of information for living cells on titanium that has either been unknown or analogically understood based on cell culture on polystyrene dishes.
Collapse
Affiliation(s)
- K Teraoka
- National Institute of Advanced Industrial Science and Technology, Human Informatics and Interaction Research Institute, Tsukuba, Ibaraki, Japan
| | - A Watazu
- National Institute of Advanced Industrial Science and Technology, Multi-Material Research Institute, Nagoya, Aichi, Japan
| | - T Sonoda
- National Institute of Advanced Industrial Science and Technology, GaN Advanced Device Open Innovation Laboratory, Nagoya, Aichi, Japan
| |
Collapse
|
7
|
Ren H, Huo F, Wang Z, Liu F, Dong X, Wang F, Fan X, Yuan M, Jiang X, Lan J. Sdccag3 Promotes Implant Osseointegration during Experimental Hyperlipidemia. J Dent Res 2020; 99:938-948. [PMID: 32339468 DOI: 10.1177/0022034520916400] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Hyperlipidemia adversely affects bone metabolism, often resulting in compromised osseointegration and implant loss. In addition, genetic networks associated with osseointegration have been proposed. Serologically defined colon cancer antigen 3 (Sdccag3) is a novel endosomal protein that functions in actin cytoskeleton remodeling, protein trafficking and secretion, cytokinesis, and apoptosis, but its roles in the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and in implant osseointegration under hyperlipidemic conditions have not been uncovered. Here, we performed microarray and RNA sequencing analysis to determine the differential expression of the Sdccag3 gene and related noncoding RNAs (ncRNAs) and to assess the long noncoding RNA (lncRNA) MSTRG.97162.4-miR-193a-3p-Sdccag3 coexpression network in bone tissues within the region 0.5 mm around implants in hyperlipidemic rats. In this experiment, we found that Sdccag3 and the previously uncharacterized lncRNA-MSTRG.97162.4 were downregulated during hyperlipidemia, while miR-193a-3p was upregulated. Sdccag3 overexpression increased new trabecular formation, the bone volume/total volume (BV/TV) (1.24-fold), and bone-implant combination ratio (BIC%) (1.26-fold). An RNA pulldown experiment revealed that Sdccag3 protein targeted lncRNA-MSTRG.97162.4 nucleotides 361 to 389. In addition, lncRNA-MSTRG.97162.4 overexpression significantly enhanced Sdccag3 (2.78-fold) expression and increased BV/TV (1.45-fold) and BIC% (1.07-fold) at the bone-implant interface. Taken together, these findings indicate that Sdccag3 overexpression enhances implant osseointegration under hyperlipidemic conditions by binding to lncRNA-MSTRG.97162.4. Furthermore, miR-193a-3p overexpression inhibited lncRNA-MSTRG.97162.4 (0.63-fold) and Sdccag3 (0.88-fold) expression and induced poor implant osseointegration (BV/TV, 0.86-fold; BIC%, 0.82-fold), while miR-193a-3p downregulation produced the opposite results (lncRNA-MSTRG.97162.4, 10.69-fold; Sdccag3, 6.96-fold; BV/TV, 1.20-fold; BIC%, 1.26-fold). Therefore, our findings show that Sdccag3 promotes implant osseointegration, and its related lncRNA-MSTRG.97162.4 and miR-193a-3p play an important role in osseointegration during hyperlipidemia, which might be a promising therapeutic target for improving dental implantation success rates.
Collapse
Affiliation(s)
- H Ren
- Department of Prosthodontics, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| | - F Huo
- Department of Prosthodontics, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| | - Z Wang
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| | - F Liu
- Central Laboratory, Peking University School and Hospital of Stomatology, Haidian District, Beijing, China
| | - X Dong
- State Key Laboratory Breeding Base of Basic Science of Stomotology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomotology, Wuhan University, Wuhan, Hubei, China
| | - F Wang
- Department of Prosthodontics, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| | - X Fan
- Department of Prosthodontics, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| | - M Yuan
- Department of Prosthodontics, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| | - X Jiang
- Department of Prosthodontics, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| | - J Lan
- Department of Prosthodontics, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| |
Collapse
|
8
|
Oh SM, Shin JS, Kim IK, Kim JH, Moon JS, Lee SK, Lee JH. Therapeutic Effects of HIF-1α on Bone Formation around Implants in Diabetic Mice Using Cell-Penetrating DNA-Binding Protein. Molecules 2019; 24:molecules24040760. [PMID: 30791543 PMCID: PMC6412638 DOI: 10.3390/molecules24040760] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/15/2019] [Accepted: 02/18/2019] [Indexed: 12/21/2022] Open
Abstract
Patients with uncontrolled diabetes are susceptible to implant failure due to impaired bone metabolism. Hypoxia-inducible factor 1α (HIF-1α), a transcription factor that is up-regulated in response to reduced oxygen during bone repair, is known to mediate angiogenesis and osteogenesis. However, its function is inhibited under hyperglycemic conditions in diabetic patients. This study thus evaluates the effects of exogenous HIF-1α on bone formation around implants by applying HIF-1α to diabetic mice and normal mice via a protein transduction domain (PTD)-mediated DNA delivery system. Implants were placed in the both femurs of diabetic and normal mice. HIF-1α and placebo gels were injected to implant sites of the right and left femurs, respectively. We found that bone-to-implant contact (BIC) and bone volume (BV) were significantly greater in the HIF-1α treated group than placebo in diabetic mice (p < 0.05). Bioinformatic analysis showed that diabetic mice had 216 differentially expressed genes (DEGs) and 21 target genes. Among the target genes, NOS2, GPNMB, CCL2, CCL5, CXCL16, and TRIM63 were found to be associated with bone formation. Based on these results, we conclude that local administration of HIF-1α via PTD may boost bone formation around the implant and induce gene expression more favorable to bone formation in diabetic mice.
Collapse
Affiliation(s)
- Sang-Min Oh
- Department of Prosthodontics, College of Dentistry, Yonsei University, 134 Shinchon-dong, Seodaemoon-gu, Seoul 03722, Korea.
| | - Jin-Su Shin
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 134 Shinchon-dong, Seodaemoon-gu, Seoul 03722, Korea.
| | - Il-Koo Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 134 Shinchon-dong, Seodaemoon-gu, Seoul 03722, Korea.
| | - Jung-Ho Kim
- Research Institute for Precision Immuno-medicine, Good T Cells Incorporated, 134 Shinchon-dong, Seodaemoon-gu, Seoul 03722, Korea.
| | - Jae-Seung Moon
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 134 Shinchon-dong, Seodaemoon-gu, Seoul 03722, Korea.
| | - Sang-Kyou Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 134 Shinchon-dong, Seodaemoon-gu, Seoul 03722, Korea.
- Research Institute for Precision Immuno-medicine, Good T Cells Incorporated, 134 Shinchon-dong, Seodaemoon-gu, Seoul 03722, Korea.
| | - Jae-Hoon Lee
- Department of Prosthodontics, College of Dentistry, Yonsei University, 134 Shinchon-dong, Seodaemoon-gu, Seoul 03722, Korea.
| |
Collapse
|
9
|
Liu X, Chen C, Zhang H, Tian A, You J, Wu L, Lei Z, Li X, Bai X, Chen S. Biocompatibility evaluation of antibacterial Ti-Ag alloys with nanotubular coatings. Int J Nanomedicine 2019; 14:457-468. [PMID: 30666107 PMCID: PMC6330981 DOI: 10.2147/ijn.s193569] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Implant-related infection is a major problem postsurgery. As an alternative to a localized antibiotic release system, we used Ag to fabricate Ti-Ag alloys with nanotubular coatings (TiAg-NTs). Ag has excellent antibacterial properties, but its biological toxicity is a concern. Therefore, we performed biological experiments both in vitro and in vivo to evaluate the biocompatibility of TiAg-NTs with different concentrations of Ag (1%, 2%, and 4%). METHODS For in vitro experiments, cytocompatibility, including cell attachment, viability, and proliferation, was tested, and genes and proteins related to osteogenic differentiation were also evaluated. For in vivo assays, the rat femoral condylar insertion model was used, and micro-computed tomography (micro-CT) and histological analysis were conducted to analyze bone formation around implants at 1, 2, and 4 weeks after surgery. RESULTS Both in vitro and in vivo results indicate that Ti2%Ag-NT showed comparable cytocompatibility with commercially pure Ti (cp-Ti), and it could achieve good osseointegration with the surrounding bone tissue. CONCLUSION We thus believe that Ti2%Ag-NT is a potential biomaterial for orthopedics.
Collapse
Affiliation(s)
- Xingwang Liu
- Department of Sports Medicine, Huashan Hospital of Fudan University, Shanghai 200040, China,
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200082, China
| | - Chen Chen
- Department of Arthroscopic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Hangzhou Zhang
- Department of Sports Medicine and Joint Surgery, The First Affiliated Hospital of China Medical University, Shenyang 110000, China
| | - Ang Tian
- Liaoning Provincial Key Laboratory of Metallurgical Resources Circulation Science, Northeastern University, Shenyang 110819, China
| | - Junhua You
- School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
| | - Lin Wu
- Department of Prosthodontics, School of Stomatology, China Medical University, Shenyang 110000, China
| | - Zeming Lei
- Department of Orthopaedics, The People's Hospital of China Medical University, Shenyang 110000, China,
| | - Xi Li
- Department of Orthopaedics, The People's Hospital of China Medical University, Shenyang 110000, China,
| | - Xizhuang Bai
- Department of Orthopaedics, The People's Hospital of China Medical University, Shenyang 110000, China,
| | - Shiyi Chen
- Department of Sports Medicine, Huashan Hospital of Fudan University, Shanghai 200040, China,
| |
Collapse
|
10
|
Liu H, Zhang N, Liu Y, Liu L, Yin G, En L. Effect of Human Wnt10b Transgene Overexpression on Peri-Implant Osteogenesis in Ovariectomized Rats. Hum Gene Ther 2018; 29:1416-1427. [PMID: 29790378 DOI: 10.1089/hum.2018.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
This study aimed to investigate the efficacy of human Wnt10b (hWnt10b) transgene expression in ovariectomized (OVX) rats to accelerate osseointegration around titanium implants, and to provide a new strategy for treating osteoporosis with implants. An in vivo osteoporosis model was generated via bilateral ovariectomy in rats, and changes in expression of Wnt pathway-related genes were investigated. In OVX rats with a femur defect, hWnt10b expressed from an adenovirus vector was locally delivered to the defect site prior to implant placement. Surrounding femur tissues were collected 1 and 3 weeks after implantation for imaging, biomechanical testing, and molecular and histological analyses. In an in vitro model, bone-marrow stromal cells (BMSCs) transfected with adenovirus containing hWnt10b (Ad-hWnt10b) were cultured for 2 weeks in adipogenic medium followed by 2 weeks in osteogenic induction medium. Alizarin Red staining and Oil Red O staining, as well as reverse transcription polymerase chain reaction and Western blot analyses, were performed to assess the effect of hWnt10b expression on BMSC differentiation. Expression of Wnt pathway genes was significantly downregulated in OVX rats. OVX rats treated with Ad-hWnt10b prior to induction of a femur defect showed markedly increased ALP, Runx-2, and osteocalcin expression and decreased cathepsin K expression. Histological and imaging analysis showed increases in the number of osteocalcin-positive cells and the density of newly formed bone surrounding the implant in the Ad-hWnt10b group relative to the untreated control. Meanwhile, Ad-hWnt10b-BMSCs showed significantly increased osteogenesis and decreased adipogenesis. hWnt10b may accelerate osseointegration around implants and subsequently enhance bone regeneration and implant stabilization under OVX conditions.
Collapse
Affiliation(s)
- Hanghang Liu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Nian Zhang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Yao Liu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China.,Division of Oral Biology, Tufts University School of Dental Medicine, Boston, Massachusetts
| | - Li Liu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Guozhu Yin
- Department of Stomatology, Shandong Provincial Hospital affiliated with Shandong University, Jinan, P.R. China
| | - Luo En
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| |
Collapse
|
11
|
Su L, Qiao Q, Li R, Wu H. Leptin attenuates the growth of rabbit mesenchymal stem cells via the extracellular signal-regulated kinase signaling pathway. Exp Ther Med 2018; 15:4185-4190. [PMID: 29731817 PMCID: PMC5920699 DOI: 10.3892/etm.2018.5948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 01/03/2018] [Indexed: 11/29/2022] Open
Abstract
When stimulated, mesenchymal stem cells (MSCs) may differentiate into chondroblasts, adipocytes or osteoblasts. Leptin is an adipocyte-derived hormone, which regulates food intake and glucose homeostasis. The aim of the present study was to identify the potential role of mitogen-activated protein kinase in the leptin-induced growth of rabbit bone MSCs (rBMSCs). Various concentrations of leptin were used to culture rBMSCs and the viability of cells was observed as well as alterations in the phosphorylation state of extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal kinase and p38. It was revealed that the growth of leptin-treated rBMSCs was primarily inhibited by phosphorylated ERK1/2, which was mediated by the leptin receptor. In conclusion, the results of the present study demonstrated that leptin inhibits the growth of rBMSCs principally via the ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- Liping Su
- School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, Inner Mongolia 010010, P.R. China
| | - Qiao Qiao
- Obstetrics and Gynecology Department, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010010, P.R. China
| | - Ruifeng Li
- Department of Cervical Surgery, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010010, P.R. China
| | - Huiguang Wu
- Animal Science College, Inner Mongolia University for The Nationalities, Tongliao, Inner Mongolia 028000, P.R. China
| |
Collapse
|
12
|
Liu Y, Zheng G, Liu L, Wang Z, Wang Y, Chen Q, Luo E. Inhibition of osteogenesis surrounding the titanium implant by CGRP deficiency. Connect Tissue Res 2018; 59:147-156. [PMID: 28402679 DOI: 10.1080/03008207.2017.1317759] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Previous studies have suggested one of the neurotransmitters, calcitonin gene-related peptide (CGRP), modulates local regulation of bone metabolism; however, the regulating signaling pathway is still being explored. The objective of this study was to determine whether CGRP deficiency affects the osteogenesis surrounding titanium implants in vivo. Titanium screws were implanted in 72 adult rats, which were divided into three groups randomly: Sham, inferior alveolar neurectomy (IAN), and IAN+CGRP. Saline solution containing CGRP (concentration: 100 nmol/L) was injected into the area surrounding the implants in the IAN+CGRP group every day post operation. According to histological observations and Micro-CT, osteogenesis surrounding the implant was suppressed in the IAN group compared to that in the Sham and IAN+CGRP groups; the highest degree of osteogenesis was observed in the Sham group. This effect was also proved via the gene expressions of osteocalcin and runt-related transcription factor 2 surrounding the implant by real-time (RT) PCR analysis. In addition, through immunofluorescence staining and RT-PCR analysis, levels of CGRP and β-catenin were also reduced in the IAN group, while the highest expression was observed in the Sham group (p < 0.05). Our results collectively suggest that the titanium implant bone model established by IAN exhibited CGRP deficiency and reduced osteogenesis surrounding the implant. Additionally, the expression analyses suggest that the canonical Wnt signaling pathway could be involved in this process of bone metabolism in vivo.
Collapse
Affiliation(s)
- Yao Liu
- a State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology , Sichuan University , Chengdu , China
| | - Guangsen Zheng
- b Guangdong Provincial Key Laboratory of Oral Diseases , Sun Yat-Sen University , Guangzhou , China
| | - Li Liu
- a State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology , Sichuan University , Chengdu , China
| | - Zhi Wang
- b Guangdong Provincial Key Laboratory of Oral Diseases , Sun Yat-Sen University , Guangzhou , China
| | - Yiyao Wang
- a State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology , Sichuan University , Chengdu , China
| | - Qianming Chen
- a State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology , Sichuan University , Chengdu , China
| | - En Luo
- a State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology , Sichuan University , Chengdu , China
| |
Collapse
|
13
|
Duan Y, Ma W, Li D, Wang T, Liu B. Enhanced osseointegration of titanium implants in a rat model of osteoporosis using multilayer bone mesenchymal stem cell sheets. Exp Ther Med 2017; 14:5717-5726. [PMID: 29250137 PMCID: PMC5729390 DOI: 10.3892/etm.2017.5303] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 03/17/2017] [Indexed: 12/26/2022] Open
Abstract
The present study aimed to investigate whether bone marrow-derived mesenchymal stem cell (BMSC) sheets combined with titanium implants enhanced implant osseointegration in an ovariectomized (OVX) rat model of osteoporosis. Sprague-Dawley rats were randomly assigned into a test group and control group. Allogenic BMSCs were collected from the rats, cultured and stored via cryopreservation. At 6 months post-ovariectomy, establishment of the OVX model was confirmed by micro-computed tomography (CT) measurements. BMSC sheets were subsequently layered and wrapped over titanium implants for implantation. Unmodified implants served as the control. At 8 weeks post-implantation, samples were observed by micro-CT reconstruction and histomorphometric evaluation. Micro-CT reconstruction identified a marked improvement in the surrounding bone volume following treatment, with data analyses indicating a significant increase in bone volume in the BMSC-implant group compared with the control implant group (P<0.05). In addition, histological staining identified new bone formation and an increased rate of bone-implant contact surrounding the BMSC-implant constructs. These results indicate that the use of BMSC sheets as a novel tissue engineering approach improves the osseointegration of titanium implants in an osteoporosis model. This method may expand the operative indications in patients with osteoporosis and improve the success rate of clinical dental implant treatments.
Collapse
Affiliation(s)
- Yan Duan
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Dental Implants, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Wei Ma
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Dental Implants, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Dehua Li
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Dental Implants, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Tongfei Wang
- Department of Oncology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Baolin Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Dental Implants, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
14
|
Le Pape F, Richard G, Porchet E, Sourice S, Dubrana F, Férec C, Polard V, Pace R, Weiss P, Zal F, Delépine P, Leize E. Adhesion, proliferation and osteogenic differentiation of human MSCs cultured under perfusion with a marine oxygen carrier on an allogenic bone substitute. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:95-107. [DOI: 10.1080/21691401.2017.1365724] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Fiona Le Pape
- Functional Genetics Department, INSERM Research Unit 1078, University of Western Brittany, European Brittany University, Brest, France
- HEMARINA SA, Aeropole Center, Biotechnopole, Morlaix, France
| | - Gaëlle Richard
- Functional Genetics Department, INSERM Research Unit 1078, University of Western Brittany, European Brittany University, Brest, France
- French Blood Service-Brittany, Brest, France
| | - Emmanuelle Porchet
- Functional Genetics Department, INSERM Research Unit 1078, University of Western Brittany, European Brittany University, Brest, France
| | - Sophie Sourice
- INSERM Research Unit 791, Center for Osteoarticular and Dental Tissue Engineering, University of Nantes, Nantes, France
- Regional University Hospital Center of Nantes, Nantes, France
| | | | - Claude Férec
- Functional Genetics Department, INSERM Research Unit 1078, University of Western Brittany, European Brittany University, Brest, France
- French Blood Service-Brittany, Brest, France
- Regional University Hospital Center, Brest, France
| | - Valérie Polard
- HEMARINA SA, Aeropole Center, Biotechnopole, Morlaix, France
| | - Richard Pace
- INSERM Research Unit 791, Center for Osteoarticular and Dental Tissue Engineering, University of Nantes, Nantes, France
| | - Pierre Weiss
- INSERM Research Unit 791, Center for Osteoarticular and Dental Tissue Engineering, University of Nantes, Nantes, France
| | - Franck Zal
- HEMARINA SA, Aeropole Center, Biotechnopole, Morlaix, France
| | - Pascal Delépine
- Functional Genetics Department, INSERM Research Unit 1078, University of Western Brittany, European Brittany University, Brest, France
- French Blood Service-Brittany, Brest, France
| | - Elisabeth Leize
- Functional Genetics Department, INSERM Research Unit 1078, University of Western Brittany, European Brittany University, Brest, France
- Prosthesis Department, Research and Formation Unit of Odontology, Regional University Hospital Center of Brest, Brest, France
| |
Collapse
|
15
|
Bellone G, Vizio B, Scirelli T, Emanuelli G. A Xenogenic Bone Derivative as a Potential Adjuvant for Bone Regeneration and Implant Osseointegration: An In Vitro Study. Tissue Eng Regen Med 2017; 14:243-251. [PMID: 30603481 DOI: 10.1007/s13770-017-0029-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/31/2016] [Accepted: 06/04/2016] [Indexed: 12/18/2022] Open
Abstract
Several clinical conditions may limit the success of bone regeneration and/or implant osseointegration. For this reason, many compounds have been tested for their ability to stimulate this biological process. Synthetic hydroxyapatite (HA), mimicking natural bone hydroxyapatite, and extra-cellular matrix proteins, such as type I collagen, are potential candidates. However, the synthetic origin of HA and the denaturing conditions required for extracting collagen from skin and derma are sources of potential drawbacks. This study examines the in vitro effects of a natural bone derivative (NBD) extracted from equine bone and containing both natural, non-synthetic bone hydroxyapatite and native, non-denatured, type I bone collagen as a possible active compound for stimulating bone regeneration and implant osseointegration. The activity of NBD was tested on bone marrow stromal cells (BMSCs), evaluating their growth/viability by the methylthiazol tetrazolium (MTT) assay and their migration potential by a scratch assay. Moreover, expression of the hyaluronic acid receptor (CD44) and the C-X-C chemokine receptor type 4 (CXCR4, CD184) on the surface of BMSCs was assessed by flow cytometry, and the release of Transforming Growth Factor (TGF)-β, Interleukin (IL)-1α and IL-6 was quantified using an enzyme-linked immunosorbent assay (ELISA). The effect of NBD-coated implants on human osteoblasts was tested by measuring alkaline phosphatase (ALP) activity with the p-nitrophenyl phosphate (pNPP) degradation test. NBD stimulated BMSC growth/viability, migration, CD184 surface expression and the release of TGF-β1. NBD-coated implants increased ALP activity of human osteoblasts. These results indicate that NBD may be an adjuvant to accelerate both bone regeneration and osseointegration.
Collapse
Affiliation(s)
- Graziella Bellone
- Department of Medical Sciences, University of Turin, Via Genova 3, 10126 Turin, Italy
| | - Barbara Vizio
- Department of Medical Sciences, University of Turin, Via Genova 3, 10126 Turin, Italy
| | - Tiziana Scirelli
- Department of Medical Sciences, University of Turin, Via Genova 3, 10126 Turin, Italy
| | - Giorgio Emanuelli
- Department of Medical Sciences, University of Turin, Via Genova 3, 10126 Turin, Italy
| |
Collapse
|
16
|
Xu WL, Ong HS, Zhu Y, Liu SW, Liu LM, Zhou KH, Xu ZQ, Gao J, Zhang Y, Ye JH, Yang WJ. In Situ Release of VEGF Enhances Osteogenesis in 3D Porous Scaffolds Engineered with Osterix-Modified Adipose-Derived Stem Cells. Tissue Eng Part A 2017; 23:445-457. [PMID: 28107808 DOI: 10.1089/ten.tea.2016.0315] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Adipose-derived stem cells (ADSCs) can differentiate into various cell types and thus have great potential for regenerative medicine. Herein, rat ADSCs were isolated; transduced with lentiviruses expressing Osterix (Osx), a transcriptional factor essential for osteogenesis. Osx overexpression upregulated key osteogenesis-related genes, such as special AT-rich binding protein 2, alkaline phosphatase, osteocalcin, and osteopontin, at both mRNA and protein levels. In addition, mineral nodule formation and alkaline phosphatase activity were enhanced in Osx-overexpressing ADSCs. The expression of dickkopf-related protein 1, a potent Wnt signaling pathway inhibitor, was also increased, whereas that of β-catenin, an intracellular signal transducer in the Wnt pathway, was decreased. β-catenin expression was partially recovered by treatment with lithium chloride, a canonical Wnt pathway activator. The Osx-expressing ADSCs were then combined with 3D gelatin-coated porous poly(ɛ-caprolactone) scaffolds with a unique release prolife of entrapped recombinant human vascular endothelial growth factor (VEGF). The controlled release of VEGF promoted osteogenic differentiation capacity in vitro. When the scaffold-ADSC complexes were transplanted into rat calvarial critical-sized defects, more bone formed on the gelatin/VEGF-coated scaffolds than on other scaffold types. Taken together, the results indicate that, Osx-overexpression promotes ADSCs' osteogenesis both in vitro and in vivo, which could be enhanced by release of VEGF.
Collapse
Affiliation(s)
- Wan-Lin Xu
- 1 Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, China .,2 Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology , Shanghai, China .,3 Jiangsu Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University , Nanjing, China
| | - Hui-Shan Ong
- 1 Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, China .,2 Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology , Shanghai, China
| | - Yun Zhu
- 1 Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, China .,2 Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology , Shanghai, China
| | - Sheng-Wen Liu
- 1 Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, China .,2 Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology , Shanghai, China
| | - Li-Min Liu
- 1 Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, China .,2 Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology , Shanghai, China
| | - Kai-Hua Zhou
- 1 Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, China .,2 Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology , Shanghai, China
| | - Zeng-Qi Xu
- 3 Jiangsu Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University , Nanjing, China
| | - Jun Gao
- 4 Key Laboratory of Human Functional Genomics of Jiangsu, Department of Neurobiology, Nanjing Medical University , Nanjing, China
| | - Yan Zhang
- 5 Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology , Shanghai, China
| | - Jin-Hai Ye
- 3 Jiangsu Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University , Nanjing, China
| | - Wen-Jun Yang
- 1 Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, China .,2 Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology , Shanghai, China
| |
Collapse
|
17
|
An S, Gong Q, Huang Y. Promotive Effect of Zinc Ions on the Vitality, Migration, and Osteogenic Differentiation of Human Dental Pulp Cells. Biol Trace Elem Res 2017; 175:112-121. [PMID: 27260533 DOI: 10.1007/s12011-016-0763-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/24/2016] [Indexed: 01/02/2023]
Abstract
Zinc is an essential trace element for proper cellular function and bone formation. However, its exact role in the osteogenic differentiation of human dental pulp cells (hDPCs) has not been fully clarified before. Here, we speculated that zinc may be effective to regulate their growth and osteogenic differentiation properties. To test this hypothesis, different concentrations (1 × 10-5, 4 × 10-5, and 8 × 10-5 M) of zinc ions (Zn2+) were added to the basic growth culture medium and osteogenic inductive medium. Cell viability and migration were measured by cell counting kit-8 (CCK-8) and transwell migration assay in the basic growth culture medium, respectively. The reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to detect the gene expression levels of selective osteogenic differentiation markers and zinc transporters. Alkaline phosphatase (ALP) activity analysis and alizarin red S staining were used to investigate the mineralization of hDPCs. Exposure of hDPCs to Zn2+ stimulated their viability and migration capacity in a dose- and time-dependent manner. RT-qPCR assay revealed elevated expression levels of osteogenic differentiation-related genes and zinc transporters genes in various degrees. ALP activity was also increased with elevated Zn2+ concentrations and extended culture periods, but enhanced matrix nodules formation were observed only in 4 × 10-5 and 8 × 10-5 M Zn2+ groups. These findings suggest that specific concentrations of Zn2+ could potentiate the vitality, migration, and osteogenic differentiation of hDPCs. We may combine optimum zinc element into pulp capping materials to improve their biological performance.
Collapse
Affiliation(s)
- Shaofeng An
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, No.56 Lingyuan Xi Road, Guangzhou, Guangdong, 510055, People's Republic of China.
- Guangdong Province Key Laboratory of Stomatology, Sun Yat-Sen University, No.74 Zhongshan Er Road, Guangzhou, Guangdong, 510080, People's Republic of China.
| | - Qimei Gong
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, No.56 Lingyuan Xi Road, Guangzhou, Guangdong, 510055, People's Republic of China
- Guangdong Province Key Laboratory of Stomatology, Sun Yat-Sen University, No.74 Zhongshan Er Road, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Yihua Huang
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, No.56 Lingyuan Xi Road, Guangzhou, Guangdong, 510055, People's Republic of China
- Guangdong Province Key Laboratory of Stomatology, Sun Yat-Sen University, No.74 Zhongshan Er Road, Guangzhou, Guangdong, 510080, People's Republic of China
| |
Collapse
|
18
|
Xiang L, Ma L, Wei N, Wang T, Yao Q, Yang B, Xiong Y, Wu Y, Gong P. Effect of lentiviral vector overexpression α-calcitonin gene-related peptide on titanium implant osseointegration in α-CGRP-deficient mice. Bone 2017; 94:135-140. [PMID: 26265538 DOI: 10.1016/j.bone.2015.08.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 07/31/2015] [Accepted: 08/07/2015] [Indexed: 02/05/2023]
Abstract
α-Calcitonin gene-related peptide (α-CGRP) plays a significant pathophysiological role in bone development, metabolism and remodeling around dental implants. However, the half-life of α-CGRP in plasma is only 10min, which affects its long-time application and an alternative approach should be developed to deliver α-CGRP over long periods of time. The aim of this study is to investigate whether a lentiviral α-CGRP overexpression vector system can express this target-gene longer at peri-implant sites, thus enhancing osseointegration. Animals were divided to the following groups: α-CGRP-/-, α-CGRP-/- with lentivirus transfection and α-CGRP+/+ mice. IVIS Spectrum imaging observations identified the successful transfection of α-CGRP around experimental implants inserted in the femurs at 5days after injection. Histomorphometrical analysis indicated an increase of bone-implant contact (BIC) at 1-month healing in the transfection group. Moreover, real-time RT-PCR and western blot results of bone-related markers Runx2, Osterix, and BSP levels elevated in lentivirus-transfected mice at 21days, compared to the untreated α-CGRP-/- mice. There was no significant difference between the transfection group and α-CGRP+/+ group. Further α-CGRP protein detection confirmed the persistent expression of this transgene at 21days post-operatively. These results suggest that this lentiviral vector system expresses α-CGRP in an effective, appropriate and sustained manner, which might have a potential application in enhancing titanium implant osseointegration.
Collapse
Affiliation(s)
- Lin Xiang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Li Ma
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Na Wei
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tianlu Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qianqian Yao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bo Yang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi Xiong
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yingying Wu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ping Gong
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
19
|
Ren D, Wei F, Hu L, Yang S, Wang C, Yuan X. Phosphorylation of Runx2, induced by cyclic mechanical tension via ERK1/2 pathway, contributes to osteodifferentiation of human periodontal ligament fibroblasts. J Cell Physiol 2015; 230:2426-36. [PMID: 25740112 DOI: 10.1002/jcp.24972] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 02/24/2015] [Indexed: 12/18/2022]
Abstract
Occlusal force is an important stimulus for maintaining periodontal homeostasis. This is attributed to the quality of human periodontal ligament fibroblasts (hPDLFs) that could transfer occlusal force into biological signals modulating osteoblst differentiation. However, few studies investigated the mechanism of occlusal force-induced osteodifferentiation of hPDLFs. In our study, we used the cyclic mechanical tension (CMT) at 10% elongation with 0.5 Hz to mimic occlusal force, and explored its effects on osteogenesis of hPDLFs. Firstly, elevated expressions of several osteoblast marker genes (Runx2, ATF4, SP7, OCN, and BSP), as well as activated ERK1/2 pathway were detected during CMT loading for 1, 3, 6, 12, 18, and 24 h. To gain further insight into how CMT contributed to those effects, we focused on the classic ERK1/2-Runx2 pathway by inhibiting ERK1/2 and overexpressing Runx2. Our results reflected that Runx2 overexpression alone could induce osteodifferentiation of hPDLFs. Meanwhile, CMT loading could intensify while combined ERK1/2 blockage could weaken this process. Furthermore, we found that CMT promoted Runx2 transcription and phosphorylation via ERK1/2; protein level of phospho-Runx2 (p-Runx2), rather than Runx2, was in parallel with mRNA expressions of SP7, OCN, and BSP. Taken together, our study proved that p-Runx2, elevated by CMT via ERK1/2 pathway, is the predominate factor in promoting osteoblast differentiation of hPDLFs.
Collapse
Affiliation(s)
- Dapeng Ren
- Department of Orthodontics, Shandong University, Jinan, China
| | - Fulan Wei
- Department of Orthodontics, Qingdao Municipal Hospital, Qingdao University, the 4th Military Medical University, Qingdao, China
| | - Lihua Hu
- Department of Orthodontics, Qingdao Municipal Hospital, Qingdao University, the 4th Military Medical University, Qingdao, China
| | - Shuangyan Yang
- Department of Orthodontics, Qingdao Municipal Hospital, Qingdao University, the 4th Military Medical University, Qingdao, China
| | - Chunling Wang
- Department of Orthodontics, Shandong University, Jinan, China
| | - Xiao Yuan
- Department of Orthodontics, Qingdao Municipal Hospital, Qingdao University, the 4th Military Medical University, Qingdao, China
| |
Collapse
|
20
|
Han Q, Yang P, Wu Y, Meng S, Sui L, Zhang L, Yu L, Tang Y, Jiang H, Xuan D, Kaplan DL, Kim SH, Tu Q, Chen J. Epigenetically Modified Bone Marrow Stromal Cells in Silk Scaffolds Promote Craniofacial Bone Repair and Wound Healing. Tissue Eng Part A 2015; 21:2156-65. [PMID: 25923143 DOI: 10.1089/ten.tea.2014.0484] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Epigenetic regulation of gene expression is a central mechanism that governs cell stemness, determination, commitment, and differentiation. It has been recently found that PHF8, a major H4K20/H3K9 demethylase, plays a critical role in craniofacial and bone development. In this study, we hypothesize that PHF8 promotes osteoblastogenesis by epigenetically regulating the expression of a nuclear matrix protein, special AT-rich sequence-binding protein 2 (SATB2) that plays pivotal roles in skeletal patterning and osteoblast differentiation. Our results showed that expression levels of PHF8 and SATB2 in preosteoblasts and bone marrow stromal cells (BMSCs) increased simultaneously during osteogenic induction. Overexpressing PHF8 in these cells upregulated the expression of SATB2, Runx2, osterix, and bone matrix proteins. Conversely, knockdown of PHF8 reduced the expression of these genes. Furthermore, ChIP assays confirmed that PHF8 specifically bound to the transcription start site (TSS) of the SATB2 promoter, and the expression of H3K9me1 at the TSS region of SATB2 decreased in PHF8 overexpressed group. Implantation of the BMSCs overexpressing PHF8 with silk protein scaffolds promoted bone regeneration in critical-sized defects in mouse calvaria. Taken together, our results demonstrated that PHF8 epigenetically modulates SATB2 activity, triggering BMSCs osteogenic differentiation and facilitating bone formation and regeneration in biodegradable silk scaffolds.
Collapse
Affiliation(s)
- Qianqian Han
- 1 Division of Oral Biology, Tufts University School of Dental Medicine , Boston, Massachusetts.,2 Shandong Provincial Key Lab of Oral Biomedicine , Jinan, China .,3 Guangdong Provincial Stomatological Hospital , Guangzhou, China
| | - Pishan Yang
- 2 Shandong Provincial Key Lab of Oral Biomedicine , Jinan, China .,4 Department of Periodontology, School of Stomatology, Shandong University , Jinan, China
| | - Yuwei Wu
- 1 Division of Oral Biology, Tufts University School of Dental Medicine , Boston, Massachusetts
| | - Shu Meng
- 1 Division of Oral Biology, Tufts University School of Dental Medicine , Boston, Massachusetts
| | - Lei Sui
- 1 Division of Oral Biology, Tufts University School of Dental Medicine , Boston, Massachusetts
| | - Lan Zhang
- 1 Division of Oral Biology, Tufts University School of Dental Medicine , Boston, Massachusetts
| | - Liming Yu
- 1 Division of Oral Biology, Tufts University School of Dental Medicine , Boston, Massachusetts
| | - Yin Tang
- 1 Division of Oral Biology, Tufts University School of Dental Medicine , Boston, Massachusetts
| | - Hua Jiang
- 1 Division of Oral Biology, Tufts University School of Dental Medicine , Boston, Massachusetts
| | - Dongying Xuan
- 1 Division of Oral Biology, Tufts University School of Dental Medicine , Boston, Massachusetts.,3 Guangdong Provincial Stomatological Hospital , Guangzhou, China
| | - David L Kaplan
- 5 Department of Biomedical Engineering, Tufts University , Medford, Massachusetts
| | - Sung Hoon Kim
- 6 Cancer Preventive Material Development Research Center (CPMDRC) and Institute, College of Oriental Medicine, Kyung Hee University , Seoul, Korea
| | - Qisheng Tu
- 1 Division of Oral Biology, Tufts University School of Dental Medicine , Boston, Massachusetts
| | - Jake Chen
- 1 Division of Oral Biology, Tufts University School of Dental Medicine , Boston, Massachusetts.,7 Department of Anatomy and Cell Biology, Tufts University School of Medicine , Sackler School of Graduate Biomedical Sciences, Boston, Massachusetts
| |
Collapse
|
21
|
Becker K, Stauber M, Schwarz F, Beißbarth T. Automated 3D-2D registration of X-ray microcomputed tomography with histological sections for dental implants in bone using chamfer matching and simulated annealing. Comput Med Imaging Graph 2015; 44:62-8. [PMID: 26026659 DOI: 10.1016/j.compmedimag.2015.04.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 03/01/2015] [Accepted: 04/17/2015] [Indexed: 10/23/2022]
Abstract
We propose a novel 3D-2D registration approach for micro-computed tomography (μCT) and histology (HI), constructed for dental implant biopsies, that finds the position and normal vector of the oblique slice from μCT that corresponds to HI. During image pre-processing, the implants and the bone tissue are segmented using a combination of thresholding, morphological filters and component labeling. After this, chamfer matching is employed to register the implant edges and fine registration of the bone tissues is achieved using simulated annealing. The method was tested on n=10 biopsies, obtained at 20 weeks after non-submerged healing in the canine mandible. The specimens were scanned with μCT 100 and processed for hard tissue sectioning. After registration, we assessed the agreement of bone to implant contact (BIC) using automated and manual measurements. Statistical analysis was conducted to test the agreement of the BIC measurements in the registered samples. Registration was successful for all specimens and agreement of the respective binary images was high (median: 0.90, 1.-3. Qu.: 0.89-0.91). Direct comparison of BIC yielded that automated (median 0.82, 1.-3. Qu.: 0.75-0.85) and manual (median 0.61, 1.-3. Qu.: 0.52-0.67) measures from μCT were significant positively correlated with HI (median 0.65, 1.-3. Qu.: 0.59-0.72) between μCT and HI groups (manual: R(2)=0.87, automated: R(2)=0.75, p<0.001). The results show that this method yields promising results and that μCT may become a valid alternative to assess osseointegration in three dimensions.
Collapse
Affiliation(s)
- Kathrin Becker
- Department of Medical Statistics, Biostatistics Group, University Medical Center, Georg-August University, Humboldt Allee 32, 37073 Göttingen, Germany; Department of Oral Surgery, Westdeutsche Kieferklinik, Heinrich-Heine University, Moorenstr. 5, 40225 Düsseldorf, Germany.
| | - Martin Stauber
- Scanco Medical AG, Fabrikweg 2, 8306 Brüttisellen, Switzerland.
| | - Frank Schwarz
- Department of Oral Surgery, Westdeutsche Kieferklinik, Heinrich-Heine University, Moorenstr. 5, 40225 Düsseldorf, Germany.
| | - Tim Beißbarth
- Department of Medical Statistics, Biostatistics Group, University Medical Center, Georg-August University, Humboldt Allee 32, 37073 Göttingen, Germany.
| |
Collapse
|
22
|
Yin G, Chen J, Wei S, Wang H, Chen Q, Lin Y, Hu J, Luo E. Adenoviral vector-mediated overexpression of osteoprotegerin accelerates osteointegration of titanium implants in ovariectomized rats. Gene Ther 2015; 22:636-44. [PMID: 25871826 DOI: 10.1038/gt.2015.34] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 02/27/2015] [Accepted: 03/31/2015] [Indexed: 02/05/2023]
Abstract
This study investigated the efficacy of human osteoprotegerin (hOPG) transgene to accelerate osteointegration of titanium implant in ovariectomized (OVX) rats. Bone marrow stromal cells transduced with Ad-hOPG-EGFP could sustainedly express hOPG. Osteoclast precursor RAW264.7 cells treated by the hOPG were examined by tartrate-resistant acid phosphatase (TRAP) staining and bone slice resorption assay. The results showed differentiation and function of osteoclasts were significantly suppressed by hOPG in vitro. Ad-hOPG-EGFP was locally administered to the bone defect prior to implant placement in OVX and sham rats. After 3, 7, 28 days of implantation, the femurs were harvested for molecular and histological analyses. Successful transgene expression was confirmed by western blot and cryosectioning. A significant reduction in TRAP+ numbers was detected in Ad-hOPG-EGFP group. Real-time reverse transcriptase-PCR examination revealed that hOPG transgene markedly diminished the expression of cathepsin K and receptor activator for nuclear factor-κ B ligand in vivo. The transgene hOPG modification revealed a marked increasing osteointegration and restored implant stability in OVX rats (P<0.01), compared with the control groups (Ad-EGFP or sterilized phosphate-buffered saline) 28 days after implantation. In conclusion, hOPG via direct adenovirus-mediated gene transfer could accelerate osteointegration of titanium implants in OVX rats. Osteoprotegerin gene therapy may be an effective strategy to osteointegration of implants under osteoporotic conditions.
Collapse
Affiliation(s)
- G Yin
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - J Chen
- Division of Oral Biology, Department of General Dentistry, Tufts University School of Dental Medicine, Boston, MA, USA
| | - S Wei
- Department of Oral and Maxillofacial Surgery, Laboratory of Interdisciplinary Studies, School and Hospital of Stomatology, Peking University, Beijing, China
| | - H Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Q Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Y Lin
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - J Hu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - E Luo
- 1] State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China [2] Division of Oral Biology, Department of General Dentistry, Tufts University School of Dental Medicine, Boston, MA, USA
| |
Collapse
|
23
|
Vacuum extraction enhances rhPDGF-BB immobilization on nanotubes to improve implant osseointegration in ovariectomized rats. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2014; 10:1809-18. [DOI: 10.1016/j.nano.2014.07.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Revised: 05/22/2014] [Accepted: 07/07/2014] [Indexed: 01/22/2023]
|
24
|
Ogawa T, Vandamme K, Zhang X, Naert I, Possemiers T, Chaudhari A, Sasaki K, Duyck J. Stimulation of titanium implant osseointegration through high-frequency vibration loading is enhanced when applied at high acceleration. Calcif Tissue Int 2014; 95:467-75. [PMID: 25209971 DOI: 10.1007/s00223-014-9896-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 06/28/2013] [Indexed: 11/28/2022]
Abstract
Low-magnitude high-frequency loading, applied by means of whole body vibration (WBV), affects the bone. Deconstructing a WBV loading stimulus into its constituent elements and investigating the effects of frequency and acceleration individually on bone tissue kinetics around titanium implants were aimed for in this study. A titanium implant was inserted in the tibia of 120 rats. The rats were divided into 1 control group (no loading) and 5 test groups with low (L), medium (M) or high (H) frequency ranges and accelerations [12-30 Hz at 0.3×g (F(L)A(H)); 70-90 Hz at 0.075×g (F(M)A(M)); 70-90 Hz at 0.3×g (F(M)A(H)); 130-150 Hz at 0.043×g (F(H)A(L)); 130-150 Hz at 0.3×g (F H A H)]. WBV was applied for 1 or 4 weeks. Implant osseointegration was evaluated by quantitative histology (bone-to-implant contact (BIC) and peri-implant bone formation (BV/TV)). A 2-way ANOVA (duration of experimental period; loading mode) with α = 0.05 was performed. BIC significantly increased over time and under load (p < 0.0001). The highest BICs were found for loading regimes at high acceleration with medium or high frequency (F(M)A(H) and F(H)A(H)), and significantly differing from F(L)A(H) and F(M)A(M) (p < 0.02 and p < 0.005 respectively). BV/TV significantly decreased over time (p < 0.0001). Loading led to a site-specific BV/TV increase (p < 0.001). The highest BV/TV responses were found for F(M)A(H) and F(H)A(H), significantly differing from F(M)A(M) (p < 0.005). The findings reveal the potential of high-frequency vibration loading to accelerate and enhance implant osseointegration, in particular when applied at high acceleration. Such mechanical signals hold great, though untapped, potential to be used as non-pharmacologic treatment for improving implant osseointegration in compromised bone.
Collapse
Affiliation(s)
- Toru Ogawa
- BIOMAT KU Leuven, Department of Oral Health Sciences & Dental Clinic, KU Leuven & University Hospitals Leuven, Kapucijnenvoer 7, P.O. Box 7001, 3000, Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Coelho PG, Takayama T, Yoo D, Jimbo R, Karunagaran S, Tovar N, Janal MN, Yamano S. Nanometer-scale features on micrometer-scale surface texturing: a bone histological, gene expression, and nanomechanical study. Bone 2014; 65:25-32. [PMID: 24813260 DOI: 10.1016/j.bone.2014.05.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 04/18/2014] [Accepted: 05/05/2014] [Indexed: 11/29/2022]
Abstract
Micro- and nanoscale surface modifications have been the focus of multiple studies in the pursuit of accelerating bone apposition or osseointegration at the implant surface. Here, we evaluated histological and nanomechanical properties, and gene expression, for a microblasted surface presenting nanometer-scale texture within a micrometer-scale texture (MB) (Ossean Surface, Intra-Lock International, Boca Raton, FL) versus a dual-acid etched surface presenting texture at the micrometer-scale only (AA), in a rodent femur model for 1, 2, 4, and 8weeks in vivo. Following animal sacrifice, samples were evaluated in terms of histomorphometry, biomechanical properties through nanoindentation, and gene expression by real-time quantitative reverse transcription polymerase chain reaction analysis. Although the histomorphometric, and gene expression analysis results were not significantly different between MB and AA at 4 and 8 weeks, significant differences were seen at 1 and 2 weeks. The expression of the genes encoding collagen type I (COL-1), and osteopontin (OPN) was significantly higher for MB than for AA at 1 week, indicating up-regulated osteoprogenitor and osteoblast differentiation. At 2 weeks, significantly up-regulated expression of the genes for COL-1, runt-related transcription factor 2 (RUNX-2), osterix, and osteocalcin (OCN) indicated progressive mineralization in newly formed bone. The nanomechanical properties tested by the nanoindentation presented significantly higher-rank hardness and elastic modulus for the MB compared to AA at all time points tested. In conclusion, the nanotopographical featured surfaces presented an overall higher host-to-implant response compared to the microtextured only surfaces. The statistical differences observed in some of the osteogenic gene expression between the two groups may shed some insight into the role of surface texture and its extent in the observed bone healing mechanisms.
Collapse
Affiliation(s)
- Paulo G Coelho
- Department of Biomaterials and Biomimetics, New York University College of Dentistry, New York, NY, USA
| | - Tadahiro Takayama
- Department of Prosthodontics, New York University College of Dentistry, New York, NY, USA
| | - Daniel Yoo
- Department of Biomaterials and Biomimetics, New York University College of Dentistry, New York, NY, USA
| | - Ryo Jimbo
- Department of Prosthodontics, Faculty of Odontology, Malmö University, Malmö, Sweden.
| | - Sanjay Karunagaran
- Department of Prosthodontics, University of Tennessee Health Science Center, College of Dentistry, Memphis, TN, USA
| | - Nick Tovar
- Department of Biomaterials and Biomimetics, New York University College of Dentistry, New York, NY, USA
| | - Malvin N Janal
- Department of Epidemiology and Health Promotion, New York University, New York, NY, USA
| | - Seiichi Yamano
- Department of Prosthodontics, New York University College of Dentistry, New York, NY, USA
| |
Collapse
|
26
|
Chung R, Xian CJ. Recent research on the growth plate: Mechanisms for growth plate injury repair and potential cell-based therapies for regeneration. J Mol Endocrinol 2014; 53:T45-61. [PMID: 25114207 DOI: 10.1530/jme-14-0062] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Injuries to the growth plate cartilage often lead to bony repair, resulting in bone growth defects such as limb length discrepancy and angulation deformity in children. Currently utilised corrective surgeries are highly invasive and limited in their effectiveness, and there are no known biological therapies to induce cartilage regeneration and prevent the undesirable bony repair. In the last 2 decades, studies have investigated the cellular and molecular events that lead to bony repair at the injured growth plate including the identification of the four phases of injury repair responses (inflammatory, fibrogenic, osteogenic and remodelling), the important role of inflammatory cytokine tumour necrosis factor alpha in regulating downstream repair responses, the role of chemotactic and mitogenic platelet-derived growth factor in the fibrogenic response, the involvement and roles of bone morphogenic protein and Wnt/B-catenin signalling pathways, as well as vascular endothelial growth factor-based angiogenesis during the osteogenic response. These new findings could potentially lead to identification of new targets for developing a future biological therapy. In addition, recent advances in cartilage tissue engineering highlight the promising potential for utilising multipotent mesenchymal stem cells (MSCs) for inducing regeneration of injured growth plate cartilage. This review aims to summarise current understanding of the mechanisms for growth plate injury repair and discuss some progress, potential and challenges of MSC-based therapies to induce growth plate cartilage regeneration in combination with chemotactic and chondrogenic growth factors and supporting scaffolds.
Collapse
Affiliation(s)
- Rosa Chung
- School of Pharmacy and Medical SciencesSansom Institute for Health Research, University of South Australia, City East Campus, GPO Box 2471, Adelaide, South Australia 5001, Australia
| | - Cory J Xian
- School of Pharmacy and Medical SciencesSansom Institute for Health Research, University of South Australia, City East Campus, GPO Box 2471, Adelaide, South Australia 5001, Australia
| |
Collapse
|
27
|
Liu W, Zhang S, Zhao D, Zou H, Sun N, Liang X, Dard M, Lanske B, Yuan Q. Vitamin D supplementation enhances the fixation of titanium implants in chronic kidney disease mice. PLoS One 2014; 9:e95689. [PMID: 24752599 PMCID: PMC3994107 DOI: 10.1371/journal.pone.0095689] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 03/30/2014] [Indexed: 02/05/2023] Open
Abstract
Vitamin D (Vit D) deficiency is a common condition in chronic kidney disease (CKD) patients that negatively affects bone regeneration and fracture healing. Previous study has shown that timely healing of titanium implants is impaired in CKD. This study aimed to investigate the effect of Vit D supplementation on implant osseointegration in CKD mice. Uremia was induced by 5/6 nephrectomy in C57BL mice. Eight weeks after the second renal surgery, animals were given 1,25(OH)2D3 three times a week intraperitoneally for four weeks. Experimental titanium implants were inserted into the distal end of femurs two weeks later. Serum measurements confirmed decreased 1,25(OH)2D levels in CKD mice, which could be successfully corrected by Vit D injections. Moreover, the hyperparathyroidism observed in CKD mice was also corrected. X-ray examination and histological sections showed successful osseointegration in these mice. Histomorphometrical analysis revealed that the bone-implant contact (BIC) ratio and bone volume (BV/TV) around the implant were significantly increased in the Vit D-supplementation group. In addition, resistance of the implant, as measured by a push-in method, was significantly improved compared to that in the vehicle group. These results demonstrate that Vit D supplementation is an effective approach to improve the fixation of titanium implants in CKD.
Collapse
Affiliation(s)
- Weiqing Liu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shiwen Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dan Zhao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Huawei Zou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ningyuan Sun
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xing Liang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Michel Dard
- Department of Periodontology and Implant Dentistry, New York University College of Dentistry, New York, United States of America
| | - Beate Lanske
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental medicine, Boston, Massachusetts, United States of America
| | - Quan Yuan
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- * E-mail:
| |
Collapse
|
28
|
Yan S, Zhang J, Tu Q, Ye J, Luo E, Schuler M, Dard M, Yu Y, Murray D, Cochran D, Kim S, Yang P, Chen J. Transcription factor and bone marrow stromal cells in osseointegration of dental implants. Eur Cell Mater 2013; 26:263-70; discussion 270-1. [PMID: 24352891 PMCID: PMC7700752 DOI: 10.22203/ecm.v026a19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Titanium implants are widely used in dental clinics and orthopaedic surgery. However, bone formation surrounding the implant is relatively slow after inserting the implant. The current study assessed the effects of bone marrow stromal cells (BMSCs) with forced expression of special AT-rich sequence-binding protein 2 (SATB2) on the osseointegration of titanium implants. To determine whether SATB2 overexpression in BMSCs can enhance the osseointegration of implants, BMSCs were infected with the retrovirus encoding Satb2 (pBABE-Satb2) and were locally applied to bone defects before implanting the titanium implants in the mouse femur. Seven and twenty-one days after implantation, the femora were isolated for immunohistochemical (IHC) staining, haematoxylin eosin (H&E) staining, real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR), and micro-computed tomography (μCT) analysis. IHC staining analysis revealed that SATB2-overexpressing BMSCs were intensely distributed in the bone tissue surrounding the implant. Histological analysis showed that SATB2-overexpressing BMSCs significantly enhanced new bone formation and bone-to-implant contact 3 weeks after implantation. Real-time qRT-PCR results showed that the local delivery of SATB2-overexpressing BMSCs enhanced expression levels of potent osteogenic transcription factors and bone matrix proteins in the implantation sites. μCT analysis demonstrated that SATB2-overexpressing BMSCs significantly increased the density of the newly formed bone surrounding the implant 3 weeks post-operatively. These results conclude that local delivery of SATB2-overexpressing BMSCs significantly accelerates osseointegration of titanium implants. These results provide support for future pharmacological and clinical applications of SATB2, which accelerates bone regeneration around titanium implants.
Collapse
Affiliation(s)
- S.G. Yan
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, USA,Shandong Provincial Key Lab of Oral Biomedicine, School of Stomatology, Shandong University, Jinan, China,Shandong Academy of Medical Sciences, Jinan, China
| | - J. Zhang
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, USA,Shandong Provincial Key Lab of Oral Biomedicine, School of Stomatology, Shandong University, Jinan, China
| | - Q. Tu
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, USA
| | - J.H. Ye
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, USA,Institute of Stomatology, School of Stomatology, Nanjing Medical University, Nanjing China
| | - E. Luo
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, USA,Department of Oral and Maxillofacial Surgery, School of Stomatology, Sichuan University, Chengdu, China
| | - M. Schuler
- Institute Straumann AG, Basel, Switzerland
| | - M.M. Dard
- Periodontology and Implant Dentistry, College of Dentistry, New York University, New York City, USA
| | - Y. Yu
- Department of Dentistry, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - D. Murray
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, USA
| | - D.L. Cochran
- Department of Periodontics, University of Texas Health Science Centre at San Antonio, San Antonio, USA
| | - S.H. Kim
- Cancer Preventive Material Development Research Centre (CPMDRC) and Institute, College of Oriental Medicine, Kyunghee University, Seoul, South Korea
| | - P. Yang
- Shandong Provincial Key Lab of Oral Biomedicine, School of Stomatology, Shandong University, Jinan, China
| | - J. Chen
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, USA,Department of Anatomy and Cell Biology, Tufts University School of Medicine and Sackler Graduate School of Biomedical Sciences, Boston, USA,Address for correspondence: Jake Chen, Division of Oral Biology, Tufts University School of Dental Medicine, One Kneeland Street, Boston MA, 02111, USA, Telephone Number: 617-636-2729, FAX Number: 617-636-0878,
| |
Collapse
|
29
|
Zou H, Zhao X, Sun N, Zhang S, Sato T, Yu H, Chen Q, Weber HP, Dard M, Yuan Q, Lanske B. Effect of chronic kidney disease on the healing of titanium implants. Bone 2013; 56:410-5. [PMID: 23876979 PMCID: PMC3812922 DOI: 10.1016/j.bone.2013.07.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 06/29/2013] [Accepted: 07/01/2013] [Indexed: 02/05/2023]
Abstract
Chronic kidney disease (CKD) has become a worldwide public health problem. However, its effect on osseointegration of dental implants is largely unknown. The aim of this study is to investigate whether CKD impairs the quality of the osseointegration of titanium implants. Uremia was induced by 5/6 nephrectomy in mice, and serum levels of BUN, FGF23, PTH and ALP were significantly increased. For in vitro tests, bone marrow mesenchymal stem cells (BMMSCs) were obtained and cultured on titanium discs. There was no significant difference in term of expression of osteogenic marker genes including Osx, Col-1, Ocn, and Opn, as quantified by qPCR. Moreover, Alizarin Red S staining showed comparable mineralized nodules formation. Histomorphometrical analysis of experimental implants inserted in the femurs of CKD mice revealed a trend of decreased BIC ratio at 2-week healing. The strength of bone-implant integration, as measured by a push-in method, was significantly lower for the CKD group at 2 weeks, although a comparable level was reached at 4 weeks. These results demonstrated that CKD only negatively affects the osseointegration of titanium implants at the early stage.
Collapse
Affiliation(s)
- Huawei Zou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuefeng Zhao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ningyuan Sun
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shiwen Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tadatoshi Sato
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Haiyang Yu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hans-Peter Weber
- Department of Prosthodontics and Operative Dentistry, Tufts University School of Dental Medicine, Boston, MA, USA
| | - Michel Dard
- New York University, College of Dentistry, Department of Periodontology and Implant Dentistry, NY, USA
| | - Quan Yuan
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
- Corresponding author at: State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, 14 Third Section, Renmin Nan Road, Chengdu 610041, China. (Q. Yuan)
| | - Beate Lanske
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| |
Collapse
|
30
|
Sinha KM, Zhou X. Genetic and molecular control of osterix in skeletal formation. J Cell Biochem 2013; 114:975-84. [PMID: 23225263 DOI: 10.1002/jcb.24439] [Citation(s) in RCA: 191] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 10/23/2012] [Indexed: 12/16/2022]
Abstract
Osteoblast differentiation is a multi-step process where mesenchymal cells differentiate into osteoblast lineage cells including osteocytes. Osterix (Osx) is an osteoblast-specific transcription factor which activates a repertoire of genes during differentiation of preosteoblasts into mature osteoblasts and osteocytes. The essential role of Osx in the genetic program of bone formation and in bone homeostasis is well established. Osx mutant embryos do not form bone and fail to express osteoblast-specific marker genes. Inactivation of Osx in mice after birth causes multiple skeletal phenotypes including lack of new bone formation, absence of resorption of mineralized cartilage, and defects in osteocyte maturation and function. Since Osx is a major effector in skeletal formation, studies on Osx gained momentum over the last 5-7 years and implicated its important function in tooth formation as well as in healing of bone fractures. This review outlines mouse genetic studies that establish the essential role of Osx in bone and tooth formation as well as in healing of bone fractures. We also discuss the recent advances in regulation of Osx expression, which is under control of a transcriptional network, signaling pathways, and epigenetic regulation. Finally, we summarize important findings on the positive and negative regulation of Osx's transcriptional activity through protein-protein interactions in expression of its target genes during osteoblast differentiation. In particular, the identification of the histone demethylase NO66 as an Osx-interacting protein, which negatively regulates Osx activity opens further avenues in studying epigenetic control of Osx target genes during differentiation and maturation of osteoblasts.
Collapse
Affiliation(s)
- Krishna M Sinha
- Department of Endocrine Neoplasia and Hormonal Disorders, UT MD Anderson Cancer Center, Houston, TX 77030, USA.
| | | |
Collapse
|
31
|
Bhattarai G, Lee YH, Lee MH, Yi HK. Gene delivery of c-myb increases bone formation surrounding oral implants. J Dent Res 2013; 92:840-5. [PMID: 23838059 DOI: 10.1177/0022034513497753] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Bone regeneration around titanium (Ti) implants is a relatively slow process. The c-myb transcription factor has been associated with high proliferation and differentiation rates in bone. This study analyzed whether c-myb can enhance new bone surrounding the implant. In vitro overexpressed chitosan-gold nanoparticles conjugated with plasmid DNA/c-myb (Ch-GNPs/c-myb)-coated Ti surfaces were associated with enhanced expression of the osteogenic molecules osteopontin (OPN), runt-related transcription factor 2 (RUNX-2), and bone morphogenetic proteins (BMP2/7) in MC-3T3E1 osteoblast cells. Further, to determine its in vivo effect, we inserted Ch-GNPs/c-myb-coated Ti implants into rat mandibles. One and 4 wks post-implantation, mandibles were examined by microcomputed tomography, immunohistochemistry, and hematoxylin & eosin staining. The microcomputed tomography analysis demonstrated that c-myb overexpression increased the density and volume of newly formed bone surrounding the implants, compared with those in controls (p < .05). Further, c-myb increased the number of cells expressing BMP2/7 and aided in the increase of new bone (p < .05). These results support the view that c-myb overexpression accelerates new bone surrounding implants and can serve as a potent molecule in promoting tissue regeneration around dental implants. The recipient rat used in this system provides an excellent in vivo model for studies of bone regeneration.
Collapse
Affiliation(s)
- G Bhattarai
- Department of Oral Biochemistry, BK21 program, School of Dentistry, Chonbuk National University, Jeonju, Korea
| | | | | | | |
Collapse
|
32
|
Nair AM, Tsai YT, Shah KM, Shen J, Weng H, Zhou J, Sun X, Saxena R, Borrelli J, Tang L. The effect of erythropoietin on autologous stem cell-mediated bone regeneration. Biomaterials 2013; 34:7364-71. [PMID: 23831188 DOI: 10.1016/j.biomaterials.2013.06.031] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 06/18/2013] [Indexed: 12/20/2022]
Abstract
Mesenchymal stem cells (MSCs) although used for bone tissue engineering are limited by the requirement of isolation and culture prior to transplantation. Our recent studies have shown that biomaterial implants can be engineered to facilitate the recruitment of MSCs. In this study, we explore the ability of these implants to direct the recruitment and the differentiation of MSCs in the setting of a bone defect. We initially determined that both stromal derived factor-1alpha (SDF-1α) and erythropoietin (Epo) prompted different degrees of MSC recruitment. Additionally, we found that Epo and bone morphogenetic protein-2 (BMP-2), but not SDF-1α, triggered the osteogenic differentiation of MSCs in vitro. We then investigated the possibility of directing autologous MSC-mediated bone regeneration using a murine calvaria model. Consistent with our in vitro observations, Epo-releasing scaffolds were found to be more potent in bridging the defect than BMP-2 loaded scaffolds, as determined by computed tomography (CT) scanning, fluorescent imaging and histological analyses. These results demonstrate the tremendous potential, directing the recruitment and differentiation of autologous MSCs has in the field of tissue regeneration.
Collapse
Affiliation(s)
- Ashwin M Nair
- Bioengineering Department, University of Texas Southwestern Medical Center and The University of Texas at Arlington, Arlington, TX 76019, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Zhang W, Li Z, Huang Q, Xu L, Li J, Jin Y, Wang G, Liu X, Jiang X. Effects of a hybrid micro/nanorod topography-modified titanium implant on adhesion and osteogenic differentiation in rat bone marrow mesenchymal stem cells. Int J Nanomedicine 2013; 8:257-65. [PMID: 23345973 PMCID: PMC3548415 DOI: 10.2147/ijn.s39357] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND AND METHODS Various methods have been used to modify titanium implant surfaces with the aim of achieving better osseointegration. In this study, we fabricated a clustered nanorod structure on an acid-etched, microstructured titanium plate surface using hydrogen peroxide. We also evaluated biofunctionalization of the hybrid micro/nanorod topography on rat bone marrow mesenchymal stem cells. Scanning electron microscopy and x-ray diffraction were used to investigate the surface topography and phase composition of the modified titanium plate. Rat bone marrow mesenchymal stem cells were cultured and seeded on the plate. The adhesion ability of the cells was then assayed by cell counting at one, 4, and 24 hours after cell seeding, and expression of adhesion-related protein integrin β1 was detected by immunofluorescence. In addition, a polymerase chain reaction assay, alkaline phosphatase and Alizarin Red S staining assays, and osteopontin and osteocalcin immunofluorescence analyses were used to evaluate the osteogenic differentiation behavior of the cells. RESULTS The hybrid micro/nanoscale texture formed on the titanium surface enhanced the initial adhesion activity of the rat bone marrow mesenchymal stem cells. Importantly, the hierarchical structure promoted osteogenic differentiation of these cells. CONCLUSION This study suggests that a hybrid micro/nanorod topography on a titanium surface fabricated by treatment with hydrogen peroxide followed by acid etching might facilitate osseointegration of a titanium implant in vivo.
Collapse
Affiliation(s)
- Wenjie Zhang
- Department of Prosthodontics, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Park JW, Kim YJ, Jang JH, Song H. Positive modulation of osteogenesis- and osteoclastogenesis-related gene expression with strontium-containing microstructured Ti implants in rabbit cancellous bone. J Biomed Mater Res A 2012; 101:298-306. [DOI: 10.1002/jbm.a.34433] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 08/30/2012] [Accepted: 09/06/2012] [Indexed: 01/21/2023]
|
35
|
Zhang W, Li Z, Liu Y, Ye D, Li J, Xu L, Wei B, Zhang X, Liu X, Jiang X. Biofunctionalization of a titanium surface with a nano-sawtooth structure regulates the behavior of rat bone marrow mesenchymal stem cells. Int J Nanomedicine 2012; 7:4459-72. [PMID: 22927760 PMCID: PMC3422101 DOI: 10.2147/ijn.s33575] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The topography of an implant surface can serve as a powerful signaling cue for attached cells and can enhance the quality of osseointegration. A series of improved implant surfaces functionalized with nanoscale structures have been fabricated using various methods. METHODS In this study, using an H(2)O(2) process, we fabricated two size-controllable sawtooth-like nanostructures with different dimensions on a titanium surface. The effects of the two nano-sawtooth structures on rat bone marrow mesenchymal stem cells (BMMSCs) were evaluated without the addition of osteoinductive chemical factors. RESULTS These new surface modifications did not adversely affect cell viability, and rat BMMSCs demonstrated a greater increase in proliferation ability on the surfaces of the nano-sawtooth structures than on a control plate. Furthermore, upregulated expression of osteogenic-related genes and proteins indicated that the nano-sawtooth structures promote osteoblastic differentiation of rat BMMSCs. Importantly, the large nano-sawtooth structure resulted in the greatest cell responses, including increased adhesion, proliferation, and differentiation. CONCLUSION The enhanced adhesion, proliferation, and osteogenic differentiation abilities of rat BMMSCs on the nano-sawtooth structures suggest the potential to induce improvements in bone-titanium integration in vivo. Our study reveals the key role played by the nano-sawtooth structures on a titanium surface for the fate of rat BMMSCs and provides insights into the study of stem cell-nanostructure relationships and the related design of improved biomedical implant surfaces.
Collapse
Affiliation(s)
- Wenjie Zhang
- Department of Prosthodontics, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Park JW, Kim YJ, Jang JH, Suh JY. Surface characteristics and primary bone marrow stromal cell response of a nanostructured strontium-containing oxide layer produced on a microrough titanium surface. J Biomed Mater Res A 2012; 100:1477-87. [DOI: 10.1002/jbm.a.34085] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 01/05/2012] [Accepted: 01/17/2012] [Indexed: 11/09/2022]
|
37
|
Bonsignore LA, Colbrunn RW, Tatro JM, Messerschmitt PJ, Hernandez CJ, Goldberg VM, Stewart MC, Greenfield EM. Surface contaminants inhibit osseointegration in a novel murine model. Bone 2011; 49:923-30. [PMID: 21801863 PMCID: PMC3200470 DOI: 10.1016/j.bone.2011.07.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 07/08/2011] [Accepted: 07/11/2011] [Indexed: 12/18/2022]
Abstract
Surface contaminants, such as bacterial debris and manufacturing residues, may remain on orthopedic implants after sterilization procedures and affect osseointegration. The goals of this study were to develop a murine model of osseointegration in order to determine whether removing surface contaminants enhances osseointegration. To develop the murine model, titanium alloy implants were implanted into a unicortical pilot hole in the mid-diaphysis of the femur and osseointegration was measured over a five week time course. Histology, backscatter scanning electron microscopy and X-ray energy dispersive spectroscopy showed areas of bone in intimate physical contact with the implant, confirming osseointegration. Histomorphometric quantification of bone-to-implant contact and peri-implant bone and biomechanical pullout quantification of ultimate force, stiffness and work to failure increased significantly over time, also demonstrating successful osseointegration. We also found that a rigorous cleaning procedure significantly enhances bone-to-implant contact and biomechanical pullout measures by two-fold compared with implants that were autoclaved, as recommended by the manufacturer. The most likely interpretation of these results is that surface contaminants inhibit osseointegration. The results of this study justify the need for the development of better detection and removal techniques for contaminants on orthopedic implants and other medical devices.
Collapse
Affiliation(s)
- Lindsay A Bonsignore
- Department of Orthopaedics, Case Western Reserve University, Cleveland, Ohio, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Yan SG, Zhang J, Tu QS, Ye JH, Luo E, Schuler M, Kim MS, Griffin T, Zhao J, Duan XJ, Cochran DJ, Murray D, Yang PS, Chen J. Enhanced osseointegration of titanium implant through the local delivery of transcription factor SATB2. Biomaterials 2011; 32:8676-83. [PMID: 21862122 DOI: 10.1016/j.biomaterials.2011.07.072] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 07/25/2011] [Indexed: 10/17/2022]
Abstract
Titanium implants are widely used in dentistry and orthopedic surgery. Nevertheless, bone regeneration around the implant is a relatively slow process, after placement. This study assessed whether SATB2 can enhance osseointegration of a titanium implant. To determine the effect of SATB2 in implant integration, two different viruses encoding SATB2 (PBABE-Satb2 virus or RCAS-Satb2 virus) were locally administered to the bone defect prior to titanium implant placement in our established transgenic TVA mice. Seven and 21 days post implantation, the femurs were isolated for quantitative real-time RT-PCR, H&E staining, immunohistochemical (IHC) staining, and microcomputed tomography (microCT) analysis. Quantitative real-time RT-PCR results demonstrated that the in vivo overexpression of SATB2 enhanced expression levels of potent osteogenic transcription factors and bone matrix proteins. We also found that 21 days after implantation, there were no significant differences in the expression levels of SATB2, Osx, Runx2, COLI, OC, and BSP between the RCAS-Satb2 group and the RCAS group. Histological analysis showed that SATB2 overexpression significantly enhanced new bone formation and bone-to-implant contact after implantation. IHC staining analysis revealed that forced expression of SATB2 increased the number of BSP-positive cells surrounding the implant. MicroCT analysis demonstrated that in vivo overexpression of SATB2 significantly increased the density of the newly formed bone surrounding the implant. These results conclude that in vivo overexpression of SATB2 significantly accelerates osseointegration of titanium implants and SATB2 can serve as a potent molecule in promoting tissue regeneration.
Collapse
Affiliation(s)
- S G Yan
- Division of Oral Biology, Department of General Dentistry, Tufts University School of Dental Medicine, 1 Kneeland Street, Boston, MA 02111, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Ye JH, Xu YJ, Gao J, Yan SG, Zhao J, Tu Q, Zhang J, Duan XJ, Sommer CA, Mostoslavsky G, Kaplan DL, Wu YN, Zhang CP, Wang L, Chen J. Critical-size calvarial bone defects healing in a mouse model with silk scaffolds and SATB2-modified iPSCs. Biomaterials 2011; 32:5065-76. [PMID: 21492931 DOI: 10.1016/j.biomaterials.2011.03.053] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 03/21/2011] [Indexed: 12/16/2022]
Abstract
Induced pluripotent stem cells (iPSCs) can differentiate into mineralizing cells and thus have a great potential in application in engineered bone substitutes with bioactive scaffolds in regeneration medicine. In the current study we characterized and demonstrated the pluripotency and osteogenic differentiation of mouse iPSCs. To enhance the osteogenic differentiation of iPSCs, we then transduced the iPSCs with the potent transcription factor, nuclear matrix protein SATB2. We observed that in SATB2-overexpressing iPSCs there were increased mineral nodule formation and elevated mRNA levels of key osteogenic genes, osterix (OSX), Runx2, bone sialoprotein (BSP) and osteocalcin (OCN). Moreover, the mRNA levels of HoxA2 was reduced after SATB2 overexpression in iPSCs. The SATB2-overexpressing iPSCs were then combined with silk scaffolds and transplanted into critical-size calvarial bone defects created in nude mice. Five weeks post-surgery, radiological and micro-CT analysis revealed enhanced new bone formation in calvarial defects in SATB2 group. Histological analysis also showed increased new bone formation and mineralization in the SATB2 group. In conclusion, the results demonstrate that SATB2 facilitates the differentiation of iPSCs towards osteoblast-lineage cells by repressing HoxA2 and augmenting the functions of the osteoblast determinants Runx2, BSP and OCN.
Collapse
Affiliation(s)
- Jin-Hai Ye
- Division of Oral Biology, Tufts University School of Dental Medicine, One Kneeland Street, Boston, MA 02111, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Vandamme K, Holy X, Bensidhoum M, Logeart-Avramoglou D, Naert IE, Duyck JA, Petite H. In vivo molecular evidence of delayed titanium implant osseointegration in compromised bone. Biomaterials 2011; 32:3547-54. [PMID: 21324523 DOI: 10.1016/j.biomaterials.2011.01.056] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 01/19/2011] [Indexed: 11/29/2022]
Abstract
Optimization of implant osseointegration in patients with reduced bone healing potential is a challenge remaining in implant dentistry. Identification of the genes that are modulated during implant osseointegration in normal versus osteopenic bone is needed to successfully address these pertinent clinical needs. The present study aimed to assess the initial and early molecular events following titanium implant installation in normal and compromised bone in a rat tibia model. Peri-implant tissue from a well-defined tissue regeneration compartment was analyzed at 2 and 7 days post-surgery for the expression of select markers of inflammation, angiogenesis, bone resorption and bone formation. Impaired bone was induced by hindlimb unloading and validated using μCT. The essential step of angiogenesis preceding bone regeneration was evidenced for the peri-implant setting in healthy bone. Compromised bone significantly affected the angiogenesis-osteogenesis coupling in the initial phase (2 days post-surgery), with altered expressions of Vegfa and Epas1 coinciding with downregulated expressions of Col1a1, Bmp2, Bmp4, Alpl and Bglap. At 7 days post-implantation, differences between normal and compromised peri-implant bone were no longer observed. This in vivo molecular evidence of delayed implant osseointegration in compromised bone reassert modern strategies in implant development, such as surface modifications and bioengineered approaches, to improve implant osseointegration in compromised conditions.
Collapse
Affiliation(s)
- Katleen Vandamme
- Laboratory of Bioengineering and Biomechanics for Bone Articulation (B2OA - UMR CNRS 7052), University Paris Diderot, 10 Avenue de Verdun, 75010 Paris, France.
| | | | | | | | | | | | | |
Collapse
|
41
|
Rios HF, Lin Z, Oh B, Park CH, Giannobile WV. Cell- and gene-based therapeutic strategies for periodontal regenerative medicine. J Periodontol 2011; 82:1223-37. [PMID: 21284553 DOI: 10.1902/jop.2011.100710] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Inflammatory periodontal diseases are a leading cause of tooth loss and are linked to multiple systemic conditions, such as cardiovascular disease and stroke. Reconstruction of the support and function of affected tooth-supporting tissues represents an important therapeutic endpoint for periodontal regenerative medicine. An improved understanding of periodontal biology coupled with current advances in scaffolding matrices has introduced novel treatments that use cell and gene therapy to enhance periodontal tissue reconstruction and its biomechanical integration. Cell and gene delivery technologies have the potential to overcome limitations associated with existing periodontal therapies, and may provide a new direction in sustainable inflammation control and more predictable tissue regeneration of supporting alveolar bone, periodontal ligament, and cementum. This review provides clinicians with the current status of these early-stage and emerging cell- and gene-based therapeutics in periodontal regenerative medicine, and introduces their future application in clinical periodontal treatment. The paper concludes with prospects on the application of cell and gene tissue engineering technologies for reconstructive periodontology.
Collapse
Affiliation(s)
- Hector F Rios
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI 48109–1078, USA.
| | | | | | | | | |
Collapse
|
42
|
Duan X, Tu Q, Zhang J, Ye J, Sommer C, Mostoslavsky G, Kaplan D, Yang P, Chen J. Application of induced pluripotent stem (iPS) cells in periodontal tissue regeneration. J Cell Physiol 2010; 226:150-7. [PMID: 20658533 DOI: 10.1002/jcp.22316] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Tissue engineering provides a new paradigm for periodontal tissue regeneration in which proper stem cells and effective cellular factors are very important. The objective of this study was, for the first time, to investigate the capabilities and advantages of periodontal tissue regeneration using induced pluripotent stem (iPS) cells and enamel matrix derivatives (EMD). In this study the effect of EMD gel on iPS cells in vitro was first determined, and then tissue engineering technique was performed to repair periodontal defects in three groups: silk scaffold only; silk scaffold + EMD; and silk scaffold + EMD + iPS cells. EMD greatly enhanced the mRNA expression of Runx2 but inhibited the mRNA expression of OC and mineralization nodule formation in vitro. Transplantation of iPS cells showed higher expression levels of OC, Osx, and Runx2 genes, both 12 and 24 days postsurgery. At 24 days postsurgery in the iPS cell group, histological analysis showed much more new alveolar bone and cementum formation with regenerated periodontal ligament between them. The results showed the commitment role that EMD contributes in mesenchymal progenitors to early cells in the osteogenic lineage. iPS cells combined with EMD provide a valuable tool for periodontal tissue engineering, by promoting the formation of new cementum, alveolar bone, and normal periodontal ligament.
Collapse
Affiliation(s)
- Xuejing Duan
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, Massachusetts 02111, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Park JW, Kim HK, Kim YJ, Jang JH, Song H, Hanawa T. Osteoblast response and osseointegration of a Ti-6Al-4V alloy implant incorporating strontium. Acta Biomater 2010; 6:2843-51. [PMID: 20085830 DOI: 10.1016/j.actbio.2010.01.017] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2009] [Revised: 01/09/2010] [Accepted: 01/12/2010] [Indexed: 10/20/2022]
Abstract
This study investigated the surface characteristics, in vitro and in vivo biocompatibility of Ti-6Al-4V alloy implants incorporating strontium ions (Sr), produced by hydrothermal treatment using a Sr-containing solution, for future biomedical applications. The surface characteristics were evaluated by scanning electron microscopy, thin-film X-ray diffractometry, X-ray photoelectron spectroscopy, optical profilometry, contact angle and surface energy measurement and inductively coupled plasma-mass spectroscopy (ICP-MS). Human osteoblast-like cell (MG63) attachment, proliferation, alkaline phosphatase (ALP) activity, and quantitative analysis of osteoblastic gene expression on Sr-containing Ti-6Al-4V surfaces were compared with untreated Ti-6Al-4V surfaces. Fifty-six screw implants (28 control and 28 experimental) were placed in the tibiae and femoral condyles of seven New Zealand White rabbits. The osteoconductivity of Sr-containing Ti-6Al-4V implants was evaluated by removal torque testing and histomorphometric analysis after 4weeks implantation. Hydrothermal treatment produced a crystalline SrTiO(3) layer. ICP-MS analysis showed that Sr ions were released from treated surfaces into the solution. Significant increases in ALP activity (P=0.000), mRNA expressions of key osteoblast genes (osterix, bone sialoprotein, and osteocalcin), removal torque values (P<0.05) and bone-implant contact percentages (P<0.05) in both cortical and cancellous bone were observed for Sr-containing Ti-6Al-4V surfaces. The results indicate that the Sr-containing oxide layer produced by hydrothermal treatment may be effective in improving the osseointegration of Ti-6Al-4V alloy implants by enhancing differentiation of osteoblastic cells, removal torque forces and bone apposition in both cortical and cancellous bone.
Collapse
|
44
|
Palmquist A, Omar OM, Esposito M, Lausmaa J, Thomsen P. Titanium oral implants: surface characteristics, interface biology and clinical outcome. J R Soc Interface 2010; 7 Suppl 5:S515-27. [PMID: 20591849 DOI: 10.1098/rsif.2010.0118.focus] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Bone-anchored titanium implants have revolutionized oral healthcare. Surface properties of oral titanium implants play decisive roles for molecular interactions, cellular response and bone regeneration. Nevertheless, the role of specific surface properties, such as chemical and phase composition and nanoscale features, for the biological in vivo performance remains to be established. Partly, this is due to limited transfer of state-of-the-art preparation techniques to complex three-dimensional geometries, analytical tools and access to minute, intact interfacial layers. As judged by the available results of a few randomized clinical trials, there is no evidence that any particular type of oral implant has superior long-term success. Important insights into the recruitment of mesenchymal stem cells, cell-cell communication at the interface and high-resolution imaging of the interface between the surface oxide and the biological host are prerequisites for the understanding of the mechanisms of osseointegration. Strategies for development of the next generation of material surface modifications for compromised tissue are likely to include time and functionally programmed properties, pharmacological modulation and incorporation of cellular components.
Collapse
Affiliation(s)
- Anders Palmquist
- BIOMATCELL Vinn Excellence Center for Biomaterials and Cell Therapy, Sahlgrenska Academy at University of Gothenburg, Göteborg, Sweden.
| | | | | | | | | |
Collapse
|