1
|
Takahashi M, Matin K, Matsui N, Shimizu M, Tsuda Y, Uchinuma S, Hiraishi N, Nikaido T, Tagami J. Effects of silver diamine fluoride preparations on biofilm formation of Streptococcus mutans. Dent Mater J 2021; 40:911-917. [PMID: 33731542 DOI: 10.4012/dmj.2020-341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Effects of silver diamine fluoride preparations (SDFs) on cariogenic biofilm formation on root dentin (RD) were investigated. Streptococcus mutans (S. mutans) biofilms were formed on bovine RD blocks coated with one of three the SDFs (38%-SDF, 3.8%-SDF and 35%-SDF+potassium-iodide; SDF+KI) and a non-coated Control which were quantified (spectrometric-measurement) and thickness measured (optical coherence tomography) after 20 h. Bacterial viability test (BacLight) and biofilm-morphometry (SEM) of 2 h biofilms were also performed. The amounts of biofilms (bacteria and water insoluble glucan) and the thickness of biofilm were minimum on 38%-SDF specimen; 3.8%-SDF and SDF+KI had significantly more than that, but had significantly less than Control (p<0.05). Most S. mutans cells found dead and morphology damaged by 38%-SDF. Some dead bacteria and remarkably damaged biofilms were observed in case of 3.8%-SDF and SDF+KI. Inhibition potential of 3.8%-SDF and SDF+KI on S. mutans biofilm formation is almost similar, although not equivalent to 38%-SDF.
Collapse
Affiliation(s)
- Motoi Takahashi
- Department of Cariology and Operative Dentistry, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU)
| | - Khairul Matin
- Department of Cariology and Operative Dentistry, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU).,Endowed Department of International Oral Health Science, Tsurumi University School of Dental Medicine
| | - Naoko Matsui
- Department of Cariology and Operative Dentistry, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU)
| | - Miyuki Shimizu
- Department of Cariology and Operative Dentistry, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU)
| | - Yuka Tsuda
- Department of Cariology and Operative Dentistry, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU)
| | - Shigeki Uchinuma
- Department of Cariology and Operative Dentistry, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU)
| | - Noriko Hiraishi
- Department of Cariology and Operative Dentistry, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU)
| | - Toru Nikaido
- Department of Operative Dentistry, Asahi University
| | - Junji Tagami
- Department of Cariology and Operative Dentistry, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU)
| |
Collapse
|
2
|
Letendre C, Auger JP, Lemire P, Galbas T, Gottschalk M, Thibodeau J, Segura M. Streptococcus suis Serotype 2 Infection Impairs Interleukin-12 Production and the MHC-II-Restricted Antigen Presentation Capacity of Dendritic Cells. Front Immunol 2018; 9:1199. [PMID: 29899744 PMCID: PMC5988873 DOI: 10.3389/fimmu.2018.01199] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 05/14/2018] [Indexed: 01/18/2023] Open
Abstract
Streptococcus suis is an important swine pathogen and emerging zoonotic agent. Encapsulated strains of S. suis modulate dendritic cell (DC) functions, leading to poorly activated CD4+ T cells. However, the antigen presentation ability of S. suis-stimulated DCs has not been investigated yet. In this work, we aimed to characterize the antigen presentation profiles of S. suis-stimulated DCs, both in vitro and in vivo. Upon direct activation in vitro, S. suis-stimulated murine bone marrow-derived DCs (bmDCs) preserved their antigen capture/processing capacities. However, they showed delayed kinetics of MHC-II expression compared to lipopolysaccharide-stimulated bmDCs. Meanwhile, splenic DCs from infected mice exhibited a compromised MHC-II expression, despite an appropriate expression of maturation markers. To identify potential interfering mechanisms, Class II Major Histocompatibility Complex Transactivator (CIITA) and membrane-associated RING-CH (MARCH)1/8 transcription were studied. S. suis-stimulated DCs maintained low levels of CIITA at early time points, both in vitro and in vivo, which could limit their ability to increase MHC-II synthesis. S. suis-stimulated DCs also displayed sustained/upregulated levels of MARCH1/8, thus possibly leading to MHC-II lysosomal degradation. The bacterial capsular polysaccharide played a partial role in this modulation. Finally, interleukin (IL)-12p70 production was inhibited in splenic DCs from infected mice, a profile compatible with DC indirect activation by pro-inflammatory compounds. Consequently, these cells induced lower levels of IL-2 and TNF-α in an antigen-specific CD4+ T cell presentation assay and blunted T cell CD25 expression. It remains unclear at this stage whether these phenotypical and transcriptional modulations observed in response to S. suis in in vivo infections are part of a bacterial immune evasion strategy or rather a feature common to systemic inflammatory response-inducing agents. However, it appears that the MHC-II-restricted antigen presentation and Th1-polarizing cytokine production capacities of DCs are impaired during S. suis infection. This study highlights the potential consequences of inflammation on the type and magnitude of the immune response elicited by a pathogen.
Collapse
Affiliation(s)
- Corinne Letendre
- Laboratory of Immunology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - Jean-Philippe Auger
- Laboratory of Research on Streptococcus suis, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - Paul Lemire
- Laboratory of Immunology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - Tristan Galbas
- Laboratory of Molecular Immunology, Department of Microbiology, Infectiology and Immunology, University of Montreal, Montreal, QC, Canada
| | - Marcelo Gottschalk
- Laboratory of Research on Streptococcus suis, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - Jacques Thibodeau
- Laboratory of Molecular Immunology, Department of Microbiology, Infectiology and Immunology, University of Montreal, Montreal, QC, Canada
| | - Mariela Segura
- Laboratory of Immunology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
| |
Collapse
|
3
|
Activity of Species-specific Antibiotics Against Crohn's Disease-Associated Adherent-invasive Escherichia coli. Inflamm Bowel Dis 2015; 21:2372-82. [PMID: 26177305 DOI: 10.1097/mib.0000000000000488] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Crohn's disease (CD) is associated with bacterial dysbiosis that frequently includes colonization by adherent-invasive Escherichia coli (AIEC). AIEC are adept at forming biofilms and are able to invade host cells and stimulate the production of proinflammatory cytokines. The use of traditional antibiotics for the treatment of CD shows limited efficacy. In this study, we investigate the use of species-specific antibiotics termed colicins for treatment of CD-associated AIEC. METHODS Colicin activity was tested against a range of AIEC isolates growing in the planktonic and biofilm mode of growth. Colicins were also tested against AIEC bacteria associated with T84 intestinal epithelial cells and surviving inside RAW264.7 macrophages using adhesion assays and gentamicin protection assay, respectively. Uptake of colicins into eukaryotic cells was visualized using confocal microscopy. The effect of colicin treatment on the production of proinflammatory cytokine tumor necrosis factor alpha by macrophages was assessed by an enzyme-linked immunosorbent assay. RESULTS Colicins show potent activity against AIEC bacteria growing as biofilms when delivered either as a purified protein or through a colicin-producing bacterial strain. In addition, colicins E1 and E9 are able to kill cell-associated and intracellular AIEC, but do not show toxicity toward macrophage cells or stimulate the production of proinflammatory cytokines. Colicin killing of intracellular bacteria occurs after entry of colicin protein into AIEC-infected macrophage compartments by actin-mediated endocytosis. CONCLUSIONS Our results demonstrate the potential of colicins as highly selective probiotic therapeutics for the eradication of E. coli from the gastrointestinal tract of patients with CD.
Collapse
|
4
|
Bhingare A, Ohno T, Tomura M, Zhang C, Aramaki O, Otsuki M, Tagami J, Azuma M. Dental Pulp Dendritic Cells Migrate to Regional Lymph Nodes. J Dent Res 2013; 93:288-93. [DOI: 10.1177/0022034513518223] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Dendritic cell (DC) migration to regional lymph nodes (RLNs) is an essential step in adaptive immunity, and cell-surface antigens on migrating DCs greatly affect the quality and quantity of subsequent immune responses. Although MHC class II+ DC-like cells exist in the dental pulp, the lineage and function of these cells remain unknown. Here, we identified migratory DCs from the dental pulp after cusp trimming and acid etching in KikGR mice, in which the photoconvertible fluorescent protein changed from green to red upon violet light exposure. Two major cell fractions from the dental pulp had migrated to the RLNs at 16 hrs after cusp treatment, which showed the following lineage markers in the main and second fractions: CD11chighCD11b++Ly6Clow Ly6Glow F4/80+ and CD11cmedCD11b+++Ly6C++Ly6G+++F4/80-, respectively. These lineage markers indicate that the former cells were DCs that had migrated through afferent lymphoid vessels, and the latter were granulocytes recruited via blood circulation. Migratory dental pulp DCs were mature, expressing the highest levels of CD273 (B7-DC) and CD86 co-stimulators and MHC class II. Our results suggest that cariogenic-bacteria-exposed dental pulp DCs migrate to RLNs and there trigger adaptive immune responses.
Collapse
Affiliation(s)
- A.C. Bhingare
- Department of Molecular Immunology, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - T. Ohno
- Department of Molecular Immunology, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - M. Tomura
- Center for Innovation in Immunoregulative Technology and Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - C. Zhang
- Department of Molecular Immunology, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - O. Aramaki
- Department of Cariology and Operative Dentistry, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - M. Otsuki
- Department of Cariology and Operative Dentistry, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - J. Tagami
- Department of Cariology and Operative Dentistry, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - M. Azuma
- Department of Molecular Immunology, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| |
Collapse
|
5
|
Donovan TE, Anderson M, Becker W, Cagna DR, Hilton TJ, McKee JR, Metz JE. Annual review of selected scientific literature: Report of the committee on scientific investigation of the American Academy of Restorative Dentistry. J Prosthet Dent 2012; 108:15-50. [DOI: 10.1016/s0022-3913(12)60104-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|