1
|
Liang T, Smith CE, Hu Y, Zhang H, Zhang C, Xu Q, Lu Y, Qi L, Hu JCC, Simmer JP. Dentin defects caused by a Dspp -1 frameshift mutation are associated with the activation of autophagy. Sci Rep 2023; 13:6393. [PMID: 37076504 PMCID: PMC10115861 DOI: 10.1038/s41598-023-33362-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023] Open
Abstract
Dentin sialophosphoprotein (DSPP) is primarily expressed by differentiated odontoblasts (dentin-forming cells), and transiently expressed by presecretory ameloblasts (enamel-forming cells). Disease-causing DSPP mutations predominantly fall into two categories: 5' mutations affecting targeting and trafficking, and 3' - 1 frameshift mutations converting the repetitive, hydrophilic, acidic C-terminal domain into a hydrophobic one. We characterized the dental phenotypes and investigated the pathological mechanisms of DsppP19L and Dspp-1fs mice that replicate the two categories of human DSPP mutations. In DsppP19L mice, dentin is less mineralized but contains dentinal tubules. Enamel mineral density is reduced. Intracellular accumulation and ER retention of DSPP is observed in odontoblasts and ameloblasts. In Dspp-1fs mice, a thin layer of reparative dentin lacking dentinal tubules is deposited. Odontoblasts show severe pathosis, including intracellular accumulation and ER retention of DSPP, strong ubiquitin and autophagy activity, ER-phagy, and sporadic apoptosis. Ultrastructurally, odontoblasts show extensive autophagic vacuoles, some of which contain fragmented ER. Enamel formation is comparable to wild type. These findings distinguish molecular mechanisms underlying the dental phenotypes of DsppP19L and Dspp-1fs mice and support the recently revised Shields classification of dentinogenesis imperfecta caused by DSPP mutations in humans. The Dspp-1fs mice may be valuable for the study of autophagy and ER-phagy.
Collapse
Affiliation(s)
- Tian Liang
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 North University, Ann Arbor, MI, 48109-1078, USA.
| | - Charles E Smith
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 North University, Ann Arbor, MI, 48109-1078, USA
- Department of Anatomy & Cell Biology, Faculty of Medicine & Health Sciences, McGill University, Montreal, QC, Canada
| | - Yuanyuan Hu
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 North University, Ann Arbor, MI, 48109-1078, USA
| | - Hong Zhang
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 North University, Ann Arbor, MI, 48109-1078, USA
| | - Chuhua Zhang
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 North University, Ann Arbor, MI, 48109-1078, USA
| | - Qian Xu
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, 3302 Gaston Ave., Dallas, TX, 75246, USA
| | - Yongbo Lu
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, 3302 Gaston Ave., Dallas, TX, 75246, USA
| | - Ling Qi
- Department of Molecular & Integrative Physiology, Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, 1000 Wall St., Ann Arbor, MI, 48105, USA
| | - Jan C-C Hu
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 North University, Ann Arbor, MI, 48109-1078, USA
| | - James P Simmer
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 North University, Ann Arbor, MI, 48109-1078, USA
| |
Collapse
|
2
|
Shemirani R, Lin G, Abduweli Uyghurturk D, Le M, Nakano Y. An miRNA derived from amelogenin exon4 regulates expression of transcription factor Runx2 by directly targeting upstream activators Nfia and Prkch. J Biol Chem 2022; 298:101807. [PMID: 35271849 PMCID: PMC9061250 DOI: 10.1016/j.jbc.2022.101807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 11/30/2022] Open
Abstract
Amel, the gene encoding the amelogenin protein involved in enamel formation, is highly alternatively spliced. When exon4 is excised, it can form a mature miRNA (miR-exon4) that has previously been suggested to indirectly regulate expression of the Runt-related transcription factor 2 (Runx2) involved in bone development in ameloblasts and osteoblasts. However, the precise mechanism of this regulation is unclear. In this study, we aimed to identify direct targets of miR-exon4. The transcription factor family nuclear factor I/A (NFI/A) is known to negatively regulate expression of Runx2 and is among the most highly predicted direct targets of miR-exon4 that link to Runx2. Immunostaining detected NFI/A in osteoblasts and ameloblasts in vivo, and reporter assays confirmed direct interaction of the Nfia 3'-UTR and miR-exon4. In addition, silencing of Nfia in MC3T3-E1-M14 osteoblasts resulted in subsequent downregulation of Runx2. In a monoclonal subclone (mi2) of MC3T3-E1 cells wherein mature miR-exon4 was functionally inhibited, we observed significantly downregulated Runx2 expression. We showed that NFI/A was significantly upregulated in mi2 cells at both mRNA and protein levels. Furthermore, quantitative proteomics and pathway analysis of gene expression in mi2 cells suggested that miR-exon4 could directly target Prkch (protein kinase C-eta), possibly leading to RUNX2 regulation through mechanistic target of rapamycin kinase activation. Reporter assays also confirmed the direct interaction of miR-exon4 and the 3'-UTR of Prkch, and Western blot analysis confirmed significantly upregulated mechanistic target of rapamycin kinase phosphorylation in mi2 cells. Taken together, we conclude that Nfia and Prkch expression negatively correlates with miR-exon4-mediated Runx2 regulation in vivo and in vitro, suggesting miR-exon4 directly targets Nfia and Prkch to regulate Runx2.
Collapse
Affiliation(s)
- Rozana Shemirani
- Department of Orofacial Sciences, School of Dentistry, University of California, San Francisco, USA
| | - Gan Lin
- Department of Orofacial Sciences, School of Dentistry, University of California, San Francisco, USA
| | | | - Michael Le
- Department of Preventive and Restorative Dental Sciences, School of Dentistry, University of California, San Francisco, USA
| | - Yukiko Nakano
- Department of Orofacial Sciences, School of Dentistry, University of California, San Francisco, USA; Center for Children's Oral Health Research, School of Dentistry, University of California, San Francisco, USA.
| |
Collapse
|
3
|
Huang Y, Bai Y, Chang C, Bacino M, Cheng IC, Li L, Habelitz S, Li W, Zhang Y. A N-Terminus Domain Determines Amelogenin's Stability to Guide the Development of Mouse Enamel Matrix. J Bone Miner Res 2021; 36:1781-1795. [PMID: 33957008 PMCID: PMC9307086 DOI: 10.1002/jbmr.4329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 04/25/2021] [Accepted: 04/29/2021] [Indexed: 12/16/2022]
Abstract
Amelogenins, the principal proteins in the developing enamel microenvironment, self-assemble into supramolecular structures to govern the remodeling of a proteinaceous organic matrix into longitudinally ordered hydroxyapatite nanocrystal arrays. Extensive in vitro studies using purified native or recombinant proteins have revealed the potential of N-terminal amelogenin on protein self-assembly and its ability to guide the mineral deposition. We have previously identified a 14-aa domain (P2) of N-terminal amelogenin that can self-assemble into amyloid-like fibrils in vitro. Here, we investigated how this domain affects the ability of amelogenin self-assembling and stability of enamel matrix protein scaffolding in an in vivo animal model. Mice harboring mutant amelogenin lacking P2 domain had a hypoplastic, hypomineralized, and aprismatic enamel. In vitro, the mutant recombinant amelogenin without P2 had a reduced tendency to self-assemble and was prone to accelerated hydrolysis by MMP20, the prevailing metalloproteinase in early developing enamel matrix. A reduced amount of amelogenins and a lack of elongated fibrous assemblies in the development enamel matrix of mutant mice were evident compared with that in the wild-type mouse enamel matrix. Our study is the first to demonstrate that a subdomain (P2) at the N-terminus of amelogenin controls amelogenin's assembly into a transient protein scaffold that resists rapid proteolysis during enamel development in an animal model. Understanding the building blocks of fibrous scaffold that guides the longitudinal growth of hydroxyapatites in enamel matrix sheds light on protein-mediated enamel bioengineering. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Yulei Huang
- Department of Orofacial Sciences, University of California, San Francisco, CA, USA.,Preventive and Restorative Dental Sciences, University of California, San Francisco, CA, USA
| | - Yushi Bai
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun-Yat-sen University, Guangzhou, China
| | - Chih Chang
- Department of Orofacial Sciences, University of California, San Francisco, CA, USA
| | - Margot Bacino
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun-Yat-sen University, Guangzhou, China
| | - Ieong Cheng Cheng
- Department of Orofacial Sciences, University of California, San Francisco, CA, USA
| | - Li Li
- Department of Orofacial Sciences, University of California, San Francisco, CA, USA
| | - Stefan Habelitz
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun-Yat-sen University, Guangzhou, China
| | - Wu Li
- Department of Orofacial Sciences, University of California, San Francisco, CA, USA
| | - Yan Zhang
- Department of Orofacial Sciences, University of California, San Francisco, CA, USA
| |
Collapse
|
4
|
Hu Y, Smith CE, Cai Z, Donnelly LAJ, Yang J, Hu JCC, Simmer JP. Enamel ribbons, surface nodules, and octacalcium phosphate in C57BL/6 Amelx-/- mice and Amelx+/- lyonization. Mol Genet Genomic Med 2016; 4:641-661. [PMID: 27896287 PMCID: PMC5118209 DOI: 10.1002/mgg3.252] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/07/2016] [Accepted: 09/13/2016] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Amelogenin is required for normal enamel formation and is the most abundant protein in developing enamel. METHODS Amelx+/+, Amelx+/- , and Amelx-/- molars and incisors from C57BL/6 mice were characterized using RT-PCR, Western blotting, dissecting and light microscopy, immunohistochemistry (IHC), transmission electron microscopy (TEM), scanning electron microscopy (SEM), backscattered SEM (bSEM), nanohardness testing, and X-ray diffraction. RESULTS No amelogenin protein was detected by Western blot analyses of enamel extracts from Amelx-/- mice. Amelx-/- incisor enamel averaged 20.3 ± 3.3 μm in thickness, or only 1/6th that of the wild type (122.3 ± 7.9 μm). Amelx-/- incisor enamel nanohardness was 1.6 Gpa, less than half that of wild-type enamel (3.6 Gpa). Amelx+/- incisors and molars showed vertical banding patterns unique to each tooth. IHC detected no amelogenin in Amelx-/- enamel and varied levels of amelogenin in Amelx+/- incisors, which correlated positively with enamel thickness, strongly supporting lyonization as the cause of the variations in enamel thickness. TEM analyses showed characteristic mineral ribbons in Amelx+/+ and Amelx-/- enamel extending from mineralized dentin collagen to the ameloblast. The Amelx-/- enamel ribbons were not well separated by matrix and appeared to fuse together, forming plates. X-ray diffraction determined that the predominant mineral in Amelx-/- enamel is octacalcium phosphate (not calcium hydroxyapatite). Amelx-/- ameloblasts were similar to wild-type ameloblasts except no Tomes' processes extended into the thin enamel. Amelx-/- and Amelx+/- molars both showed calcified nodules on their occlusal surfaces. Histology of D5 and D11 developing molars showed nodules forming during the maturation stage. CONCLUSION Amelogenin forms a resorbable matrix that separates and supports, but does not shape early secretory-stage enamel ribbons. Amelogenin may facilitate the conversion of enamel ribbons into hydroxyapatite by inhibiting the formation of octacalcium phosphate. Amelogenin is necessary for thickening the enamel layer, which helps maintain ribbon organization and development and maintenance of the Tomes' process.
Collapse
Affiliation(s)
- Yuanyuan Hu
- Department of Biologic and Materials Sciences University of Michigan School of Dentistry 1210 Eisenhower Place Ann Arbor Michigan 48108
| | - Charles E Smith
- Department of Biologic and Materials SciencesUniversity of Michigan School of Dentistry1210Eisenhower PlaceAnn ArborMichigan48108; Facility for Electron Microscopy ResearchDepartment of Anatomy and Cell BiologyFaculty of DentistryMcGill UniversityMontrealQuebecH3A 2B2Canada
| | - Zhonghou Cai
- Advanced Photon Source Argonne National Laboratory 9700 S. Cass Ave Building 431-B005 Argonne Illinois 60439
| | - Lorenza A-J Donnelly
- Department of Biologic and Materials Sciences University of Michigan School of Dentistry 1210 Eisenhower Place Ann Arbor Michigan 48108
| | - Jie Yang
- Department of Biologic and Materials SciencesUniversity of Michigan School of Dentistry1210Eisenhower PlaceAnn ArborMichigan48108; Department of Pediatric DentistrySchool and Hospital of StomatologyPeking University22 South AvenueZhongguancun Haidian DistrictBeijing100081China
| | - Jan C-C Hu
- Department of Biologic and Materials Sciences University of Michigan School of Dentistry 1210 Eisenhower Place Ann Arbor Michigan 48108
| | - James P Simmer
- Department of Biologic and Materials Sciences University of Michigan School of Dentistry 1210 Eisenhower Place Ann Arbor Michigan 48108
| |
Collapse
|
5
|
Le MH, Warotayanont R, Stahl J, Den Besten PK, Nakano Y. Amelogenin Exon4 Forms a Novel miRNA That Directs Ameloblast and Osteoblast Differentiation. J Dent Res 2015; 95:423-9. [PMID: 26715056 DOI: 10.1177/0022034515622443] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Amelogenins constitute the major portion of secretory enamel matrix proteins and are known to be highly alternative spliced. Of all the alternatively spliced forms of amelogenins, exon4 is most commonly spliced out. Our analyses of the exon4 sequence led us to hypothesize that when spliced out, exon4 may generate a novel mature miRNA. To explore this possibility, we used in vivo mouse models (wild-type and Amel knockout mice) and in vitro cell culture to investigate the presence and function of a mature miRNA derived from exon4 (miR-exon4). When ameloblast-like cells (LS8) were transfected with an amelogenin minigene to increase amelogenin synthesis, the transfected cells synthesized miR-exon4. Introduction of a mutation in the conserved CNNC sequence required for primary miRNA recognition, downstream of the mature miR-exon4 sequence, resulted in a significantly reduced production of miR-exon4 in the transfected cells. In vivo, miR-exon4 was most highly amplified from wild-type mouse enamel organs at the secretory stage. In Amel knockout mice, an in vivo model for reduced amelogenin synthesis, we found reduced miR-exon4, with no changes in expression of enamel matrix-related genes. However, expression of Runx2 and its downstream genes Odam and Amtn were significantly downregulated. Transfection of miR-exon4 mimic to the LS8 cells also significantly upregulated Runx2. The mature miR-exon4 as well as Runx2 was also present in mouse osteoblasts with no apparent change in expression level between wild-type and Amel knockout mice. However, transfecting miR-exon4 inhibitor to the MC3T3-E1 osteoblastic cells resulted in a significant downregulation of Runx2 expression. These data indicate that when exon4 is spliced out, as occurs most of the time during alternative splicing of amelogenin pre-mRNA, a novel mature miRNA is generated from exon4. This miR-exon4 may contribute to the differentiation of ameloblasts and osteoblasts through regulation of Runx2 expression.
Collapse
Affiliation(s)
- M H Le
- Department of Orofacial Sciences, University of California, San Francisco, School of Dentistry, San Francisco, CA, USA
| | - R Warotayanont
- Department of Orofacial Sciences, University of California, San Francisco, School of Dentistry, San Francisco, CA, USA Children's Oral Health Research Center, University of California, San Francisco, School of Dentistry, San Francisco, CA, USA
| | - J Stahl
- Department of Orofacial Sciences, University of California, San Francisco, School of Dentistry, San Francisco, CA, USA Maxillofacial Injury and Disease Department, Naval Medical Research Unit, San Antonio, TX, USA
| | - P K Den Besten
- Department of Orofacial Sciences, University of California, San Francisco, School of Dentistry, San Francisco, CA, USA Children's Oral Health Research Center, University of California, San Francisco, School of Dentistry, San Francisco, CA, USA
| | - Y Nakano
- Department of Orofacial Sciences, University of California, San Francisco, School of Dentistry, San Francisco, CA, USA Children's Oral Health Research Center, University of California, San Francisco, School of Dentistry, San Francisco, CA, USA
| |
Collapse
|
6
|
Gasse B, Sire JY. Comparative expression of the four enamel matrix protein genes, amelogenin, ameloblastin, enamelin and amelotin during amelogenesis in the lizard Anolis carolinensis. EvoDevo 2015; 6:29. [PMID: 26421144 PMCID: PMC4587831 DOI: 10.1186/s13227-015-0024-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 09/15/2015] [Indexed: 12/23/2022] Open
Abstract
Background In a recent study, we have demonstrated that amelotin (AMTN) gene structure and its expression during amelogenesis have changed during tetrapod evolution. Indeed, this gene is expressed throughout enamel matrix deposition and maturation in non-mammalian tetrapods, while in mammals its expression is restricted to the transition and maturation stages of amelogenesis. Previous studies of amelogenin (AMEL) gene expression in a lizard and a salamander have shown similar expression pattern to that in mammals, but to our knowledge there are no data regarding ameloblastin (AMBN) and enamelin (ENAM) expression in non-mammalian tetrapods. The present study aims to look at, and compare, the structure and expression of four enamel matrix protein genes, AMEL, AMBN, ENAM and AMTN during amelogenesis in the lizard Anolis carolinensis. Results We provide the full-length cDNA sequence of A. carolinensisAMEL and AMBN, and show for the first time the expression of ENAM and AMBN in a non-mammalian species. During amelogenesis in A. carolinensis, AMEL, AMBN and ENAM expression in ameloblasts is similar to that described in mammals. It is noteworthy that AMEL and AMBN expression is also found in odontoblasts. Conclusions Our findings indicate that AMTN is the only enamel matrix protein gene that is differentially expressed in ameloblasts between mammals and sauropsids. Changes in AMTN structure and expression could be the key to explain the structural differences between mammalian and reptilian enamel, i.e. prismatic versus non-prismatic.
Collapse
Affiliation(s)
- Barbara Gasse
- UMR7138, Institut de Biologie Paris-Seine (IBPS), UPMC Univ Paris 06, Sorbonne Universités, 75005 Paris, France
| | | |
Collapse
|
7
|
Stahl J, Nakano Y, Horst J, Zhu L, Le M, Zhang Y, Liu H, Li W, Den Besten PK. Exon4 amelogenin transcripts in enamel biomineralization. J Dent Res 2015; 94:836-42. [PMID: 25792521 PMCID: PMC4485327 DOI: 10.1177/0022034515577412] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Amelogenins are proteins formed by alternative splicing of the amelogenin gene, and are essential for tooth enamel formation. However, the unique functions of various alternatively spliced amelogenins in enamel formation are not well understood. In this study, we determined the spatiotemporal location of amelogenins derived from transcripts containing exon4 (AMG+4) in the enamel matrix, and the relative binding of recombinant AMG+4 to hydroxyapatite (HAP). Immunohistochemistry and mass spectrometry analyses showed that AMG+4 proteins were secreted into the enamel matrix at the early maturation stage. A stage-specific increase in the synthesis of AMG+4 was further supported by our observation that in mice overexpressing leucine-rich amelogenin peptide (TgLRAP), in which ameloblasts differentiate earlier, AMG+4 transcripts were also upregulated earlier. In vitro binding studies, supported by in silico modeling of protein binding to calcium and phosphate, showed that more recombinant AMG+4 bound to hydroxyapatite (HAP) as compared with recombinant AMG-4. The temporal and spatial localization of amelogenins containing exon4 peptide, and their functional differences in HAP binding, suggests that the unique properties of amelogenins containing exon4 cause a specific enhancement of biomineralization related to stabilization of early-formed HAP at the maturation stage.
Collapse
Affiliation(s)
- J Stahl
- Department of Orofacial Sciences, University of California, San Francisco, School of Dentistry, San Francisco, CA, USA Maxillofacial Injury and Disease Department, Naval Medical Research Unit, San Antonio, TX, USA
| | - Y Nakano
- Department of Orofacial Sciences, University of California, San Francisco, School of Dentistry, San Francisco, CA, USA
| | - J Horst
- Department of Biochemistry and Biophysics, University of California, San Francisco, School of Medicine, San Francisco, CA, USA
| | - L Zhu
- Department of Orofacial Sciences, University of California, San Francisco, School of Dentistry, San Francisco, CA, USA
| | - M Le
- Department of Orofacial Sciences, University of California, San Francisco, School of Dentistry, San Francisco, CA, USA
| | - Y Zhang
- Department of Orofacial Sciences, University of California, San Francisco, School of Dentistry, San Francisco, CA, USA
| | - H Liu
- Department of Obstetrics, Gynecology & Reproductive Sciences & Sandler-Moore Mass Spectrometry Core Facility, University of California, San Francisco, CA, USA
| | - W Li
- Department of Orofacial Sciences, University of California, San Francisco, School of Dentistry, San Francisco, CA, USA
| | - P K Den Besten
- Department of Orofacial Sciences, University of California, San Francisco, School of Dentistry, San Francisco, CA, USA
| |
Collapse
|
8
|
Cho ES, Kim KJ, Lee KE, Lee EJ, Yun CY, Lee MJ, Shin TJ, Hyun HK, Kim YJ, Lee SH, Jung HS, Lee ZH, Kim JW. Alteration of conserved alternative splicing in AMELX causes enamel defects. J Dent Res 2014; 93:980-7. [PMID: 25117480 DOI: 10.1177/0022034514547272] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Tooth enamel is the most highly mineralized tissue in vertebrates. Enamel crystal formation and elongation should be well controlled to achieve an exceptional hardness and a compact microstructure. Enamel matrix calcification occurs with several matrix proteins, such as amelogenin, enamelin, and ameloblastin. Among them, amelogenin is the most abundant enamel matrix protein, and multiple isoforms resulting from extensive but well-conserved alternative splicing and postsecretional processing have been identified. In this report, we recruited a family with a unique enamel defect and identified a silent mutation in exon 4 of the AMELX gene. We show that the mutation caused the inclusion of exon 4, which is almost always skipped, in the mRNA transcript. We further show, by generating and characterizing a transgenic animal model, that the alteration of the ratio and quantity of the developmentally conserved alternative splicing repertoire of AMELX caused defects in enamel matrix mineralization.
Collapse
Affiliation(s)
- E S Cho
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, School of Dentistry, Chonbuk National University, Jeonju, Korea
| | - K-J Kim
- Department of Pediatric Dentistry and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | - K-E Lee
- Department of Pediatric Dentistry and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | - E-J Lee
- Department of Pediatric Dentistry and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | - C Y Yun
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, School of Dentistry, Chonbuk National University, Jeonju, Korea
| | - M-J Lee
- Division in Anatomy and Developmental Biology, Department of Oral Biology, College of Dentistry, Yonsei University, Seoul, Korea
| | - T J Shin
- Department of Pediatric Dentistry and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | - H-K Hyun
- Department of Pediatric Dentistry and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | - Y-J Kim
- Department of Pediatric Dentistry and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | - S-H Lee
- Department of Pediatric Dentistry and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | - H-S Jung
- Division in Anatomy and Developmental Biology, Department of Oral Biology, College of Dentistry, Yonsei University, Seoul, Korea
| | - Z H Lee
- Department of Cell and Developmental Biology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | - J-W Kim
- Department of Pediatric Dentistry and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea Department of Molecular Genetics and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| |
Collapse
|
9
|
Wang X, Xing Z, Zhang X, Zhu L, Diekwisch TGH. Alternative Splicing of the Amelogenin Gene in a Caudate Amphibian, Plethodon cinereus. PLoS One 2013; 8:e68965. [PMID: 23840861 PMCID: PMC3694012 DOI: 10.1371/journal.pone.0068965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Accepted: 06/09/2013] [Indexed: 11/25/2022] Open
Abstract
As the major enamel matrix protein contributing to tooth development, amelogenin has been demonstrated to play a crucial role in tooth enamel formation. Previous studies have revealed amelogenin alternative splicing as a mechanism for amelogenin heterogeneous expression in mammals. While amelogenin and its splicing forms in mammalian vertebrates have been characterized, splicing variants of amelogenin gene still remains largely unknown in non-mammalian species. Here, using PCR and sequence analysis we discovered two novel amelogenin transcript variants in tooth organ extracts from a caudate amphibian, the salamander Plethodoncinereus. The one was shorter -S- (416 nucleotides including untranslated regions, 5 exons) and the other larger -L- (851 nt, 7 exons) than the previously published “normal” gene in this species -M- (812 nucleotides, 6 exons). This is the first report demonstrating the amelogenin alternative splicing in amphibian, revealing a unique exon 2b and two novel amelogenin gene transcripts in Plethodoncinereus.
Collapse
Affiliation(s)
- Xinping Wang
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
- * E-mail:
| | - Zeli Xing
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Xichen Zhang
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Lisai Zhu
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Thomas G. H. Diekwisch
- College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
10
|
Assaraf-Weill N, Gasse B, Al-Hashimi N, Delgado S, Sire JY, Davit-Béal T. Conservation of amelogenin gene expression during tetrapod evolution. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2013; 320:200-9. [PMID: 23508977 DOI: 10.1002/jez.b.22494] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 01/31/2013] [Accepted: 02/05/2013] [Indexed: 12/12/2022]
Abstract
Well studied in mammals, amelogenesis is less known at the molecular level in reptiles and amphibians. In the course of extensive studies of enamel matrix protein (EMP) evolution in tetrapods, we look for correlation between changes in protein sequences and temporospatial protein gene expression during amelogenesis, using an evo-devo approach. Our target is the major EMP, amelogenin (AMEL) that plays a crucial role in enamel structure. We focused here our attention to an amphibian, the salamander Pleurodeles waltl. RNAs were extracted from the lower jaws of a juvenile P. waltl and the complete AMEL sequence was obtained using PCR and RACE PCR. The alignment of P. waltl AMEL with other tetrapodan (frogs, reptiles and mammals) sequences revealed residue conservation in the N- and C-terminal regions, and a highly variable central region. Using sense and anti-sense probes synthetized from the P. waltl AMEL sequence, we performed in situ hybridization on sections during amelogenesis in larvae, juveniles, and adults. We demonstrated that (i) AMEL expression was always found to be restricted to ameloblasts, (ii) the expression pattern was conserved through ontogeny, even in larvae where enameloid is present in addition to enamel, and (iii) the processes are similar to those described in lizards and mammals. These findings indicate that high variations in the central region of AMEL have not modified its temporospatial expression during amelogenesis for 360 million years of tetrapod evolution.
Collapse
Affiliation(s)
- Nathalie Assaraf-Weill
- UMR 7138, Research Group "Evolution and Development of the Skeleton", Université Pierre et Marie Curie, Paris, France
| | | | | | | | | | | |
Collapse
|
11
|
Ando H, Inage T, Oida S. Amelogenin in Frog Species, Xenopus tropicalis: A Gene Evolutionary Approach. J HARD TISSUE BIOL 2013. [DOI: 10.2485/jhtb.22.189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|