1
|
Biomaterials for Periodontal and Peri-Implant Regeneration. MATERIALS 2021; 14:ma14123319. [PMID: 34203989 PMCID: PMC8232756 DOI: 10.3390/ma14123319] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/03/2021] [Accepted: 06/09/2021] [Indexed: 12/23/2022]
Abstract
Periodontal and peri-implant regeneration is the technique that aims to restore the damaged tissue around teeth and implants. They are surrounded by a different apparatus, and according to it, the regenerative procedure can differ for both sites. During the last century, several biomaterials and biological mediators were proposed to achieve a complete restoration of the damaged tissues with less invasiveness and a tailored approach. Based on relevant systematic reviews and articles searched on PubMed, Scopus, and Cochrane databases, data regarding different biomaterials were extracted and summarized. Bone grafts of different origin, membranes for guided tissue regeneration, growth factors, and stem cells are currently the foundation of the routinary clinical practice. Moreover, a tailored approach, according to the patient and specific to the involved tooth or implant, is mandatory to achieve a better result and a reduction in patient morbidity and discomfort. The aim of this review is to summarize clinical findings and future developments regarding grafts, membranes, molecules, and emerging therapies. In conclusion, tissue engineering is constantly evolving; moreover, a tailor-made approach for each patient is essential to obtain a reliable result and the combination of several biomaterials is the elective choice in several conditions.
Collapse
|
2
|
Bone Marrow Mesenchymal Stromal Cells (BMMSCs) Augment Osteointegration of Dental Implants in Type 1 Diabetic Rabbits: An X-Ray Micro-Computed Tomographic Evaluation. MEDICINA-LITHUANIA 2020; 56:medicina56040148. [PMID: 32218375 PMCID: PMC7230266 DOI: 10.3390/medicina56040148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/19/2020] [Accepted: 03/19/2020] [Indexed: 01/13/2023]
Abstract
Background and objectives: The study aimed to investigate the effect of bone marrow mesenchymal stromal cells (BMMSCs) on implant-bone osseointegration in type I diabetic New Zealand rabbits. Materials and methods: BMMSCs harvested from healthy rabbits were processed and validated for purity and osteocyte differentiability. Mandibular incisors of diabetic and control rabbits were carefully extracted, and the sockets were plugged with collagen sponges. Platelet-rich plasma (PRP) containing osteoinductive BMMSCs, and plain PRP were injected into the collagen sponge of the right and left sockets respectively. Dental implants of 2.6 mm diameter and 10 mm length were inserted into the collagen sponge of both sockets. All the animals were sacrificed six weeks post surgery to evaluate an early stage of osseointegration; the mandibles scanned by X-ray microcomputed tomography (μCT) and subjected to 3D analysis. The μCT parameters of the right implant were paired against that of the left side of each animal and analyzed by paired T-test. Results: The preclinical evaluation of the viability and osteocyte differentiation of the BMMSCs were consistent between both the donor samples. The osseointegration of dental implants with stem cell therapy (BMMSCs + PRP + collagen) in normal and diabetic rabbits was significantly higher than that of implants with adjunctive PRP + collagen only (p < 0.05). Conclusion: Stem Cell therapy with osteoinductive BMMSCs and PRP can offer a novel approach to enhance the osseointegration of dental implants in uncontrolled diabetic patients.
Collapse
|
3
|
Park YK, Heo SJ, Koak JY, Park GS, Cho TJ, Kim SK, Cho J. Characterization and Differentiation of Circulating Blood Mesenchymal Stem Cells and the Role of Phosphatidylinositol 3-Kinase in Modulating the Adhesion. Int J Stem Cells 2019; 12:265-278. [PMID: 31023002 PMCID: PMC6657952 DOI: 10.15283/ijsc18136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/23/2019] [Accepted: 02/26/2019] [Indexed: 01/22/2023] Open
Abstract
Bone marrow mesenchymal stem cells (BM MSCs) can differentiate into multi-lineage tissues. However, obtaining BM MSCs by aspiration is difficult and can be painful; therefore peripheral blood (PB) MSCs might provide an easier alternative for clinical applications. Here, we show that circulating PB MSCs proliferate as efficiently as BM MSCs in the presence of extracellular matrix (ECM) and that differentiation potential into osteoblast in vitro and in vivo. Both BM MSCs and PB MSCs developed into new bone when subcutaneously transplanted into immune-compromised mice using hydroxyapatite/tricalcium phosphate as a carrier. Furthermore, LY294002 and Wortmannin blocked mesenchymal stem cell attachment in a dose-dependent manner, suggesting a role of phosphatidylinositol 3-kinase in MSC attachment. Our data showed that the growth of PB MSCs could be regulated by interaction with the ECM and that these cells could differentiate into osteoblasts, suggesting their potential for clinical applications.
Collapse
Affiliation(s)
- Yoon-Kyung Park
- Dental Research Institute, Seoul National University, Brain Korea 21, Seoul, Korea
| | - Seong-Joo Heo
- Dental Research Institute and Prosthodontics, Seoul National University Dental Hospital, School of Dentistry, Seoul National University, Seoul, Korea
| | - Jai-Young Koak
- Dental Research Institute and Prosthodontics, Seoul National University Dental Hospital, School of Dentistry, Seoul National University, Seoul, Korea
| | - Gang-Seok Park
- Dental Research Institute and Prosthodontics, Seoul National University Dental Hospital, School of Dentistry, Seoul National University, Seoul, Korea
| | - Tae-Jun Cho
- Department of Dental Regenerative Biotechnology, School of Dentistry, Seoul National University, Seoul, Korea
| | - Seong-Kyun Kim
- Dental Research Institute and Prosthodontics, Seoul National University Dental Hospital, School of Dentistry, Seoul National University, Seoul, Korea
| | - Jaejin Cho
- Department of Dental Regenerative Biotechnology, School of Dentistry, Seoul National University, Seoul, Korea
| |
Collapse
|
4
|
Injectable cartilaginous template transformed BMSCs into vascularized bone. Sci Rep 2018; 8:8244. [PMID: 29844536 PMCID: PMC5973938 DOI: 10.1038/s41598-018-26472-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 05/02/2018] [Indexed: 11/30/2022] Open
Abstract
Regeneration of alveolar bone for dental implant remains a major issue, partifcularly for patients suffering from severe bone adsorption and irregular socket trauma. Recapitulating embryological development is becoming an attractive approach for engineer organ or three-dimensional tissues from stem cells. In this study, we aimed to develop an injectable “cartilaginous” graft with adequate mechanical resistance and ideal bone remodelling potential. The cartilaginous graft was composed of a particulate decellularised cartilage matrix (PDCM), chondrogenically primed bone mesenchymal stem cell (BMSC) bricks (CB), and enriched platelet-rich plasma (P) gel. In immunodeficient mice, we found that angiogenesis occurred quickly inside PDCM-CB-P constructs after implantation, thereby improving tissue survival and bone formation. In rabbit tibia bone defects around implants, we confirmed that CBs not only transformed into bone tissue rapidly, but also significantly promoted bone remodelling and replacement of PDCM, thus realising osseointegration of dental implants within 3 months. In conclusion, CBs exhibited the potential for endochondral ossification in vivo, and application of a cartilaginous template composed of PDCM, CB, and P provided a minimally-invasive, “free material residual” approach to regenerate alveolar bone tissues in vivo. This method could have applications in peri-implant bone regeneration.
Collapse
|
6
|
Zheng R, Park Y, Kim S, Cho J, Heo S, Koak J, Lee S, Park J, Lee J, Kim J. Bone Regeneration of Blood-derived Stem Cells within Dental Implants. J Dent Res 2015; 94:1318-25. [DOI: 10.1177/0022034515590368] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Peripheral blood (PB) is known as a source of mesenchymal stem cells (MSCs), as is bone marrow (BM), and is acquired easily. However, it is difficult to have enough MSCs, and their osteogenic capacity with dental implantations is scarce. Therefore, we characterized peripheral blood mesenchymal stem cells (PBMSCs) cultured on a bone marrow–derived mesenchymal stem cell (BMMSC) natural extracellular matrix (ECM) and demonstrated the osteogenic capability in an experimental chamber implant surgery model in rabbits. We isolated PBMSCs from rabbits by culturing on a natural ECM-coated plate during primary culture. We characterized the PBMSCs using a fluorescence-activated cell scanner, cell proliferation assay, and multiple differentiation assay and compared them with BMMSCs. We also analyzed the osteogenic potential of PBMSCs mixed with hydroxyapatite/tricalcium phosphate (HA/TCP) by transplanting them into immunocompromised mice. Then, the mixture was applied to the canals. After 3 and 6 wk, we analyzed new bone (NB) formation inside the chambers using histological and histomorphometric analyses. The PBMSCs had a similar rate of BrdU-positive cells to BMMSCs, positively expressing CD90 but negative for CD14. The PBMSCs also showed osteogenic, adipogenic, and chondrogenic ability in vitro and osteogenic ability in vivo. Histological and histomorphometric results illustrated that the PBMSC and BMMSC groups showed higher NB than the HA/TCP and defect groups in the upper and lower chambers at 6 wk and in the upper canal at 3 wk; however, there was no difference in NB among all groups in the lower canal at 3 wk. The PBMSCs have characteristics and bone regeneration ability similar to BMMSCs both in vitro and in vivo. ECM was effective for obtaining PBMSCs. Therefore, PBMSCs are a promising source for bone regeneration for clinical use.
Collapse
Affiliation(s)
- R.C. Zheng
- Department of Prosthodontics & Dental Research Institute, Seoul National University Dental Hospital, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Y.K. Park
- Department of Dental Research Institute, Brain Korea 21, Seoul National University, Seoul, South Korea
| | - S.K. Kim
- Department of Prosthodontics & Dental Research Institute, Seoul National University Dental Hospital, School of Dentistry, Seoul National University, Seoul, South Korea
| | - J. Cho
- Department of Dental Regenerative Biotechnology, School of Dentistry, Seoul, South Korea
| | - S.J. Heo
- Department of Prosthodontics & Dental Research Institute, Seoul National University Dental Hospital, School of Dentistry, Seoul National University, Seoul, South Korea
| | - J.Y. Koak
- Department of Prosthodontics & Dental Research Institute, Seoul National University Dental Hospital, School of Dentistry, Seoul National University, Seoul, South Korea
| | - S.J. Lee
- Department of Orthodontics & Dental Research Institute, School of Dentistry, Seoul National University, Seoul, South Korea
| | - J.M. Park
- Department of Prosthodontics, Seoul National University Gwanak Dental Hospital, Seoul, South Korea
| | - J.H. Lee
- Department of Prosthodontics, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, South Korea
| | - J.H. Kim
- Department of Prosthodontics & Dental Research Institute, Seoul National University Dental Hospital, School of Dentistry, Seoul National University, Seoul, South Korea
| |
Collapse
|