1
|
Hudacova E, Abaffy P, Kaplan MM, Krausova M, Kubista M, Machon O. Single-cell transcriptomic resolution of osteogenesis during craniofacial morphogenesis. Bone 2024; 190:117297. [PMID: 39461490 DOI: 10.1016/j.bone.2024.117297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/07/2024] [Accepted: 10/15/2024] [Indexed: 10/29/2024]
Abstract
Craniofacial morphogenesis depends on complex cell fate decisions during the differentiation of post-migratory cranial neural crest cells. Molecular mechanisms of cell differentiation of mesenchymal cells to developing bones, cartilage, teeth, tongue, and other craniofacial tissues are still poorly understood. We performed single-cell transcriptomic analysis of craniofacial mesenchymal cells derived from cranial NCCs in mouse embryo. Using FACS sorting of Wnt1-Cre2 progeny, we carefully mapped the cell heterogeneity in the craniofacial region during the initial stages of cartilage and bone formation. Transcriptomic data and in vivo validations identified molecular determinants of major cell populations involved in the development of lower and upper jaw, teeth, tongue, dermis, or periocular mesenchyme. Single-cell transcriptomic analysis of Meis2-deficient mice revealed critical gene expression differences, including increased osteogenic and cell adhesion markers. This leads to affected mesenchymal cell differentiation and increased ossification, resulting in impaired bone, cartilage, and tongue formation.
Collapse
Affiliation(s)
- Erika Hudacova
- Department of Developmental Biology, Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, 14200 Prague, Czech Republic; Department of Cell Biology, Faculty of Science, Charles University, Vinicna 7, 12000 Prague, Czech Republic.
| | - Pavel Abaffy
- Laboratory of Gene Expression, Institute of Biotechnology, Czech Academy of Sciences, Prumyslova 595, 25200 Vestec, Czech Republic.
| | - Mehmet Mahsum Kaplan
- Department of Developmental Biology, Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, 14200 Prague, Czech Republic.
| | - Michaela Krausova
- Department of Developmental Biology, Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, 14200 Prague, Czech Republic
| | - Mikael Kubista
- Laboratory of Gene Expression, Institute of Biotechnology, Czech Academy of Sciences, Prumyslova 595, 25200 Vestec, Czech Republic.
| | - Ondrej Machon
- Department of Developmental Biology, Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, 14200 Prague, Czech Republic.
| |
Collapse
|
2
|
Sui BD, Zheng CX, Zhao WM, Xuan K, Li B, Jin Y. Mesenchymal condensation in tooth development and regeneration: a focus on translational aspects of organogenesis. Physiol Rev 2023; 103:1899-1964. [PMID: 36656056 DOI: 10.1152/physrev.00019.2022] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 12/26/2022] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
The teeth are vertebrate-specific, highly specialized organs performing fundamental functions of mastication and speech, the maintenance of which is crucial for orofacial homeostasis and is further linked to systemic health and human psychosocial well-being. However, with limited ability for self-repair, the teeth can often be impaired by traumatic, inflammatory, and progressive insults, leading to high prevalence of tooth loss and defects worldwide. Regenerative medicine holds the promise to achieve physiological restoration of lost or damaged organs, and in particular an evolving framework of developmental engineering has pioneered functional tooth regeneration by harnessing the odontogenic program. As a key event of tooth morphogenesis, mesenchymal condensation dictates dental tissue formation and patterning through cellular self-organization and signaling interaction with the epithelium, which provides a representative to decipher organogenetic mechanisms and can be leveraged for regenerative purposes. In this review, we summarize how mesenchymal condensation spatiotemporally assembles from dental stem cells (DSCs) and sequentially mediates tooth development. We highlight condensation-mimetic engineering efforts and mechanisms based on ex vivo aggregation of DSCs, which have achieved functionally robust and physiologically relevant tooth regeneration after implantation in animals and in humans. The discussion of this aspect will add to the knowledge of development-inspired tissue engineering strategies and will offer benefits to propel clinical organ regeneration.
Collapse
Affiliation(s)
- Bing-Dong Sui
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Chen-Xi Zheng
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wan-Min Zhao
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Kun Xuan
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
- Department of Preventive Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Bei Li
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yan Jin
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
- Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, Shaanxi, China
| |
Collapse
|
3
|
Chen S, Jing J, Yuan Y, Feng J, Han X, Wen Q, Ho TV, Lee C, Chai Y. Runx2+ Niche Cells Maintain Incisor Mesenchymal Tissue Homeostasis through IGF Signaling. Cell Rep 2021; 32:108007. [PMID: 32783935 PMCID: PMC7461627 DOI: 10.1016/j.celrep.2020.108007] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/01/2020] [Accepted: 07/16/2020] [Indexed: 01/02/2023] Open
Abstract
Stem cell niches provide a microenvironment to support the self-renewal and multi-lineage differentiation of stem cells. Cell-cell interactions within the niche are essential for maintaining tissue homeostasis. However, the niche cells supporting mesenchymal stem cells (MSCs) are largely unknown. Using single-cell RNA sequencing, we show heterogeneity among Gli1+ MSCs and identify a subpopulation of Runx2+/Gli1+ cells in the adult mouse incisor. These Runx2+/Gli1+ cells are strategically located between MSCs and transit-amplifying cells (TACs). They are not stem cells but help to maintain the MSC niche via IGF signaling to regulate TAC proliferation, differentiation, and incisor growth rate. ATAC-seq and chromatin immunoprecipitation reveal that Runx2 directly binds to Igfbp3 in niche cells. This Runx2-mediated IGF signaling is crucial for regulating the MSC niche and maintaining tissue homeostasis to support continuous growth of the adult mouse incisor, providing a model for analysis of the molecular regulation of the MSC niche.
Collapse
Affiliation(s)
- Shuo Chen
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA; Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Junjun Jing
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Yuan Yuan
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Jifan Feng
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Xia Han
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Quan Wen
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Thach-Vu Ho
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Chelsea Lee
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA 90033, USA
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
4
|
Ihn HJ, Kim JA, Lim J, Nam SH, Hwang SH, Kim YK, Kim JY, Kim JE, Cho ES, Jiang R, Park EK. Bobby sox homolog regulates tooth root formation through modulation of dentin sialophosphoprotein. J Cell Physiol 2020; 236:480-488. [PMID: 32537777 DOI: 10.1002/jcp.29875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 06/01/2020] [Accepted: 06/01/2020] [Indexed: 11/09/2022]
Abstract
Tooth root development occurs through the interaction of multiple growth factors and transcription factors expressed in Hertwig's epithelial root sheath (HERS) and dental mesenchyme. Previously, we demonstrated that bobby sox homolog (Bbx) regulates odontoblast differentiation of human dental pulp stem cells. Here, we generated Bbx knockout (Bbx-/- ) mice to address the functional role of Bbx in tooth formation. During tooth development, Bbx was expressed in both dental epithelium and mesenchyme. However, molar and incisor morphology in Bbx-/- mice at postnatal Day 0 (P0) exhibited no prominent abnormalities compared with their wild-type (Bbx+/+ ) littermates. Until P28, the crown morphology in Bbx-/- mice was not distinctively different from Bbx+/+ littermates. Meanwhile, the length of the mandibular base in Bbx-/- mice was notably less at P28. Compared with Bbx+/+ mice, the mesial and distal root lengths of the first molar were reduced by 21.33% and 16.28% at P14 and 16.28% and 16.24% at P28, respectively, in Bbx-/- mice. The second molar of Bbx-/- mice also showed 10.16% and 6.4% reductions at P28 in the mesial and distal lengths, compared with Bbx+/+ mice, respectively. The gene expression analysis during early tooth root formation (P13) showed that the expression of dentin sialophosphoprotein (Dspp) was significantly decreased in Bbx-/- mice. Collectively, our data suggest that Bbx participates in tooth root formation and might be associated with the regulation of Dspp expression.
Collapse
Affiliation(s)
- Hye Jung Ihn
- Institute for Hard Tissue and Biotooth Regeneration, Kyungpook National University, Daegu, Republic of Korea
| | - Ju Ang Kim
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, Institute for Hard Tissue and Biotooth Regeneration, Kyungpook National University, Daegu, Republic of Korea
| | - Jiwon Lim
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, Institute for Hard Tissue and Biotooth Regeneration, Kyungpook National University, Daegu, Republic of Korea
| | - Sang-Hyeon Nam
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, Institute for Hard Tissue and Biotooth Regeneration, Kyungpook National University, Daegu, Republic of Korea
| | - So Hyeon Hwang
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, Institute for Hard Tissue and Biotooth Regeneration, Kyungpook National University, Daegu, Republic of Korea
| | - Young Kyung Kim
- Department of Conservative Dentistry, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Jae-Young Kim
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Jung-Eun Kim
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Eui-Sic Cho
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, School of Dentistry, Chonbuk National University, Jeonju, Republic of Korea
| | - Rulang Jiang
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Eui Kyun Park
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, Institute for Hard Tissue and Biotooth Regeneration, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
5
|
Li J, Xu J, Cui Y, Wang L, Wang B, Wang Q, Zhang X, Qiu M, Zhang Z. Mesenchymal Sufu Regulates Development of Mandibular Molars via Shh Signaling. J Dent Res 2019; 98:1348-1356. [PMID: 31499014 DOI: 10.1177/0022034519872679] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Sonic hedgehog (Shh) in dental epithelium regulates tooth morphogenesis by epithelial-mesenchymal signaling transduction. However, the action of Shh signaling regulation in this process is not well understood. Here we find that mesenchymal Suppressor of Fused (Sufu), a major negative regulator of Shh signaling, plays an important role in modulating the tooth germ morphogenesis during the bud-to-cap stage transition. Deletion of Sufu in dental mesenchyme by Dermo1-Cre mice leads to delayed development of mandibular molar into cap stage with defect of primary enamel knot (EK) formation. We show the disruption of cell proliferation and programmed cell death in dental epithelium and mesenchyme in Sufu mutants. Epithelial-specific adhesion molecule E-cadherin is evidently reduced in the bilateral basal cells of tooth germ at E14.5. The cells in the presumptive EK, predominantly expressing P-cadherin, appear stratified but fail to condense. Moreover, the transcripts of primary EK marker genes, including Shh, Fgf4, and p21, are significantly decreased compared to controls. In contrast, we find that deficiency of Sufu results in elevation of Shh signaling in mesenchyme, indicated by the significant upregulation of Gli1 and Ptch1. Meanwhile, the expression of Bmp4 and Fgf3, the critical factors of mesenchymal-epithelial induction, is significantly inhibited in dental mesenchyme. Furthermore, the expression of Runx2 experiences a transient decrease at the bud stage. Taken together, these data suggest that mesenchymal Sufu is necessary for tuning the Shh signaling, which may act as an upstream modulator of Bmp4 and Fgf3 to coordinate the interplay between the dental mesenchyme and epithelium of tooth germ.
Collapse
Affiliation(s)
- J Li
- Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - J Xu
- Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Y Cui
- Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - L Wang
- Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - B Wang
- Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Q Wang
- Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - X Zhang
- Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - M Qiu
- Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Z Zhang
- Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Liu Z, Chen T, Bai D, Tian W, Chen Y. Smad7 Regulates Dental Epithelial Proliferation during Tooth Development. J Dent Res 2019; 98:1376-1385. [PMID: 31499015 DOI: 10.1177/0022034519872487] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Tooth morphogenesis involves dynamic changes in shape and size as it proceeds through the bud, cap, and bell stages. This process requires exact regulation of cell proliferation and differentiation. Smad7, a general antagonist against transforming growth factor-β (TGF-β) signaling, is necessary for maintaining homeostasis and proper functionality in many organs. While TGF-β signaling is widely involved in tooth morphogenesis, the precise role of Smad7 in tooth development remains unknown. In this study, we showed that Smad7 is expressed in the developing mouse molars with a high level in the dental epithelium but a moderate to weak level in the dental mesenchyme. Smad7 deficiency led to a profound decrease in tooth size primarily due to a severely compromised cell proliferation capability in the dental epithelium. Consistent with the tooth shrinkage phenotype, RNA sequencing (RNA-seq) analysis revealed that Smad7 ablation downregulated genes referred to epithelial cell proliferation and cell cycle G1/S phase transition, whereas the upregulated genes were involved in responding to TGF-β signaling and cell cycle arrest. Among these genes, the expression of Cdkn1a (encoding p21), a negative cell proliferation regulator, was remarkably elevated in parallel with the diminution of Ccnd1 encoding the crucial cell cycle regulator cyclin D1 in the dental epithelium. Meanwhile, the expression level of p-Smad2/3 was ectopically elevated in the developing tooth germ of Smad7 null mice, indicating the hyperactivation of the canonical TGF-β signaling. These effects were reversed by addition of TGF-β signaling inhibitor in cell cultures of Smad7-/- molar tooth germs, with rescued expression of cyclin D1 and cell proliferation rate. In sum, our studies demonstrate that Smad7 functions primarily as a positive regulator of cell proliferation via inhibition of the canonical TGF-β signaling during dental epithelium development and highlight a crucial role for Smad7 in regulating tooth size.
Collapse
Affiliation(s)
- Z Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China.,Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, USA.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - T Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China.,Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, USA.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - D Bai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - W Tian
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Y Chen
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, USA
| |
Collapse
|