1
|
Duverger O, Lee JS. The intricacies of tooth enamel: Embryonic origin, development and human genetics. J Struct Biol 2024; 216:108135. [PMID: 39384002 DOI: 10.1016/j.jsb.2024.108135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Tooth enamel is a fascinating tissue with exceptional biomechanical properties that allow it to last for a lifetime. In this mini review, we discuss the unique embryonic origin of this highly mineralized tissue, the complex differentiation process that leads to its "construction" (amelogenesis), and the various genetic conditions that lead to impaired enamel development in humans (amelogenesis imperfecta). Tremendous progress was made in the last 30 years in understanding the molecular and cellular mechanism that leads to normal and pathologic enamel development. However, several aspects of amelogenesis remain to be elucidated and the function of many genes associated with amelogenesis imperfecta still needs to be decoded.
Collapse
Affiliation(s)
- Olivier Duverger
- Craniofacial Anomalies and Regeneration Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.
| | - Janice S Lee
- Craniofacial Anomalies and Regeneration Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
2
|
Wu K, Li X, Bai Y, Heng BC, Zhang X, Deng X. The circadian clock in enamel development. Int J Oral Sci 2024; 16:56. [PMID: 39242565 PMCID: PMC11379899 DOI: 10.1038/s41368-024-00317-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/02/2024] [Accepted: 06/12/2024] [Indexed: 09/09/2024] Open
Abstract
Circadian rhythms are self-sustaining oscillations within biological systems that play key roles in a diverse multitude of physiological processes. The circadian clock mechanisms in brain and peripheral tissues can oscillate independently or be synchronized/disrupted by external stimuli. Dental enamel is a type of mineralized tissue that forms the exterior surface of the tooth crown. Incremental Retzius lines are readily observable microstructures of mature tooth enamel that indicate the regulation of amelogenesis by circadian rhythms. Teeth enamel is formed by enamel-forming cells known as ameloblasts, which are regulated and orchestrated by the circadian clock during amelogenesis. This review will first examine the key roles of the circadian clock in regulating ameloblasts and amelogenesis. Several physiological processes are involved, including gene expression, cell morphology, metabolic changes, matrix deposition, ion transportation, and mineralization. Next, the potential detrimental effects of circadian rhythm disruption on enamel formation are discussed. Circadian rhythm disruption can directly lead to Enamel Hypoplasia, which might also be a potential causative mechanism of amelogenesis imperfecta. Finally, future research trajectory in this field is extrapolated. It is hoped that this review will inspire more intensive research efforts and provide relevant cues in formulating novel therapeutic strategies for preventing tooth enamel developmental abnormalities.
Collapse
Affiliation(s)
- Ke Wu
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xiaochan Li
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
- 4th Division, Peking University School and Hospital of Stomatology, Beijing, China
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yunyang Bai
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Boon Chin Heng
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, China.
| | - Xuehui Zhang
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, China.
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials & Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, China.
- Oral Translational Medicine Research Center Joint Training base for Shanxi Provincial Key Laboratory in Oral and Maxillofacial Repair Reconstruction and Regeneration The First People's Hospital of Jinzhong, Jinzhong, China.
| | - Xuliang Deng
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China.
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials & Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, China.
| |
Collapse
|
3
|
Franco MMP, Ribeiro CCC, Ladeira LLC, Thomaz EBAF, Alves CMC. Pre- and perinatal exposures associated with molar incisor hypomineralization: Birth cohort, Brazil. Oral Dis 2024; 30:3431-3439. [PMID: 37884359 DOI: 10.1111/odi.14783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/03/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023]
Abstract
OBJECTIVE To analyze prenatal and perinatal stressors associated with molar incisor hypomineralization (MIH) in adolescents. METHODS Prospective cohort study collected prenatal (socioeconomic status, maternal age, number of prenatal visits, smoking, obesity during pregnancy, abortion history, gestational hypertension) and perinatal stressors (type of delivery, gestational age, birth weight, intensive care unit-ICU at birth). The outcome was MIH at 18-19 years follow-up (n = 590). MIH was defined according to the Ghanim criteria - Model I. We performed a sensitivity analysis, including opacities demarcated in index tooth, incisive or molars, Model II. Through structural equation modeling, we analyzed direct and mediating pathways between multiple stressors with outcomes. RESULTS MIH was observed in 15.25% (n = 90), and opacities demarcated in any index tooth were observed in 22.8% of adolescents (n = 135). In Model I, no stressor explained MIH significantly, although we watched high standardized coefficients (SC) for low birth weight (SC = 0.223, p = 0.147), lower gestational age (SC = 0.351; p = 0.254), and ICU admission (SC = 0.447, p = 0.254). In Model II, advanced maternal age (SC = 0.148; p < 0.05) and not undergoing prenatal care (SC = 0.384, p < 0.03) explained opacities demarcated in incisors or molars. CONCLUSION Advanced maternal age and not undergoing prenatal care were associated with MIH lesion-like in incisors or molars.
Collapse
Affiliation(s)
- Marcela M P Franco
- Postgraduate Program in Dentistry, Federal University of Maranhão, Maranhão, São Luís, Brazil
| | - Cecilia C C Ribeiro
- Postgraduate Program in Dentistry, Federal University of Maranhão, Maranhão, São Luís, Brazil
| | - Lorena L C Ladeira
- Postgraduate Program in Dentistry, Federal University of Maranhão, Maranhão, São Luís, Brazil
| | | | | |
Collapse
|
4
|
Hermans F, Hasevoets S, Vankelecom H, Bronckaers A, Lambrichts I. From Pluripotent Stem Cells to Organoids and Bioprinting: Recent Advances in Dental Epithelium and Ameloblast Models to Study Tooth Biology and Regeneration. Stem Cell Rev Rep 2024; 20:1184-1199. [PMID: 38498295 PMCID: PMC11222197 DOI: 10.1007/s12015-024-10702-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2024] [Indexed: 03/20/2024]
Abstract
Ameloblasts are the specialized dental epithelial cell type responsible for enamel formation. Following completion of enamel development in humans, ameloblasts are lost and biological repair or regeneration of enamel is not possible. In the past, in vitro models to study dental epithelium and ameloblast biology were limited to freshly isolated primary cells or immortalized cell lines, both with limited translational potential. In recent years, large strides have been made with the development of induced pluripotent stem cell and organoid models of this essential dental lineage - both enabling modeling of human dental epithelium. Upon induction with several different signaling factors (such as transforming growth factor and bone morphogenetic proteins) these models display elevated expression of ameloblast markers and enamel matrix proteins. The advent of 3D bioprinting, and its potential combination with these advanced cellular tools, is poised to revolutionize the field - and its potential for tissue engineering, regenerative and personalized medicine. As the advancements in these technologies are rapidly evolving, we evaluate the current state-of-the-art regarding in vitro cell culture models of dental epithelium and ameloblast lineage with a particular focus toward their applicability for translational tissue engineering and regenerative/personalized medicine.
Collapse
Affiliation(s)
- Florian Hermans
- Department of Cardiology and Organ Systems (COS), Biomedical Research Institute (BIOMED), Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, 3590, Belgium.
| | - Steffie Hasevoets
- Department of Cardiology and Organ Systems (COS), Biomedical Research Institute (BIOMED), Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, 3590, Belgium
| | - Hugo Vankelecom
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, Leuven, 3000, Belgium
| | - Annelies Bronckaers
- Department of Cardiology and Organ Systems (COS), Biomedical Research Institute (BIOMED), Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, 3590, Belgium
| | - Ivo Lambrichts
- Department of Cardiology and Organ Systems (COS), Biomedical Research Institute (BIOMED), Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, 3590, Belgium.
| |
Collapse
|
5
|
Jimenez-Armijo A, Morkmued S, Ahumada JT, Kharouf N, de Feraudy Y, Gogl G, Riet F, Niederreither K, Laporte J, Birling MC, Selloum M, Herault Y, Hernandez M, Bloch-Zupan A. The Rogdi knockout mouse is a model for Kohlschütter-Tönz syndrome. Sci Rep 2024; 14:445. [PMID: 38172607 PMCID: PMC10764811 DOI: 10.1038/s41598-023-50870-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/27/2023] [Indexed: 01/05/2024] Open
Abstract
Kohlschütter-Tönz syndrome (KTS) is a rare autosomal recessive disorder characterized by severe intellectual disability, early-onset epileptic seizures, and amelogenesis imperfecta. Here, we present a novel Rogdi mutant mouse deleting exons 6-11- a mutation found in KTS patients disabling ROGDI function. This Rogdi-/- mutant model recapitulates most KTS symptoms. Mutants displayed pentylenetetrazol-induced seizures, confirming epilepsy susceptibility. Spontaneous locomotion and circadian activity tests demonstrate Rogdi mutant hyperactivity mirroring patient spasticity. Object recognition impairment indicates memory deficits. Rogdi-/- mutant enamel was markedly less mature. Scanning electron microscopy confirmed its hypomineralized/hypomature crystallization, as well as its low mineral content. Transcriptomic RNA sequencing of postnatal day 5 lower incisors showed downregulated enamel matrix proteins Enam, Amelx, and Ambn. Enamel crystallization appears highly pH-dependent, cycling between an acidic and neutral pH during enamel maturation. Rogdi-/- teeth exhibit no signs of cyclic dental acidification. Additionally, expression changes in Wdr72, Slc9a3r2, and Atp6v0c were identified as potential contributors to these tooth acidification abnormalities. These proteins interact through the acidifying V-ATPase complex. Here, we present the Rogdi-/- mutant as a novel model to partially decipher KTS pathophysiology. Rogdi-/- mutant defects in acidification might explain the unusual combination of enamel and rare neurological disease symptoms.
Collapse
Affiliation(s)
- Alexandra Jimenez-Armijo
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS- UMR7104, Université de Strasbourg, Illkirch, France
| | - Supawich Morkmued
- Pediatrics Division, Department of Preventive Dentistry, Faculty of Dentistry, Khon Kaen University, Khon Kaen, Thailand
| | - José Tomás Ahumada
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS- UMR7104, Université de Strasbourg, Illkirch, France
| | - Naji Kharouf
- Laboratoire de Biomatériaux et Bioingénierie, Inserm UMR_S 1121, Université de Strasbourg, Strasbourg, France
| | - Yvan de Feraudy
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS- UMR7104, Université de Strasbourg, Illkirch, France
- Department of Neuropediatrics, Strasbourg University Hospital, Strasbourg, France
| | - Gergo Gogl
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS- UMR7104, Université de Strasbourg, Illkirch, France
| | - Fabrice Riet
- CNRS, INSERM, CELPHEDIA, PHENOMIN, Institut Clinique de la Souris (ICS), Université de Strasbourg, Illkirch, France
| | - Karen Niederreither
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS- UMR7104, Université de Strasbourg, Illkirch, France
| | - Jocelyn Laporte
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS- UMR7104, Université de Strasbourg, Illkirch, France
| | - Marie Christine Birling
- CNRS, INSERM, CELPHEDIA, PHENOMIN, Institut Clinique de la Souris (ICS), Université de Strasbourg, Illkirch, France
| | - Mohammed Selloum
- CNRS, INSERM, CELPHEDIA, PHENOMIN, Institut Clinique de la Souris (ICS), Université de Strasbourg, Illkirch, France
| | - Yann Herault
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS- UMR7104, Université de Strasbourg, Illkirch, France
- CNRS, INSERM, CELPHEDIA, PHENOMIN, Institut Clinique de la Souris (ICS), Université de Strasbourg, Illkirch, France
| | - Magali Hernandez
- Centre Hospitalier Régional Universitaire de Nancy, Competence Center for Rare Oral and Dental Diseases, Université de Lorraine, Nancy, France
| | - Agnès Bloch-Zupan
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS- UMR7104, Université de Strasbourg, Illkirch, France.
- Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France.
- Institut d'études Avancées (USIAS), Université de Strasbourg, Strasbourg, France.
- Pôle de Médecine et Chirurgie Bucco-Dentaires, Hôpital Civil, Centre de Référence des Maladies Rares Orales et Dentaires, O-Rares, Filière Santé Maladies Rares TETE COU, European Reference Network ERN CRANIO, Hôpitaux Universitaires de Strasbourg (HUS), Strasbourg, France.
- Eastman Dental Institute, University College London, London, UK.
| |
Collapse
|
6
|
Dong J, Ruan W, Duan X. Molecular-based phenotype variations in amelogenesis imperfecta. Oral Dis 2023; 29:2334-2365. [PMID: 37154292 DOI: 10.1111/odi.14599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 04/03/2023] [Accepted: 04/15/2023] [Indexed: 05/10/2023]
Abstract
Amelogenesis imperfecta (AI) is one of the typical dental genetic diseases in human. It can occur isolatedly or as part of a syndrome. Previous reports have mainly clarified the types and mechanisms of nonsyndromic AI. This review aimed to compare the phenotypic differences among the hereditary enamel defects with or without syndromes and their underlying pathogenic genes. We searched the articles in PubMed with different strategies or keywords including but not limited to amelogenesis imperfecta, enamel defects, hypoplastic/hypomaturation/hypocalcified, syndrome, or specific syndrome name. The articles with detailed clinical information about the enamel and other phenotypes and clear genetic background were used for the analysis. We totally summarized and compared enamel phenotypes of 18 nonsyndromic AI with 17 causative genes and 19 syndromic AI with 26 causative genes. According to the clinical features, radiographic or ultrastructural changes in enamel, the enamel defects were basically divided into hypoplastic and hypomineralized (hypomaturated and hypocalcified) and presented a higher heterogeneity which were closely related to the involved pathogenic genes, types of mutation, hereditary pattern, X chromosome inactivation, incomplete penetrance, and other mechanisms.The gene-specific enamel phenotypes could be an important indicator for diagnosing nonsyndromic and syndromic AI.
Collapse
Affiliation(s)
- Jing Dong
- State Key Laboratory of Military Stomatology, Shaanxi Key Laboratory of Stomatology, Department of Oral Biology & Clinic of Oral Rare Diseases and Genetic Diseases, School of Stomatology, National Clinical Research Center for Oral Disease, The Fourth Military Medical University, Xi'an, China
- College of Life Sciences, Northwest University, Xi'an, China
| | - Wenyan Ruan
- State Key Laboratory of Military Stomatology, Shaanxi Key Laboratory of Stomatology, Department of Oral Biology & Clinic of Oral Rare Diseases and Genetic Diseases, School of Stomatology, National Clinical Research Center for Oral Disease, The Fourth Military Medical University, Xi'an, China
| | - Xiaohong Duan
- State Key Laboratory of Military Stomatology, Shaanxi Key Laboratory of Stomatology, Department of Oral Biology & Clinic of Oral Rare Diseases and Genetic Diseases, School of Stomatology, National Clinical Research Center for Oral Disease, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
7
|
Yang J, Huang T, Zhang J, Bai G, Wang W, Yao J, Chen Z, Tu C. Sulphur dioxide and fluoride co-exposure cause enamel damage by disrupting the Cl -/HCO 3- ion transport. J Trace Elem Med Biol 2023; 77:127131. [PMID: 36630759 DOI: 10.1016/j.jtemb.2023.127131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/21/2022] [Accepted: 01/04/2023] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Although there is growing evidence linking the exposure to sulphur dioxide (SO2) and fluoride to human diseases, there is little data on the co-exposure of SO2 and fluoride. Moreover, literature on SO2 and fluoride co-exposure to enamel damage is insufficient. In this work, we concentrate on the concurrent environmental issues of excessive SO2 and fluoride in several coal-consuming regions. METHOD To identify the toxicity of SO2 and fluoride exposure either separately or together, we used both ICR mice and LS8 cells, and factorial design was employed to assess the type of potential combined action. RESULT In this study, co-exposure to SO2 and fluoride exacerbated enamel damage, resulting in more severe enamel defects of incisor and the damage occurred earlier. Cl-/HCO3- exchanger expression is increased by SO2 and fluoride in mouse incisor. Consistent with in vivo results, co-exposure of SO2 and fluoride decreased pHi and increased [Cl-]i level by increasing the expression of the Cl-/HCO3- exchanger in LS8 cells. Furthermore, SO2 and F may increase merlin protein expression, and merlin deficiency causes AE2 expression to decrease in vitro. CONCLUSION Overall, these results indicate that co-exposure to SO2 and fluoride may result in more toxicity both in vitro and in vivo than a single exposure to SO2 and fluoride, suggesting that residents in areas contaminated with SO2 and fluoride may be more likely to suffer enamel damage.
Collapse
Affiliation(s)
- Junlin Yang
- School of Public Health, Guizhou Medical University, Guian New Region, China; The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Tongtong Huang
- School of Public Health, Guizhou Medical University, Guian New Region, China
| | - Jianghui Zhang
- School of Public Health, Guizhou Medical University, Guian New Region, China
| | - Guohui Bai
- Key Laboratory of Oral Disease Research, School of Stomatology, Zunyi Medical University, Zunyi, China
| | - Wentai Wang
- School of Public Health, Guizhou Medical University, Guian New Region, China
| | - Jie Yao
- School of Public Health, Guizhou Medical University, Guian New Region, China
| | - Zheng Chen
- School of Public Health, Guizhou Medical University, Guian New Region, China
| | - Chenglong Tu
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guian New Region, China; Toxicity Testing Center of Guizhou Medical University, Guiyang, China.
| |
Collapse
|
8
|
Shin M, Matsushima A, Kajiya H, Okamoto F, Ogata K, Oka K, Ohshima H, Bartlett JD, Okabe K. Conditional knockout of transient receptor potential melastatin 7 in the enamel epithelium: Effects on enamel formation. Eur J Oral Sci 2023; 131:e12920. [PMID: 36794562 DOI: 10.1111/eos.12920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 01/21/2023] [Indexed: 02/17/2023]
Abstract
Transient receptor potential melastatin 7 (TRPM7) is a unique ion channel connected to a kinase domain. We previously demonstrated that Trpm7 expression is high in mouse ameloblasts and odontoblasts, and that amelogenesis is impaired in TRPM7 kinase-dead mice. Here, we analyzed TRPM7 function during amelogenesis in Keratin 14-Cre;Trpm7fl/fl conditional knockout (cKO) mice and Trpm7 knockdown cell lines. cKO mice showed lesser tooth pigmentation than control mice and broken incisor tips. Enamel calcification and microhardness were lower in cKO mice. Electron probe microanalysis (EPMA) showed that the calcium and phosphorus contents in the enamel were lower in cKO mouse than in control mice. The ameloblast layer in cKO mice showed ameloblast dysplasia at the maturation stage. The morphological defects were observed in rat SF2 cells with Trpm7 knockdown. Compared with mock transfectants, the Trpm7 knockdown cell lines showed lower levels of calcification with Alizarin Red-positive staining and an impaired intercellular adhesion structures. These findings suggest that TRPM7 is a critical ion channel in enamel calcification for the effective morphogenesis of ameloblasts during amelogenesis.
Collapse
Affiliation(s)
- Masashi Shin
- Section of Cellular Physiology, Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Fukuoka, Japan
- Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, Japan
| | - Aya Matsushima
- Section of Cellular Physiology, Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Fukuoka, Japan
| | - Hiroshi Kajiya
- Section of Cellular Physiology, Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Fukuoka, Japan
- Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, Japan
| | - Fujio Okamoto
- Section of Cellular Physiology, Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Fukuoka, Japan
| | - Kayoko Ogata
- Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, Japan
- Section of Functional Structure, Department of Morphological Biology, Fukuoka Dental College, Fukuoka, Japan
| | - Kyoko Oka
- Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, Japan
- Section of Pediatric Dentistry, Department of Oral Growth and development, Fukuoka Dental College, Fukuoka, Japan
| | - Hayato Ohshima
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - John D Bartlett
- Division of Biosciences, Ohio State University, College of Dentistry, Columbus, Ohio, USA
| | - Koji Okabe
- Section of Cellular Physiology, Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Fukuoka, Japan
| |
Collapse
|
9
|
Chiba Y, Yoshizaki K, Sato H, Ikeuchi T, Rhodes C, Chiba M, Saito K, Nakamura T, Iwamoto T, Yamada A, Yamada Y, Fukumoto S. Deficiency of G protein-coupled receptor Gpr111/Adgrf2 causes enamel hypomineralization in mice by alteration of the expression of kallikrein-related peptidase 4 (Klk4) during pH cycling process. FASEB J 2023; 37:e22861. [PMID: 36929047 DOI: 10.1096/fj.202202053r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/18/2023]
Abstract
Enamel is formed by the repetitive secretion of a tooth-specific extracellular matrix and its decomposition. Calcification of the enamel matrix via hydroxyapatite (HAP) maturation requires pH cycling to be tightly regulated through the neutralization of protons released during HAP synthesis. We found that Gpr115, which responds to changes in extracellular pH, plays an important role in enamel formation. Gpr115-deficient mice show partial enamel hypomineralization, suggesting that other pH-responsive molecules may be involved. In this study, we focused on the role of Gpr111/Adgrf2, a duplicate gene of Gpr115, in tooth development. Gpr111 was highly expressed in mature ameloblasts. Gpr111-KO mice showed enamel hypomineralization. Dysplasia of enamel rods and high carbon content seen in Gpr111-deficient mice suggested the presence of residual enamel matrices in enamel. Depletion of Gpr111 in dental epithelial cells induced the expression of ameloblast-specific protease, kallikrein-related peptidase 4 (Klk4), suggesting that Gpr111 may act as a suppressor of Klk4 expression. Moreover, reduction of extracellular pH to 6.8 suppressed the expression of Gpr111, while the converse increased Klk4 expression. Such induction of Klk4 was synergistically enhanced by Gpr111 knockdown, suggesting that proper enamel mineralization may be linked to the modulation of Klk4 expression by Gpr111. Furthermore, our in vitro suppression of Gpr111 and Gpr115 expression indicated that their suppressive effect on calcification was additive. These results suggest that both Gpr111 and Gpr115 respond to extracellular pH, contribute to the expression of proteolytic enzymes, and regulate the pH cycle, thereby playing important roles in enamel formation.
Collapse
Affiliation(s)
- Yuta Chiba
- Section of Pediatric Dentistry, Division of Oral Health, Growth and Development, Kyushu University Faculty of Dental Science, Fukuoka, Japan
- Division of Pediatric Dentistry, Department of Community Social Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Keigo Yoshizaki
- Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth, and Development, Kyushu University Faculty of Dental Science, Fukuoka, Japan
| | - Hiroshi Sato
- Section of Pediatric Dentistry, Division of Oral Health, Growth and Development, Kyushu University Faculty of Dental Science, Fukuoka, Japan
| | - Tomoko Ikeuchi
- Division of Pediatric Dentistry, Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Craig Rhodes
- Division of Pediatric Dentistry, Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Mitsuki Chiba
- Division of Pediatric Dentistry, Department of Community Social Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Kan Saito
- Division of Pediatric Dentistry, Department of Community Social Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Takashi Nakamura
- Division of Molecular Pharmacology and Cell Biophysics, Department of Disease Management Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Tsutomu Iwamoto
- Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Department of Pediatric Dentistry/Special Needs Dentistry, Tokyo Medical and Dental University, Tokyo, Japan
| | - Aya Yamada
- Division of Pediatric Dentistry, Department of Community Social Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Yoshihiko Yamada
- Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth, and Development, Kyushu University Faculty of Dental Science, Fukuoka, Japan
| | - Satoshi Fukumoto
- Section of Pediatric Dentistry, Division of Oral Health, Growth and Development, Kyushu University Faculty of Dental Science, Fukuoka, Japan
- Division of Pediatric Dentistry, Department of Community Social Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| |
Collapse
|
10
|
Notch Signaling Pathway in Tooth Shape Variations throughout Evolution. Cells 2023; 12:cells12050761. [PMID: 36899896 PMCID: PMC10000876 DOI: 10.3390/cells12050761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
Evolutionary changes in vertebrates are linked to genetic alterations that often affect tooth crown shape, which is a criterion of speciation events. The Notch pathway is highly conserved between species and controls morphogenetic processes in most developing organs, including teeth. Epithelial loss of the Notch-ligand Jagged1 in developing mouse molars affects the location, size and interconnections of their cusps that lead to minor tooth crown shape modifications convergent to those observed along Muridae evolution. RNA sequencing analysis revealed that these alterations are due to the modulation of more than 2000 genes and that Notch signaling is a hub for significant morphogenetic networks, such as Wnts and Fibroblast Growth Factors. The modeling of these tooth crown changes in mutant mice, via a three-dimensional metamorphosis approach, allowed prediction of how Jagged1-associated mutations in humans could affect the morphology of their teeth. These results shed new light on Notch/Jagged1-mediated signaling as one of the crucial components for dental variations in evolution.
Collapse
|
11
|
Said R, Mortazavi H, Cooper D, Ovens K, McQuillan I, Papagerakis S, Papagerakis P. Deciphering the functions of Stromal Interaction Molecule-1 in amelogenesis using AmelX-iCre mice. Front Physiol 2023; 14:1100714. [PMID: 36935757 PMCID: PMC10014868 DOI: 10.3389/fphys.2023.1100714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/17/2023] [Indexed: 03/05/2023] Open
Abstract
Introduction: The intracellular Ca2+ sensor stromal interaction molecule 1 (STIM1) is thought to play a critical role in enamel development, as its mutations cause Amelogenesis Imperfecta (AI). We recently established an ameloblast-specific (AmelX-iCre) Stim1 conditional deletion mouse model to investigate the role of STIM1 in controlling ameloblast function and differentiation in vivo (Stim1 cKO). Our pilot data (Said et al., J. Dent. Res., 2019, 98, 1002-1010) support our hypothesis for a broad role of Stim1 in amelogenesis. This paper aims to provide an in-depth characterization of the enamel phenotype observed in our Stim1 cKO model. Methods: We crossed AmelX-iCre mice with Stim1-floxed animals to develop ameloblast-specific Stim1 cKO mice. Scanning electron microscopy, energy dispersive spectroscopy, and micro- CT were used to study the enamel phenotype. RNAseq and RT-qPCR were utilized to evaluate changes in the gene expression of several key ameloblast genes. Immunohistochemistry was used to detect the amelogenin, matrix metalloprotease 20 and kallikrein 4 proteins in ameloblasts. Results: Stim1 cKO animals exhibited a hypomineralized AI phenotype, with reduced enamel volume, diminished mineral density, and lower calcium content. The mutant enamel phenotype was more severe in older Stim1 cKO mice compared to younger ones and changes in enamel volume and mineral content were more pronounced in incisors compared to molars. Exploratory RNAseq analysis of incisors' ameloblasts suggested that ablation of Stim1 altered the expression levels of several genes encoding enamel matrix proteins which were confirmed by subsequent RT-qPCR. On the other hand, RT-qPCR analysis of molars' ameloblasts showed non-significant differences in the expression levels of enamel matrix genes between control and Stim1-deficient cells. Moreover, gene expression analysis of incisors' and molars' ameloblasts showed that Stim1 ablation caused changes in the expression levels of several genes associated with calcium transport and mitochondrial kinetics. Conclusions: Collectively, these findings suggest that the loss of Stim1 in ameloblasts may impact enamel mineralization and ameloblast gene expression.
Collapse
Affiliation(s)
- Raed Said
- College of Dentistry, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Helyasadat Mortazavi
- College of Dentistry, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - David Cooper
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Katie Ovens
- Department of Computer Science, University of Calgary, Calgary, AB, Canada
| | - Ian McQuillan
- Department of Computer Sciences, College of Arts and Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Silvana Papagerakis
- Department of Surgery, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Petros Papagerakis
- College of Dentistry, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
- *Correspondence: Petros Papagerakis,
| |
Collapse
|
12
|
Al-Khannaq M, Lytton J. Regulation of K +-Dependent Na +/Ca 2+-Exchangers (NCKX). Int J Mol Sci 2022; 24:ijms24010598. [PMID: 36614039 PMCID: PMC9820825 DOI: 10.3390/ijms24010598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022] Open
Abstract
Potassium-dependent sodium-calcium exchangers (NCKX) have emerged as key determinants of calcium (Ca2+) signaling and homeostasis, especially in environments where ion concentrations undergo large changes, such as excitatory cells and transport epithelia. The regulation of NCKX transporters enables them to respond to the changing cellular environment thereby helping to shape the extent and kinetics of Ca2+ signals. This review examines the current knowledge of the different ways in which NCKX activity can be modulated. These include (i) cellular and dynamic subcellular location (ii); changes in protein expression mediated at the gene, transcript, or protein level (iii); genetic changes resulting in altered protein structure or expression (iv); regulation via changes in substrate concentration (v); and post-translational modification, partner protein interactions, and allosteric regulation. Detailed mechanistic understanding of NCKX regulation is an emerging area of research with the potential to provide important new insights into transporter function, the control of Ca2+ signals, and possible interventions for dysregulated Ca2+ homeostasis.
Collapse
|
13
|
Obtel N, Le Cabec A, Nguyen TN, Giabicani E, Van Malderen SJM, Garrevoet J, Percot A, Paris C, Dean C, Hadj‐Rabia S, Houillier P, Breiderhoff T, Bardet C, Coradin T, Ramirez Rozzi F, Chaussain C. Impact of claudin-10 deficiency on amelogenesis: Lesson from a HELIX tooth. Ann N Y Acad Sci 2022; 1516:197-211. [PMID: 35902997 PMCID: PMC9796262 DOI: 10.1111/nyas.14865] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In epithelia, claudin proteins are important components of the tight junctions as they determine the permeability and specificity to ions of the paracellular pathway. Mutations in CLDN10 cause the rare autosomal recessive HELIX syndrome (Hypohidrosis, Electrolyte imbalance, Lacrimal gland dysfunction, Ichthyosis, and Xerostomia), in which patients display severe enamel wear. Here, we assess whether this enamel wear is caused by an innate fragility directly related to claudin-10 deficiency in addition to xerostomia. A third molar collected from a female HELIX patient was analyzed by a combination of microanatomical and physicochemical approaches (i.e., electron microscopy, elemental mapping, Raman microspectroscopy, and synchrotron-based X-ray fluorescence). The enamel morphology, formation time, organization, and microstructure appeared to be within the natural variability. However, we identified accentuated strontium variations within the HELIX enamel, with alternating enrichments and depletions following the direction of the periodical striae of Retzius. These markings were also present in dentin. These data suggest that the enamel wear associated with HELIX may not be related to a disruption of enamel microstructure but rather to xerostomia. However, the occurrence of events of strontium variations within dental tissues might indicate repeated episodes of worsening of the renal dysfunction that may require further investigations.
Collapse
Affiliation(s)
- Nicolas Obtel
- Université Paris Cité, URP2496 Pathologies, Imagerie et Biothérapies Orofaciales et Plateforme Imagerie du Vivant (PIV), FHU‐DDS‐net, IHMOA, Dental SchoolMontrougeFrance,AP‐HP Services de médecine bucco‐dentaire, Hôpitaux Universitaires Bretonneau (CRMR phosphore et calcium, filière OSCAR et ERN Bond) and Charles Foix, FHU DDS‐netIle de FranceFrance
| | - Adeline Le Cabec
- Univ. Bordeaux, CNRS, MCC, PACEA, UMR 5199PessacFrance,Department of Human EvolutionMax Planck Institute for Evolutionary AnthropologyLeipzigGermany
| | - Thè Nghia Nguyen
- Université Paris Cité, URP2496 Pathologies, Imagerie et Biothérapies Orofaciales et Plateforme Imagerie du Vivant (PIV), FHU‐DDS‐net, IHMOA, Dental SchoolMontrougeFrance
| | - Eloise Giabicani
- Université Paris Cité, URP2496 Pathologies, Imagerie et Biothérapies Orofaciales et Plateforme Imagerie du Vivant (PIV), FHU‐DDS‐net, IHMOA, Dental SchoolMontrougeFrance
| | | | | | - Aline Percot
- Sorbonne Université, CNRS, De la Molécule aux Nano‐Objets: Réactivité, Interactions et Spectroscopies (MONARIS)ParisFrance
| | - Céline Paris
- Sorbonne Université, CNRS, De la Molécule aux Nano‐Objets: Réactivité, Interactions et Spectroscopies (MONARIS)ParisFrance
| | - Christopher Dean
- Department of Earth Sciences, Centre for Human Evolution ResearchNatural History MuseumLondonUK,Department of Cell and Developmental BiologyUniversity College LondonLondonUK
| | - Smail Hadj‐Rabia
- Université Paris Cité, INSERM1163 Institut Imagine; APHP, Hôpital Necker‐Enfants Malades, Department of Dermatology, Reference Center for Rare Skin DiseasesParisFrance
| | - Pascal Houillier
- Université Paris Cité, Sorbonne Université, Centre de Recherche des Cordeliers, INSERM, CNRS‐ERL8228ParisFrance,APHP, Service de Physiologie, Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Hôpital Européen Georges PompidouParisFrance
| | - Tilman Breiderhoff
- Charité Universitaetsmedizin Berlin, Division of Gastroenterology, Nephrology and Metabolic Diseases, Department of PediatricsBerlinGermany
| | - Claire Bardet
- Université Paris Cité, URP2496 Pathologies, Imagerie et Biothérapies Orofaciales et Plateforme Imagerie du Vivant (PIV), FHU‐DDS‐net, IHMOA, Dental SchoolMontrougeFrance
| | - Thibaud Coradin
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de ParisParisFrance
| | - Fernando Ramirez Rozzi
- Université Paris Cité, URP2496 Pathologies, Imagerie et Biothérapies Orofaciales et Plateforme Imagerie du Vivant (PIV), FHU‐DDS‐net, IHMOA, Dental SchoolMontrougeFrance,Eco‐anthropologie (EA), Muséum national d'Histoire naturelle, CNRSUniversité de ParisParisFrance
| | - Catherine Chaussain
- Université Paris Cité, URP2496 Pathologies, Imagerie et Biothérapies Orofaciales et Plateforme Imagerie du Vivant (PIV), FHU‐DDS‐net, IHMOA, Dental SchoolMontrougeFrance,AP‐HP Services de médecine bucco‐dentaire, Hôpitaux Universitaires Bretonneau (CRMR phosphore et calcium, filière OSCAR et ERN Bond) and Charles Foix, FHU DDS‐netIle de FranceFrance
| |
Collapse
|
14
|
Katsura K, Nakano Y, Zhang Y, Shemirani R, Li W, Den Besten P. WDR72 regulates vesicle trafficking in ameloblasts. Sci Rep 2022; 12:2820. [PMID: 35181734 PMCID: PMC8857301 DOI: 10.1038/s41598-022-06751-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/27/2022] [Indexed: 12/16/2022] Open
Abstract
As the hardest tissue in the human body, tooth enamel formation is a highly regulated process involving several stages of differentiation and key regulatory genes. One such gene, tryptophan-aspartate repeat domain 72 (WDR72), has been found to cause a tooth enamel defect when deleted or mutated, resulting in a condition called amelogenesis imperfecta. Unlike the canonical genes regulating tooth development, WDR72 remains intracellularly and is not secreted to the enamel matrix space to regulate mineralization, and is found in other major organs of the body, namely the kidney, brain, liver, and heart. To date, a link between intracellular vesicle transport and enamel mineralization has been suggested, however identification of the mechanistic regulators has yet to be elucidated, in part due to the limitations associated with studying highly differentiated ameloblast cells. Here we show compelling evidence that WDR72 regulates endocytosis of proteins, both in vivo and in a novel in vitro ameloblast cell line. We elucidate WDR72's function to be independent of intracellular vesicle acidification while still leading to defective enamel matrix pH extracellularly. We identify a vesicle function associated with microtubule assembly and propose that WDR72 directs microtubule assembly necessary for membrane mobilization and subsequent vesicle transport. Understanding WDR72 function provides a mechanistic basis for determining physiologic and pathologic tissue mineralization.
Collapse
Affiliation(s)
- Kaitlin Katsura
- Department of Orofacial Sciences, School of Dentistry, University of California, San Francisco, 521 Parnasus Ave, Box 0422, San Francisco, CA, 04143-0422, USA
| | - Yukiko Nakano
- Department of Orofacial Sciences, School of Dentistry, University of California, San Francisco, 521 Parnasus Ave, Box 0422, San Francisco, CA, 04143-0422, USA
| | - Yan Zhang
- Department of Orofacial Sciences, School of Dentistry, University of California, San Francisco, 521 Parnasus Ave, Box 0422, San Francisco, CA, 04143-0422, USA
| | - Rozana Shemirani
- Department of Orofacial Sciences, School of Dentistry, University of California, San Francisco, 521 Parnasus Ave, Box 0422, San Francisco, CA, 04143-0422, USA
| | - Wu Li
- Department of Orofacial Sciences, School of Dentistry, University of California, San Francisco, 521 Parnasus Ave, Box 0422, San Francisco, CA, 04143-0422, USA
| | - Pamela Den Besten
- Department of Orofacial Sciences, School of Dentistry, University of California, San Francisco, 521 Parnasus Ave, Box 0422, San Francisco, CA, 04143-0422, USA.
| |
Collapse
|
15
|
Roberts WE, Mangum JE, Schneider PM. Pathophysiology of Demineralization, Part I: Attrition, Erosion, Abfraction, and Noncarious Cervical Lesions. Curr Osteoporos Rep 2022; 20:90-105. [PMID: 35129809 PMCID: PMC8930910 DOI: 10.1007/s11914-022-00722-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/15/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE OF THE REVIEW Compare pathophysiology for infectious and noninfectious demineralization disease relative to mineral maintenance, physiologic fluoride levels, and mechanical degradation. RECENT FINDINGS Environmental acidity, biomechanics, and intercrystalline percolation of endemic fluoride regulate resistance to demineralization relative to osteopenia, noncarious cervical lesions, and dental caries. Demineralization is the most prevalent chronic disease in the world: osteoporosis (OP) >10%, dental caries ~100%. OP is severely debilitating while caries is potentially fatal. Mineralized tissues have a common physiology: cell-mediated apposition, protein matrix, fluid logistics (blood, saliva), intercrystalline ion percolation, cyclic demineralization/remineralization, and acid-based degradation (microbes, clastic cells). Etiology of demineralization involves fluid percolation, metabolism, homeostasis, biomechanics, mechanical wear (attrition or abrasion), and biofilm-related infections. Bone mineral density measurement assesses skeletal mass. Attrition, abrasion, erosion, and abfraction are diagnosed visually, but invisible subsurface caries <400μm cannot be detected. Controlling demineralization at all levels is an important horizon for cost-effective wellness worldwide.
Collapse
Affiliation(s)
- W. Eugene Roberts
- grid.257413.60000 0001 2287 3919Indiana University & Purdue University at Indianapolis, 8260 Skipjack Drive, Indianapolis, IN 46236 USA
| | - Jonathan E. Mangum
- grid.1008.90000 0001 2179 088XDepartment of Biochemistry and Pharmacology, Dentistry and Health Sciences, University of Melbourne, Corner Grattan Street and Royal Parade, Parkville, Victoria 3010 Australia
| | - Paul M. Schneider
- grid.1008.90000 0001 2179 088XMelbourne Dental School, University of Melbourne, 720 Swanston St, Melbourne, Victoria 3010 Australia
| |
Collapse
|
16
|
Bussaneli DG, Vieira AR, Santos-Pinto L, Restrepo M. Molar-incisor hypomineralisation: an updated view for aetiology 20 years later. Eur Arch Paediatr Dent 2022; 23:193-198. [PMID: 34392496 DOI: 10.1007/s40368-021-00659-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/11/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND The term Molar-Incisor Hypomineralisation (MIH) was introduced in 2001 by Weerheijm, Jälevik and Alaluusua, and describes a defect of systemic origin that affects one to four first permanent molars, often associated with permanent incisors. In the past 20 years, this definition dictated the work regarding MIH prevalence, associated risk factors, association with dental caries, impact on quality of life, and therapeutic options. PURPOSE In this report, we offer an updated and comprehensive view of MIH centred on the patient and the tooth. CONCLUSION MIH today is globally recognized as a potential public health problem and it is not a defect of purely systemic origin but rather a condition with complex aetiology that in some instances may be the result of gene-environmental interactions.
Collapse
Affiliation(s)
- D G Bussaneli
- Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, São Paulo State University (Unesp), Araraquara School of Dentistry, Araraquara, São Paulo, Brazil
| | - A R Vieira
- Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - L Santos-Pinto
- Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, São Paulo State University (Unesp), Araraquara School of Dentistry, Araraquara, São Paulo, Brazil
| | - M Restrepo
- Basic and Clinical Research Group in Dentistry, School of Dentistry, CES University, Medellín, Colombia.
| |
Collapse
|
17
|
Vagner VD, Korshunov AS, Kuryatnikov KN, Rogachev EA, Belskaya LV, Sarf EA, Maksimenko KA. [The nature of metabolic processes in human dental hard tissues depending on their morphological structure]. STOMATOLOGIIA 2022; 101:7-13. [PMID: 36562360 DOI: 10.17116/stomat20221010617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
THE STUDY OBJECTIVE Was to give a comparative assessment of the movement of enamel and dentin fluid depending on the morphological structure of different sections of human dental hard tissues. MATERIALS AND METHODS The research involved 140 female subjects aged 21-30 years. Sizes, form, surface of enamel-dentin junction, enamel prisms and their crystals in superficial, middle and deep sections, width, tortuosity, facing of dentin tubules of tested teeth were analyzed by scanning electron microscope Jeol JCM-5700 and atomic force microscope NTEGRA Prima. The biochemical study examined the quantitative content of water in the samples of enamel, dentin, enamel-dentin junction by weighing sample weights before and after drying. The data obtained were processed by methods of variation statistics using standard packages Microsoft Excel 2008, Statistica 12.0. RESULTS The enamel-dentine junction of large-fastened type is characterized by zones of dentin integration into enamel at the distance of more than 10 mm, with regular arrangement of enamel prisms and wide dentine tubules of 3.55 to 4.70 μm in diameter; no water content reduction was found. The small-fastened type has less pronounced spots of dentin interference with enamel from 2 to 10 μm, the dentinal tubules are slightly curved with a diameter of 2.90 to 3.60 μm, the water content in dentin is reduced. In microfastened type, a linear structure with interpenetration zones up to 2 μm, enamel prisms slightly ordered, dentin tubules narrowed and curved in diameter from 1.30 to 1.95 μm, water content in enamel and dentin is reduced. CONCLUSION At microfastened type of enamel-dentin junction, chaotic arrangement of enamel prisms and narrow dentin tubules water movement is broken and metabolic processes are reduced that determines high probability of exposure of dental hard tissue diseases.
Collapse
Affiliation(s)
- V D Vagner
- Central Research Institute of Dentistry and Maxillofacial Surgery, Moscow, Russia
| | | | | | | | | | - E A Sarf
- Omsk State Pedagogical University, Omsk, Russia
| | | |
Collapse
|
18
|
Hermans F, Hemeryck L, Lambrichts I, Bronckaers A, Vankelecom H. Intertwined Signaling Pathways Governing Tooth Development: A Give-and-Take Between Canonical Wnt and Shh. Front Cell Dev Biol 2021; 9:758203. [PMID: 34778267 PMCID: PMC8586510 DOI: 10.3389/fcell.2021.758203] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
Teeth play essential roles in life. Their development relies on reciprocal interactions between the ectoderm-derived dental epithelium and the underlying neural crest-originated mesenchyme. This odontogenic process serves as a prototype model for the development of ectodermal appendages. In the mouse, developing teeth go through distinct morphological phases that are tightly controlled by epithelial signaling centers. Crucial molecular regulators of odontogenesis include the evolutionarily conserved Wnt, BMP, FGF and sonic hedgehog (Shh) pathways. These signaling modules do not act on their own, but are closely intertwined during tooth development, thereby outlining the path to be taken by specific cell populations including the resident dental stem cells. Recently, pivotal Wnt-Shh interaction and feedback loops have been uncovered during odontogenesis, showing conservation in other developing ectodermal appendages. This review provides an integrated overview of the interplay between canonical Wnt and Shh throughout mouse tooth formation stages, extending from the initiation of dental placode to the fully formed adult tooth.
Collapse
Affiliation(s)
- Florian Hermans
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven (University of Leuven), Leuven, Belgium.,Biomedical Research Institute (BIOMED), Department of Cardio and Organ Systems, UHasselt-Hasselt University, Diepenbeek, Belgium
| | - Lara Hemeryck
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven (University of Leuven), Leuven, Belgium
| | - Ivo Lambrichts
- Biomedical Research Institute (BIOMED), Department of Cardio and Organ Systems, UHasselt-Hasselt University, Diepenbeek, Belgium
| | - Annelies Bronckaers
- Biomedical Research Institute (BIOMED), Department of Cardio and Organ Systems, UHasselt-Hasselt University, Diepenbeek, Belgium
| | - Hugo Vankelecom
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven (University of Leuven), Leuven, Belgium
| |
Collapse
|
19
|
Mahdee AF, Ali AH, Gillespie JI. Structural and functional relations between the connective tissue and epithelium of enamel organ and their role during enamel maturation. J Mol Histol 2021; 52:975-989. [PMID: 34100179 DOI: 10.1007/s10735-021-09992-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 06/02/2021] [Indexed: 10/21/2022]
Abstract
The morphological and possible functional interactions between the connective tissue and enamel organ cells were examined during the maturation phase of enamel formation, using immunohistochemical techniques. Decalcified mandibular sections (10 µm) including incisors were used from Wistar rats ages 10-12 weeks. Sections were incubated with one or two primary antibodies targeting cell cytoskeleton (vimentin, α-actin, α-tubulin), dendritic marker (OX6), gap junctions (cx-43), enzymes (nitric-oxide synthase (nos1) and cyclooxygenase (cox1)), and the ion transporters (Na+/H+ exchanger (NHE1) and Na+/Ca2+ exchanger (NCX)) for 24 h, before incubation with the appropriate conjugated fluorescent secondary antibodies. Sections were examined by fluorescence microscopy. Haematoxylin-eosin slides were also employed. Cellular heterogeneity and morphological modulations were identified within enamel organ cells and connective tissue covering suggesting complex cellular interactions and indicating a new functional concept and possible complementary role during enamel maturation. Also, some ion transportation activity, and nos1 and cox1 signalling pathways have been identified, indicating intercellular communication between these regions. A hypothesis is suggested, to explain the morphological modulation of ameloblasts and papillary cells during enamel maturation which functions to increase the transporting membrane surface area to accomplish faster and bulker ion transportation to achieve controlled pH and to direct Ca2+ towards enamel.
Collapse
Affiliation(s)
- Anas F Mahdee
- Department of Restorative and Aesthetic Dentistry, College of Dentistry, University of Baghdad, Baghdad, Iraq.
| | - Ahmed H Ali
- Department of Restorative and Aesthetic Dentistry, College of Dentistry, University of Baghdad, Baghdad, Iraq
| | - James I Gillespie
- Department of Urology, Campus Drie Eiken, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
20
|
Qin W, Wan QQ, Ma YX, Wang CY, Wan MC, Ma S, Wang YR, Wang WR, Gu JT, Tay FR, Niu LN. Manifestation and Mechanisms of Abnormal Mineralization in Teeth. ACS Biomater Sci Eng 2021; 9:1733-1756. [PMID: 34436861 DOI: 10.1021/acsbiomaterials.1c00592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tooth biomineralization is a dynamic and complicated process influenced by local and systemic factors. Abnormal mineralization in teeth occurs when factors related to physiologic mineralization are altered during tooth formation and after tooth maturation, resulting in microscopic and macroscopic manifestations. The present Review provides timely information on the mechanisms and structural alterations of different forms of pathological tooth mineralization. A comprehensive study of these alterations benefits diagnosis and biomimetic treatment of abnormal mineralization in patients.
Collapse
Affiliation(s)
- Wen Qin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P. R. China
| | - Qian-Qian Wan
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P. R. China
| | - Yu-Xuan Ma
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P. R. China
| | - Chen-Yu Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P. R. China
| | - Mei-Chen Wan
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P. R. China
| | - Sai Ma
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P. R. China
| | - Yi-Rong Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P. R. China
| | - Wan-Rong Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P. R. China
| | - Jun-Ting Gu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P. R. China
| | - Franklin R Tay
- College of Graduate Studies, Augusta University, Augusta, Georgia 30912, United States
| | - Li-Na Niu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P. R. China
| |
Collapse
|
21
|
Földes A, Sang-Ngoen T, Kádár K, Rácz R, Zsembery Á, DenBesten P, Steward MC, Varga G. Three-Dimensional Culture of Ameloblast-Originated HAT-7 Cells for Functional Modeling of Defective Tooth Enamel Formation. Front Pharmacol 2021; 12:682654. [PMID: 34149428 PMCID: PMC8206558 DOI: 10.3389/fphar.2021.682654] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/19/2021] [Indexed: 01/04/2023] Open
Abstract
Background: Amelogenesis, the formation of dental enamel, is well understood at the histomorphological level but the underlying molecular mechanisms are poorly characterized. Ameloblasts secrete enamel matrix proteins and Ca2+, and also regulate extracellular pH as the formation of hydroxyapatite crystals generates large quantities of protons. Genetic or environmental impairment of transport and regulatory processes (e.g. dental fluorosis) leads to the development of enamel defects such as hypomineralization. Aims: Our aims were to optimize the culture conditions for the three-dimensional growth of ameloblast-derived HAT-7 cells and to test the effects of fluoride exposure on HAT-7 spheroid formation. Methods: To generate 3D HAT-7 structures, cells were dispersed and plated within a Matrigel extracellular matrix scaffold and incubated in three different culture media. Spheroid formation was then monitored over a two-week period. Ion transporter and tight-junction protein expression was investigated by RT-qPCR. Intracellular Ca2+ and pH changes were measured by microfluorometry using the fluorescent dyes fura-2 and BCECF. Results: A combination of Hepato-STIM epithelial cell differentiation medium and Matrigel induced the expansion and formation of 3D HAT-7 spheroids. The cells retained their epithelial cell morphology and continued to express both ameloblast-specific and ion transport-specific marker genes. Furthermore, like two-dimensional HAT-7 monolayers, the HAT-7 spheroids were able to regulate their intracellular pH and to show intracellular calcium responses to extracellular stimulation. Finally, we demonstrated that HAT-7 spheroids may serve as a disease model for studying the effects of fluoride exposure during amelogenesis. Conclusion: In conclusion, HAT-7 cells cultivated within a Matrigel extracellular matrix form three-dimensional, multi-cellular, spheroidal structures that retain their functional capacity for pH regulation and intracellular Ca2+ signaling. This new 3D model will allow us to gain a better understanding of the molecular mechanisms involved in amelogenesis, not only in health but also in disorders of enamel formation, such as those resulting from fluoride exposure.
Collapse
Affiliation(s)
- Anna Földes
- Department of Oral Biology, Semmelweis University, Budapest, Hungary
| | | | - Kristóf Kádár
- Department of Oral Biology, Semmelweis University, Budapest, Hungary
| | - Róbert Rácz
- Department of Oral Biology, Semmelweis University, Budapest, Hungary
| | - Ákos Zsembery
- Department of Oral Biology, Semmelweis University, Budapest, Hungary
| | - Pamela DenBesten
- Department of Orofacial Sciences, University of California San Francisco, San Francisco, CA, United States
| | - Martin C Steward
- Department of Oral Biology, Semmelweis University, Budapest, Hungary.,School of Medical Sciences, University of Manchester, Manchester, United Kingdom
| | - Gábor Varga
- Department of Oral Biology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
22
|
TRPM7-Mediated Calcium Transport in HAT-7 Ameloblasts. Int J Mol Sci 2021; 22:ijms22083992. [PMID: 33924361 PMCID: PMC8069123 DOI: 10.3390/ijms22083992] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/05/2021] [Accepted: 04/08/2021] [Indexed: 02/06/2023] Open
Abstract
TRPM7 plays an important role in cellular Ca2+, Zn2+ and Mg2+ homeostasis. TRPM7 channels are abundantly expressed in ameloblasts and, in the absence of TRPM7, dental enamel is hypomineralized. The potential role of TRPM7 channels in Ca2+ transport during amelogenesis was investigated in the HAT-7 rat ameloblast cell line. The cells showed strong TRPM7 mRNA and protein expression. Characteristic TRPM7 transmembrane currents were observed, which increased in the absence of intracellular Mg2+ ([Mg2+]i), were reduced by elevated [Mg2+]i, and were inhibited by the TRPM7 inhibitors NS8593 and FTY720. Mibefradil evoked similar currents, which were suppressed by elevated [Mg2+]i, reducing extracellular pH stimulated transmembrane currents, which were inhibited by FTY720. Naltriben and mibefradil both evoked Ca2+ influx, which was further enhanced by the acidic intracellular conditions. The SOCE inhibitor BTP2 blocked Ca2+ entry induced by naltriben but not by mibefradil. Thus, in HAT-7 cells, TRPM7 may serves both as a potential modulator of Orai-dependent Ca2+ uptake and as an independent Ca2+ entry pathway sensitive to pH. Therefore, TRPM7 may contribute directly to transepithelial Ca2+ transport in amelogenesis.
Collapse
|
23
|
Chang CC, Lin TA, Wu SY, Lin CP, Chang HH. Regeneration of Tooth with Allogenous, Autoclaved Treated Dentin Matrix with Dental Pulpal Stem Cells: An In Vivo Study. J Endod 2020; 46:1256-1264. [DOI: 10.1016/j.joen.2020.05.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 05/26/2020] [Accepted: 05/26/2020] [Indexed: 12/20/2022]
|
24
|
Chiba Y, Yoshizaki K, Saito K, Ikeuchi T, Iwamoto T, Rhodes C, Nakamura T, de Vega S, Morell RJ, Boger ET, Martin D, Hino R, Inuzuka H, Bleck CKE, Yamada A, Yamada Y, Fukumoto S. G protein-coupled receptor Gpr115 ( Adgrf4) is required for enamel mineralization mediated by ameloblasts. J Biol Chem 2020; 295:15328-15341. [PMID: 32868297 DOI: 10.1074/jbc.ra120.014281] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Indexed: 12/19/2022] Open
Abstract
Dental enamel, the hardest tissue in the human body, is derived from dental epithelial cell ameloblast-secreted enamel matrices. Enamel mineralization occurs in a strictly synchronized manner along with ameloblast maturation in association with ion transport and pH balance, and any disruption of these processes results in enamel hypomineralization. G protein-coupled receptors (GPCRs) function as transducers of external signals by activating associated G proteins and regulate cellular physiology. Tissue-specific GPCRs play important roles in organ development, although their activities in tooth development remain poorly understood. The present results show that the adhesion GPCR Gpr115 (Adgrf4) is highly and preferentially expressed in mature ameloblasts and plays a crucial role during enamel mineralization. To investigate the in vivo function of Gpr115, knockout (Gpr115-KO) mice were created and found to develop hypomineralized enamel, with a larger acidic area because of the dysregulation of ion composition. Transcriptomic analysis also revealed that deletion of Gpr115 disrupted pH homeostasis and ion transport processes in enamel formation. In addition, in vitro analyses using the dental epithelial cell line cervical loop-derived dental epithelial (CLDE) cell demonstrated that Gpr115 is indispensable for the expression of carbonic anhydrase 6 (Car6), which has a critical role in enamel mineralization. Furthermore, an acidic condition induced Car6 expression under the regulation of Gpr115 in CLDE cells. Thus, we concluded that Gpr115 plays an important role in enamel mineralization via regulation of Car6 expression in ameloblasts. The present findings indicate a novel function of Gpr115 in ectodermal organ development and clarify the molecular mechanism of enamel formation.
Collapse
Affiliation(s)
- Yuta Chiba
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Keigo Yoshizaki
- Section of Orthodontics and Dentofacial Orthopedics Division of Oral Health, Growth, and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Kan Saito
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Tomoko Ikeuchi
- Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Tsutomu Iwamoto
- Department of Pediatric Dentistry Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Craig Rhodes
- Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Takashi Nakamura
- Division of Molecular Pharmacology and Cell Biophysics Department of Oral Biology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Susana de Vega
- Department of Pathophysiology for Locomotive and Neoplastic Diseases, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Robert J Morell
- Genomics and Computational Biology Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, USA
| | - Erich T Boger
- Genomics and Computational Biology Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, USA
| | - Daniel Martin
- Genomics and Computational Biology Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, USA
| | - Ryoko Hino
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Hiroyuki Inuzuka
- Center for Advanced Stem Cell and Regenerative Research, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Christopher K E Bleck
- Electron Microscopy Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Aya Yamada
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Yoshihiko Yamada
- Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Satoshi Fukumoto
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai, Japan; Section of Pediatric Dentistry, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
25
|
Gil-Bona A, Bidlack FB. Tooth Enamel and its Dynamic Protein Matrix. Int J Mol Sci 2020; 21:ijms21124458. [PMID: 32585904 PMCID: PMC7352428 DOI: 10.3390/ijms21124458] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/19/2020] [Accepted: 06/20/2020] [Indexed: 12/12/2022] Open
Abstract
Tooth enamel is the outer covering of tooth crowns, the hardest material in the mammalian body, yet fracture resistant. The extremely high content of 95 wt% calcium phosphate in healthy adult teeth is achieved through mineralization of a proteinaceous matrix that changes in abundance and composition. Enamel-specific proteins and proteases are known to be critical for proper enamel formation. Recent proteomics analyses revealed many other proteins with their roles in enamel formation yet to be unraveled. Although the exact protein composition of healthy tooth enamel is still unknown, it is apparent that compromised enamel deviates in amount and composition of its organic material. Why these differences affect both the mineralization process before tooth eruption and the properties of erupted teeth will become apparent as proteomics protocols are adjusted to the variability between species, tooth size, sample size and ephemeral organic content of forming teeth. This review summarizes the current knowledge and published proteomics data of healthy and diseased tooth enamel, including advancements in forensic applications and disease models in animals. A summary and discussion of the status quo highlights how recent proteomics findings advance our understating of the complexity and temporal changes of extracellular matrix composition during tooth enamel formation.
Collapse
Affiliation(s)
- Ana Gil-Bona
- The Forsyth Institute, Cambridge, MA 02142, USA
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
- Correspondence: (A.G.-B.); (F.B.B.)
| | - Felicitas B. Bidlack
- The Forsyth Institute, Cambridge, MA 02142, USA
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
- Correspondence: (A.G.-B.); (F.B.B.)
| |
Collapse
|
26
|
Ida-Yonemochi H, Otsu K, Harada H, Ohshima H. Functional Expression of Sodium-Dependent Glucose Transporter in Amelogenesis. J Dent Res 2020; 99:977-986. [PMID: 32345094 DOI: 10.1177/0022034520916130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Glucose is an essential source of energy for mammalian cells and is transported into the cells by glucose transporters. There are 2 types of glucose transporters: one is a passive glucose transporter, GLUT (SLC2A), and the other is a sodium-dependent active glucose transporter, SGLT (SLC5A). We previously reported that the expression of GLUTs during tooth development is precisely and spatiotemporally controlled and that the glucose uptake mediated by GLUT1 plays a crucial role in early tooth morphogenesis and tooth size determination. This study aimed to clarify the localization and roles of SGLT1 and SGLT2 in murine ameloblast differentiation by using immunohistochemistry, immunoelectron microscopy, an in vitro tooth organ culture experiment, and in vivo administration of an inhibitor of SGLT1/2, phloridzin. SGLT1, which has high affinity with glucose, was immunolocalized in the early secretory ameloblasts and the ruffle-ended ameloblasts in the maturation stage. However, SGLT2, which has high glucose transport capacity, was observed in the stratum intermedium, papillary layer, and ameloblasts at the maturation stage and colocalized with Na+-K+-ATPase. The inhibition of SGLT1/2 by phloridzin in the tooth germs induced the disturbance of ameloblast differentiation and enamel matrix formation both in vitro (organ culture) and in vivo (mouse model). The expression of SGLT1 and SGLT2 was significantly upregulated in hypoxic conditions in the ameloblast-lineage cells. These findings suggest that the active glucose uptake mediated by SGLT1 and SGLT2 is strictly regulated and dependent on the intra- and extracellular microenvironments during tooth morphogenesis and that the appropriate passive and active glucose transport is an essential event in amelogenesis.
Collapse
Affiliation(s)
- H Ida-Yonemochi
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Graduate School of Medical and Dental Sciences, Niigata University, Chuo-ku, Japan
| | - K Otsu
- Division of Developmental Biology and Regenerative Medicine, Department of Anatomy, Iwate Medical University, Shiwa-gun, Japan
| | - H Harada
- Division of Developmental Biology and Regenerative Medicine, Department of Anatomy, Iwate Medical University, Shiwa-gun, Japan
| | - H Ohshima
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Graduate School of Medical and Dental Sciences, Niigata University, Chuo-ku, Japan
| |
Collapse
|
27
|
Duran-Merino D, Molina-Frechero N, Sánchez-Pérez L, Nevárez-Rascón M, González-González R, Tremillo-Maldonado O, Cassi D, Bologna-Molina R. ENAM Gene Variation in Students Exposed to Different Fluoride Concentrations. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17061832. [PMID: 32178265 PMCID: PMC7143052 DOI: 10.3390/ijerph17061832] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/06/2020] [Accepted: 03/08/2020] [Indexed: 02/07/2023]
Abstract
UNLABELLED The ENAM gene is important in the formation of tooth enamel; an alteration can affect the lengthening of the crystals, and the thickness in enamel. The objective was to determine the presence of the single nucleotide variant (SNV) rs12640848 of the ENAM gene in students exposed to different concentrations of fluoride. METHODS A cross-sectional study was conducted on students exposed to high concentrations of fluoride in the city of Durango which were divided according to the severity of fluorosis and dental caries. Genotype determination was performed by DNA sequencing. The relationship between the severity of dental fluorosis and the allele distribution was determined by the Fisher's exact and Kruskal-Wallis tests. RESULTS Seventy-one students were included for the sequencing. In the different allelic variations, for the normal genotype AA/TT, the control group presented 75%, for the AG/TC variation, 70.8% in the TF ≤ 4 group, 65% in TF ≥ 5, and 16.7% in TF = 0; with respect to GG/CC variation, 12.5% in TF ≤ 4, 22% in TF ≥ 5, and 8.3% in TF = 0 group (p = 0.000). CONCLUSION The ENAM gene showed an association in the population exposed to different concentrations of fluoride.
Collapse
Affiliation(s)
- Denisse Duran-Merino
- Dental Sciences, Autonomous Metropolitan University Xochimilco (UAM), Calzada del Hueso 1100, Mexico City 04900, Mexico;
| | - Nelly Molina-Frechero
- Department of Health Care, Autonomous Metropolitan University Xochimilco (UAM), Calzada del Hueso 1100, Mexico City 04900, Mexico;
- Correspondence: ; Tel.: +52-55-5483-7182
| | - Leonor Sánchez-Pérez
- Department of Health Care, Autonomous Metropolitan University Xochimilco (UAM), Calzada del Hueso 1100, Mexico City 04900, Mexico;
| | - Martina Nevárez-Rascón
- School of Dentistry, Autonomous University of Chihuahua (UACH), Chihuahua, Campus I Av. Universidad s/n, Chihuahua 31000, Mexico;
| | - Rogelio González-González
- Department of Research, School of Dentistry, Juarez University of the State of Durango, Durango (UJED) Predio Canoas s/n, Durango 34000, Mexico; (R.G.-G.); (O.T.-M.)
| | - Omar Tremillo-Maldonado
- Department of Research, School of Dentistry, Juarez University of the State of Durango, Durango (UJED) Predio Canoas s/n, Durango 34000, Mexico; (R.G.-G.); (O.T.-M.)
| | - Diana Cassi
- Department of Surgical, Medical, Dental and Morphological Science–University of Modena, 41121 Modena, Italy;
| | - Ronell Bologna-Molina
- Molecular Pathology Area, School of Dentistry, University of the Republic, Uruguay (UDELAR) Montevideo 11600, Montevideo 11200, Uruguay;
| |
Collapse
|
28
|
Lee D, Hong JH. The Fundamental Role of Bicarbonate Transporters and Associated Carbonic Anhydrase Enzymes in Maintaining Ion and pH Homeostasis in Non-Secretory Organs. Int J Mol Sci 2020; 21:ijms21010339. [PMID: 31947992 PMCID: PMC6981687 DOI: 10.3390/ijms21010339] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/02/2020] [Accepted: 01/03/2020] [Indexed: 12/18/2022] Open
Abstract
The bicarbonate ion has a fundamental role in vital systems. Impaired bicarbonate transport leads to various diseases, including immune disorders, cystic fibrosis, tumorigenesis, kidney diseases, brain dysfunction, tooth fracture, ischemic reperfusion injury, hypertension, impaired reproductive system, and systemic acidosis. Carbonic anhydrases are involved in the mechanism of bicarbonate movement and consist of complex of bicarbonate transport systems including bicarbonate transporters. This review focused on the convergent regulation of ion homeostasis through various ion transporters including bicarbonate transporters, their regulatory enzymes, such as carbonic anhydrases, pH regulatory role, and the expression pattern of ion transporters in non-secretory systems throughout the body. Understanding the correlation between these systems will be helpful in order to obtain new insights and design potential therapeutic strategies for the treatment of pH-related disorders. In this review, we have discussed the broad prospects and challenges that remain in elucidation of bicarbonate-transport-related biological and developmental systems.
Collapse
Affiliation(s)
| | - Jeong Hee Hong
- Correspondence: ; Tel.: +82-32-899-6682; Fax: +82-32-899-6039
| |
Collapse
|
29
|
Racz R, Nagy A, Rakonczay Z, Dunavari EK, Gerber G, Varga G. Defense Mechanisms Against Acid Exposure by Dental Enamel Formation, Saliva and Pancreatic Juice Production. Curr Pharm Des 2019; 24:2012-2022. [PMID: 29769002 PMCID: PMC6225347 DOI: 10.2174/1381612824666180515125654] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 04/30/2018] [Accepted: 05/08/2018] [Indexed: 12/16/2022]
Abstract
The pancreas, the salivary glands and the dental enamel producing ameloblasts have marked developmental, structural and functional similarities. One of the most striking similarities is their bicarbonate-rich secretory product, serving acid neutralization. An important difference between them is that while pancreatic juice and saliva are delivered into a lumen where they can be collected and analyzed, ameloblasts produce locally precipitating hydroxyapatite which cannot be easily studied. Interestingly, the ion and protein secretion by the pancreas, the salivary glands, and maturation ameloblasts are all two-step processes, of course with significant differences too. As they all have to defend against acid exposure by producing extremely large quantities of bicarbonate, the failure of this function leads to deteriorating consequences. The aim of the present review is to describe and characterize the defense mechanisms of the pancreas, the salivary glands and enamel-producing ameloblasts against acid exposure and to compare their functional capabilities to do this by producing bicarbonate.
Collapse
Affiliation(s)
- Robert Racz
- Department of Oral Biology, Semmelweis University, Budapest, Hungary
| | - Akos Nagy
- Department of Dentistry, Oral and Maxillofacial Surgery, University of Pecs, Pecs, Hungary
| | - Zoltan Rakonczay
- Department of Pathophysiology, University of Szeged, Szeged, Hungary
| | - Erika Katalin Dunavari
- Department of Dentistry, Oral and Maxillofacial Surgery, University of Pecs, Pecs, Hungary
| | - Gabor Gerber
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Gabor Varga
- Department of Oral Biology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
30
|
Abstract
Aim: To determine prevalence, severity, and risk factors associated with Molar Incisor Hypomineralization (MIH) in schoolchildren between 6 and 15 years of age in Medellin, Colombia. Study design: We conducted a retrospective observational study including 1.075 children born and residing in Medellin, Colombia. A structured questionnaire addressing gestational period and first three years of child's life was administered to biological mothers. Two calibrated examiners established MIH diagnosis following the European Academy of Paediatric Dentistry criteria. Data were analyzed using descriptive statistics, bivariate analysis, and linear regression with a 5% significance. Results: Study population was predominantly male (70.7%), average age was 9.3±1.9 years. Prevalence of MIH was 11,2%. The majority of defects (85%) were mild. MIH was associated with alterations during last gestational trimester, type of childbirth and respiratory problems. Conclusion. MIH prevalence in schoolchildren between 6 and 15 years of age was 11.2%, being mild defects more frequently found. MIH was associated with different factors during pregnancy and the first three years of life.
Collapse
|
31
|
Wei WC, Bianchi F, Wang YK, Tang MJ, Ye H, Glitsch MD. Coincidence Detection of Membrane Stretch and Extracellular pH by the Proton-Sensing Receptor OGR1 (GPR68). Curr Biol 2018; 28:3815-3823.e4. [PMID: 30471999 DOI: 10.1016/j.cub.2018.10.046] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/05/2018] [Accepted: 10/19/2018] [Indexed: 12/24/2022]
Abstract
The physical environment critically affects cell shape, proliferation, differentiation, and survival by exerting mechanical forces on cells. These forces are sensed and transduced into intracellular signals and responses by cells. A number of different membrane and cytoplasmic proteins have been implicated in sensing mechanical forces, but the picture is far from complete, and the exact transduction pathways remain largely elusive. Furthermore, mechanosensation takes place alongside chemosensation, and cells need to integrate physical and chemical signals to respond appropriately and ensure normal tissue and organ development and function. Here, we report that ovarian cancer G protein coupled receptor 1 (OGR1) (aka GPR68) acts as coincidence detector of membrane stretch and its physiological ligand, extracellular H+. Using fluorescence imaging, substrates of different stiffness, microcontact printing methods, and cell-stretching techniques, we show that OGR1 only responds to extracellular acidification under conditions of membrane stretch and vice versa. The level of OGR1 activity mirrors the extent of membrane stretch and degree of extracellular acidification. Furthermore, actin polymerization in response to membrane stretch is critical for OGR1 activity, and its depolymerization limits how long OGR1 remains responsive following a stretch event, thus providing a "memory" for past stretch. Cells experience changes in membrane stretch and extracellular pH throughout their lifetime. Because OGR1 is a widely expressed receptor, it represents a unique yet widespread mechanism that enables cells to respond dynamically to mechanical and pH changes in their microenvironment by integrating these chemical and physical stimuli at the receptor level.
Collapse
Affiliation(s)
- Wei-Chun Wei
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Fabio Bianchi
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX3 7DQ, UK
| | - Yang-Kao Wang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Ming-Jer Tang
- Department of Physiology, College of Medicine and International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan 70101, Taiwan
| | - Hua Ye
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX3 7DQ, UK
| | - Maike D Glitsch
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK.
| |
Collapse
|
32
|
Arinawati DY, Miyoshi K, Tanimura A, Horiguchi T, Hagita H, Noma T. Deciphering defective amelogenesis using in vitro culture systems. J Biosci Bioeng 2018; 125:479-489. [PMID: 29397320 DOI: 10.1016/j.jbiosc.2017.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/13/2017] [Accepted: 11/16/2017] [Indexed: 11/16/2022]
Abstract
The conventional two-dimensional (2D) in vitro culture system is frequently used to analyze the gene expression with or without extracellular signals. However, the cells derived from primary culture and cell lines frequently deviate the gene expression profile compared to the corresponding in vivo samples, which sometimes misleads the actual gene regulation in vivo. To overcome this gap, we developed the comparative 2D and 3D in vitro culture systems and applied them to the genetic study of amelogenesis imperfecta (AI) as a model. Recently, we found specificity protein 6 (Sp6) mutation in an autosomal-recessive AI rat that was previously named AMI. We constructed 3D structure of ARE-B30 cells (AMI-derived rat dental epithelial cells) or G5 (control wild type cells) combined with RPC-C2A cells (rat pulp cell line) separated by the collagen membrane, while in 2D structure, ARE-B30 or G5 was cultured with or without the collagen membrane. Comparative analysis of amelogenesis-related gene expression in ARE-B30 and G5 using our 2D and 3D in vitro systems revealed distinct expression profiles, showing the causative outcomes. Bone morphogenetic protein 2 and follistatin were reciprocally expressed in G5, but not in ARE-B30 cells. All-or-none expression of amelotin, kallikrein-related peptidase 4, and nerve growth factor receptor was observed in both cell types. In conclusion, our in vitro culture systems detected the phenotypical differences in the expression of the stage-specific amelogenesis-related genes. Parallel analysis with 2D and 3D culture systems may provide a platform to understand the molecular basis for defective amelogenesis caused by Sp6 mutation.
Collapse
Affiliation(s)
- Dian Yosi Arinawati
- Graduate School of Oral Sciences, Tokushima University, 3-18-15 Kuramoto, Tokushima 770-8504, Japan
| | - Keiko Miyoshi
- Department of Molecular Biology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto, Tokushima 770-8504, Japan
| | - Ayako Tanimura
- Department of Molecular Biology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto, Tokushima 770-8504, Japan
| | - Taigo Horiguchi
- Department of Molecular Biology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto, Tokushima 770-8504, Japan
| | - Hiroko Hagita
- Department of Molecular Biology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto, Tokushima 770-8504, Japan
| | - Takafumi Noma
- Department of Molecular Biology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto, Tokushima 770-8504, Japan.
| |
Collapse
|
33
|
Rácz R, Földes A, Bori E, Zsembery Á, Harada H, Steward MC, DenBesten P, Bronckers ALJJ, Gerber G, Varga G. No Change in Bicarbonate Transport but Tight-Junction Formation Is Delayed by Fluoride in a Novel Ameloblast Model. Front Physiol 2017; 8:940. [PMID: 29375389 PMCID: PMC5770627 DOI: 10.3389/fphys.2017.00940] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 11/06/2017] [Indexed: 01/17/2023] Open
Abstract
We have recently developed a novel in vitro model using HAT-7 rat ameloblast cells to functionally study epithelial ion transport during amelogenesis. Our present aims were to identify key transporters of bicarbonate in HAT-7 cells and also to examine the effects of fluoride exposure on vectorial bicarbonate transport, cell viability, and the development of transepithelial resistance. To obtain monolayers, the HAT-7 cells were cultured on Transwell permeable filters. We monitored transepithelial resistance (TER) as an indicator of tight junction formation and polarization. We evaluated intracellular pH changes by microfluorometry using the fluorescent indicator BCECF. Activities of ion transporters were tested by withdrawal of various ions from the bathing medium, by using transporter specific inhibitors, and by activation of transporters with forskolin and ATP. Cell survival was estimated by alamarBlue assay. Changes in gene expression were monitored by qPCR. We identified the activity of several ion transporters, NBCe1, NHE1, NKCC1, and AE2, which are involved in intracellular pH regulation and vectorial bicarbonate and chloride transport. Bicarbonate secretion by HAT-7 cells was not affected by acute fluoride exposure over a wide range of concentrations. However, tight-junction formation was inhibited by 1 mM fluoride, a concentration which did not substantially reduce cell viability, suggesting an effect of fluoride on paracellular permeability and tight-junction formation. Cell viability was only reduced by prolonged exposure to fluoride concentrations greater than 1 mM. In conclusion, cultured HAT-7 cells are functionally polarized and are able to transport bicarbonate ions from the basolateral to the apical fluid spaces. Exposure to 1 mM fluoride has little effect on bicarbonate secretion or cell viability but delays tight-junction formation, suggesting a novel mechanism that may contribute to dental fluorosis.
Collapse
Affiliation(s)
- Róbert Rácz
- Department of Oral Biology, Semmelweis University, Budapest, Hungary
| | - Anna Földes
- Department of Oral Biology, Semmelweis University, Budapest, Hungary
| | - Erzsébet Bori
- Department of Oral Biology, Semmelweis University, Budapest, Hungary
| | - Ákos Zsembery
- Department of Oral Biology, Semmelweis University, Budapest, Hungary
| | | | - Martin C Steward
- School of Medical Sciences, University of Manchester, Manchester, United Kingdom
| | - Pamela DenBesten
- Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, United States
| | - Antonius L J J Bronckers
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), Amsterdam, Netherlands
| | - Gábor Gerber
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Gábor Varga
- Department of Oral Biology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
34
|
Abstract
Amelogenesis (tooth enamel formation) is a biomineralization process consisting primarily of two stages (secretory stage and maturation stage) with unique features. During the secretory stage, the inner epithelium of the enamel organ (i.e., the ameloblast cells) synthesizes and secretes enamel matrix proteins (EMPs) into the enamel space. The protein-rich enamel matrix forms a highly organized architecture in a pH-neutral microenvironment. As amelogenesis transitions to maturation stage, EMPs are degraded and internalized by ameloblasts through endosomal-lysosomal pathways. Enamel crystallite formation is initiated early in the secretory stage, however, during maturation stage the more rapid deposition of calcium and phosphate into the enamel space results in a rapid expansion of crystallite length and mineral volume. During maturation-stage amelogenesis, the pH value of enamel varies considerably from slightly above neutral to acidic. Extracellular acid-base balance during enamel maturation is tightly controlled by ameloblast-mediated regulatory networks, which include significant synthesis and movement of bicarbonate ions from both the enamel papillary layer cells and ameloblasts. In this review we summarize the carbonic anhydrases and the carbonate transporters/exchangers involved in pH regulation in maturation-stage amelogenesis. Proteins that have been shown to be instrumental in this process include CA2, CA6, CFTR, AE2, NBCe1, SLC26A1/SAT1, SLC26A3/DRA, SLC26A4/PDS, SLC26A6/PAT1, and SLC26A7/SUT2. In addition, we discuss the association of miRNA regulation with bicarbonate transport in tooth enamel formation.
Collapse
Affiliation(s)
- Kaifeng Yin
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, CSA103, Los Angeles, CA, 90033, USA
- Department of Orthodontics, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - Michael L Paine
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, CSA103, Los Angeles, CA, 90033, USA.
| |
Collapse
|
35
|
Varga G, DenBesten P, Rácz R, Zsembery Á. Importance of bicarbonate transport in pH control during amelogenesis - need for functional studies. Oral Dis 2017; 24:879-890. [PMID: 28834043 DOI: 10.1111/odi.12738] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 08/13/2017] [Indexed: 12/27/2022]
Abstract
Dental enamel, the hardest mammalian tissue, is produced by ameloblasts. Ameloblasts show many similarities to other transporting epithelia although their secretory product, the enamel matrix, is quite different. Ameloblasts direct the formation of hydroxyapatite crystals, which liberate large quantities of protons that then need to be buffered to allow mineralization to proceed. Buffering requires a tight pH regulation and secretion of bicarbonate by ameloblasts. Many investigations have used immunohistochemical and knockout studies to determine the effects of these genes on enamel formation, but up till recently very little functional data were available for mineral ion transport. To address this, we developed a novel 2D in vitro model using HAT-7 ameloblast cells. HAT-7 cells can be polarized and develop functional tight junctions. Furthermore, they are able to accumulate bicarbonate ions from the basolateral to the apical fluid spaces. We propose that in the future, the HAT-7 2D system along with similar cellular models will be useful to functionally model ion transport processes during amelogenesis. Additionally, we also suggest that similar approaches will allow a better understanding of the regulation of the cycling process in maturation-stage ameloblasts, and the pH sensory mechanisms, which are required to develop sound, healthy enamel.
Collapse
Affiliation(s)
- G Varga
- Department of Oral Biology, Semmelweis University, Budapest, Hungary
| | - P DenBesten
- Department of Orofacial Sciences, University of California, San Francisco, CA, USA
| | - R Rácz
- Department of Oral Biology, Semmelweis University, Budapest, Hungary
| | - Á Zsembery
- Department of Oral Biology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
36
|
Pham CD, Smith CE, Hu Y, Hu JCC, Simmer JP, Chun YHP. Endocytosis and Enamel Formation. Front Physiol 2017; 8:529. [PMID: 28824442 PMCID: PMC5534449 DOI: 10.3389/fphys.2017.00529] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 07/10/2017] [Indexed: 12/12/2022] Open
Abstract
Enamel formation requires consecutive stages of development to achieve its characteristic extreme mineral hardness. Mineralization depends on the initial presence then removal of degraded enamel proteins from the matrix via endocytosis. The ameloblast membrane resides at the interface between matrix and cell. Enamel formation is controlled by ameloblasts that produce enamel in stages to build the enamel layer (secretory stage) and to reach final mineralization (maturation stage). Each stage has specific functional requirements for the ameloblasts. Ameloblasts adopt different cell morphologies during each stage. Protein trafficking including the secretion and endocytosis of enamel proteins is a fundamental task in ameloblasts. The sites of internalization of enamel proteins on the ameloblast membrane are specific for every stage. In this review, an overview of endocytosis and trafficking of vesicles in ameloblasts is presented. The pathways for internalization and routing of vesicles are described. Endocytosis is proposed as a mechanism to remove debris of degraded enamel protein and to obtain feedback from the matrix on the status of the maturing enamel.
Collapse
Affiliation(s)
- Cong-Dat Pham
- Department of Periodontics, School of Dentistry, University of Texas Health Science Center at San AntonioSan Antonio, TX, United States
| | - Charles E. Smith
- Department of Anatomy and Cell Biology, McGill UniversityMontreal, QC, Canada
- Department of Biologic and Materials Sciences, University of MichiganAnn Arbor, MI, United States
| | - Yuanyuan Hu
- Department of Biologic and Materials Sciences, University of MichiganAnn Arbor, MI, United States
| | - Jan C-C. Hu
- Department of Biologic and Materials Sciences, University of MichiganAnn Arbor, MI, United States
| | - James P. Simmer
- Department of Biologic and Materials Sciences, University of MichiganAnn Arbor, MI, United States
| | - Yong-Hee P. Chun
- Department of Periodontics, School of Dentistry, University of Texas Health Science Center at San AntonioSan Antonio, TX, United States
- Department of Cell Systems & Anatomy, School of Medicine, University of Texas Health Science Center at San AntonioSan Antonio, TX, United States
| |
Collapse
|
37
|
Lacruz RS. Enamel: Molecular identity of its transepithelial ion transport system. Cell Calcium 2017; 65:1-7. [PMID: 28389033 PMCID: PMC5944837 DOI: 10.1016/j.ceca.2017.03.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 03/27/2017] [Accepted: 03/27/2017] [Indexed: 12/14/2022]
Abstract
Enamel is the most calcified tissue in vertebrates. It differs from bone in a number of characteristics including its origin from ectodermal epithelium, lack of remodeling capacity by the enamel forming cells, and absence of collagen. The enamel-forming cells known as ameloblasts, choreograph first the synthesis of a unique protein-rich matrix, followed by the mineralization of this matrix into a tissue that is ∼95% mineral. To do this, ameloblasts arrange the coordinated movement of ions across a cell barrier while removing matrix proteins and monitoring extracellular pH using a variety of buffering systems to enable the growth of carbonated apatite crystals. Although our knowledge of these processes and the molecular identity of the proteins involved in transepithelial ion transport has increased in the last decade, it remains limited compared to other cells. Here we present an overview of the evolution and development of enamel, its differences with bone, and describe the ion transport systems associated with ameloblasts.
Collapse
Affiliation(s)
- Rodrigo S Lacruz
- Dept. Basic Science and Craniofacial Biology, New York University College of Dentistry, 345 East 24th Street, New York, NY 10010, United States.
| |
Collapse
|
38
|
Bardet C, Ribes S, Wu Y, Diallo MT, Salmon B, Breiderhoff T, Houillier P, Müller D, Chaussain C. Claudin Loss-of-Function Disrupts Tight Junctions and Impairs Amelogenesis. Front Physiol 2017; 8:326. [PMID: 28596736 PMCID: PMC5442167 DOI: 10.3389/fphys.2017.00326] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/05/2017] [Indexed: 01/06/2023] Open
Abstract
Claudins are a family of proteins that forms paracellular barriers and pores determining tight junctions (TJ) permeability. Claudin-16 and -19 are pore forming TJ proteins allowing calcium and magnesium reabsorption in the thick ascending limb of Henle's loop (TAL). Loss-of-function mutations in the encoding genes, initially identified to cause Familial Hypomagnesemia with Hypercalciuria and Nephrocalcinosis (FHHNC), were recently shown to be also involved in Amelogenesis Imperfecta (AI). In addition, both claudins were expressed in the murine tooth germ and Claudin-16 knockout (KO) mice displayed abnormal enamel formation. Claudin-3, an ubiquitous claudin expressed in epithelia including kidney, acts as a barrier-forming tight junction protein. We determined that, similarly to claudin-16 and claudin-19, claudin-3 was expressed in the tooth germ, more precisely in the TJ located at the apical end of secretory ameloblasts. The observation of Claudin-3 KO teeth revealed enamel defects associated to impaired TJ structure at the secretory ends of ameloblasts and accumulation of matrix proteins in the forming enamel. Thus, claudin-3 protein loss-of-function disturbs amelogenesis similarly to claudin-16 loss-of-function, highlighting the importance of claudin proteins for the TJ structure. These findings unravel that loss-of-function of either pore or barrier-forming TJ proteins leads to enamel defects. Hence, the major structural function of claudin proteins appears essential for amelogenesis.
Collapse
Affiliation(s)
- Claire Bardet
- Laboratory Orofacial Pathologies, Imaging and Biotherapies, Dental School, Paris Descartes University, Sorbonne Paris CitéParis, France
| | - Sandy Ribes
- Laboratory Orofacial Pathologies, Imaging and Biotherapies, Dental School, Paris Descartes University, Sorbonne Paris CitéParis, France
| | - Yong Wu
- Laboratory Orofacial Pathologies, Imaging and Biotherapies, Dental School, Paris Descartes University, Sorbonne Paris CitéParis, France.,Shanghai Key Laboratory of Stomatology, Department of Oral and Cranio-maxillofacial Science, Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Mamadou Tidiane Diallo
- Laboratory Orofacial Pathologies, Imaging and Biotherapies, Dental School, Paris Descartes University, Sorbonne Paris CitéParis, France
| | - Benjamin Salmon
- Laboratory Orofacial Pathologies, Imaging and Biotherapies, Dental School, Paris Descartes University, Sorbonne Paris CitéParis, France.,Department of Odontology, AP-HP, and Reference Center for Rare Dieases of the Metabolism of Calcium and Phosphorus, Nord Val de Seine Hospital (Bretonneau)Paris, France
| | - Tilman Breiderhoff
- Department of Pediatric Nephrology, Charité University School of MedicineBerlin, Germany
| | - Pascal Houillier
- Cordeliers Research Center, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale UMRS 1138, Paris-Diderot, Pierre et Marie Curie and Paris Descartes Universities, ERLParis, France
| | - Dominik Müller
- Department of Pediatric Nephrology, Charité University School of MedicineBerlin, Germany
| | - Catherine Chaussain
- Laboratory Orofacial Pathologies, Imaging and Biotherapies, Dental School, Paris Descartes University, Sorbonne Paris CitéParis, France.,Department of Odontology, AP-HP, and Reference Center for Rare Dieases of the Metabolism of Calcium and Phosphorus, Nord Val de Seine Hospital (Bretonneau)Paris, France
| |
Collapse
|