1
|
Silencing of the mitochondrial ribosomal protein L-24 gene activates the oxidative stress response in Caenorhabditis elegans. Biochim Biophys Acta Gen Subj 2023; 1867:130255. [PMID: 36265765 DOI: 10.1016/j.bbagen.2022.130255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 10/09/2022] [Accepted: 10/12/2022] [Indexed: 11/13/2022]
Abstract
The mitochondrial translation machinery allows the synthesis of the mitochondrial-encoded subunits of the electron transport chain. Defects in this process lead to mitochondrial physiology failure; in humans, they are associated with early-onset, extremely variable and often fatal disorder. The use of a simple model to study the mitoribosomal defects is mandatory to overcome the difficulty to analyze the impact of pathological mutations in humans. In this paper we study in nematode Caenorhabditis elegans the silencing effect of the mrpl-24 gene, coding for the mitochondrial ribosomal protein L-24 (MRPL-24). This is a structural protein of the large subunit 39S of the mitoribosome and its effective physiological function is not completely elucidated. We have evaluated the nematode's fitness fault and investigated the mitochondrial defects associated with MRPL-24 depletion. The oxidative stress response activation due to the mitochondrial alteration has been also investigated as a compensatory physiological mechanism. For the first time, we demonstrated that MRPL-24 reduction increases the expression of detoxifying enzymes such as SOD-3 and GST-4 through the involvement of transcription factor SKN-1. BACKGROUND In humans, mutations in genes encoding mitochondrial ribosomal proteins (MRPs) often cause early-onset, severe, fatal and extremely variable clinical defects. Mitochondrial ribosomal protein L-24 (MRPL24) is a structural protein of the large subunit 39S of the mitoribosome. It is highly conserved in different species and its effective physiological function is not completely elucidated. METHODS We characterized the MRPL24 functionality using the animal model Caenorhabditis elegans. We performed the RNA mediated interference (RNAi) by exposing the nematodes' embryos to double-stranded RNA (dsRNA) specific for the MRPL-24 coding sequence. We investigated for the first time in C. elegans, the involvement of the MRPL-24 on the nematode's fitness and its mitochondrial physiology. RESULTS Mrpl-24 silencing in C. elegans negatively affected the larval development, progeny production and body bending. The analysis of mitochondrial functionality revealed loss of mitochondrial network and impairment of mitochondrial functionality, as the decrease of oxygen consumption rate and the ROS production, as well as reduction of mitochondrial protein synthesis. Finally, the MRPL-24 depletion activated the oxidative stress response, increasing the expression levels of two detoxifying enzymes, SOD-3 and GST-4. CONCLUSIONS In C. elegans the MRPL-24 depletion activated the oxidative stress response. This appears as a compensatory mechanism to the alteration of the mitochondrial functionality and requires the involvement of transcription factor SKN-1. GENERAL SIGNIFICANCE C. elegans resulted in a good model for the study of mitochondrial disorders and its use as a simple and pluricellular organism could open interesting perspectives to better investigate the pathologic mechanisms underlying these devastating diseases.
Collapse
|
2
|
Li M, Olotu J, Buxo-Martinez CJ, Mossey PA, Anand D, Busch T, Alade A, Gowans LJJ, Eshete M, Adeyemo WL, Naicker T, Awotoye WO, Gupta S, Adeleke C, Bravo V, Huang S, Adamson OO, Toraño AM, Bello CA, Soto M, Soto M, Ledesma R, Marquez M, Cordero JF, Lopez-Del Valle LM, Salcedo MI, Debs N, Petrin A, Malloy H, Elhadi K, James O, Ogunlewe MO, Abate F, Hailu A, Mohammed I, Gravem P, Deribew M, Gesses M, Hassan M, Pape J, Obiri-Yeboah S, Arthur FKN, Oti AA, Donkor P, Marazita ML, Lachke SA, Adeyemo AA, Murray JC, Butali A. Variant analyses of candidate genes in orofacial clefts in multi-ethnic populations. Oral Dis 2022; 28:1921-1935. [PMID: 34061439 PMCID: PMC9733635 DOI: 10.1111/odi.13932] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/14/2021] [Accepted: 05/09/2021] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Cleft lip with/without cleft palate and cleft palate only is congenital birth defects where the upper lip and/or palate fail to fuse properly during embryonic facial development. Affecting ~1.2/1000 live births worldwide, these orofacial clefts impose significant social and financial burdens on affected individuals and their families. Orofacial clefts have a complex etiology resulting from genetic variants combined with environmental covariates. Recent genome-wide association studies and whole-exome sequencing for orofacial clefts identified significant genetic associations and variants in several genes. Of these, we investigated the role of common/rare variants in SHH, RORA, MRPL53, ACVR1, and GDF11. MATERIALS AND METHODS We sequenced these five genes in 1255 multi-ethnic cleft lip with/without palate and cleft palate only samples in order to find variants that may provide potential explanations for the missing heritability of orofacial clefts. Rare and novel variants were further analyzed using in silico predictive tools. RESULTS Ninteen total variants of interest were found, with variant types including stop-gain, missense, synonymous, intronic, and splice-site variants. Of these, 3 novel missense variants were found, one in SHH, one in RORA, and one in GDF11. CONCLUSION This study provides evidence that variants in SHH, RORA, MRPL53, ACVR1, and GDF11 may contribute to risk of orofacial clefts in various populations.
Collapse
Affiliation(s)
- Mary Li
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, USA
| | - Joy Olotu
- Department of Anatomy, University of Health Sciences, University of Port Harcourt, Choba, Nigeria
| | - Carmen J Buxo-Martinez
- Dental and Craniofacial Genomics Core, University of Puerto Rico School of Dental Medicine, San Juan, PR, USA
| | - Peter A Mossey
- Department of Orthodontics, University of Dundee, Dundee, UK
| | - Deepti Anand
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Tamara Busch
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, USA
| | - Azeez Alade
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, USA
| | - Lord J J Gowans
- Komfo Anokye Teaching Hospital and Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Mekonen Eshete
- College of Health Sciences, School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
| | - Wasiu L Adeyemo
- Department of Oral and Maxillofacial Surgery, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Thirona Naicker
- Genetics, Department of Pediatrics, University of KwaZulu-Natal, Durban, South Africa
| | - Waheed O Awotoye
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, USA
| | - Sagar Gupta
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, USA
| | - Chinyere Adeleke
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, USA
| | - Valeria Bravo
- Dental and Craniofacial Genomics Core, University of Puerto Rico School of Dental Medicine, San Juan, PR, USA
| | - Siyong Huang
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, USA
| | - Olatunbosun O Adamson
- Department of Oral and Maxillofacial Surgery, College of Medicine, University of Lagos, Lagos, Nigeria
| | | | | | - Mairim Soto
- Dental and Craniofacial Genomics Core, University of Puerto Rico School of Dental Medicine, San Juan, PR, USA
| | - Marilyn Soto
- Dental and Craniofacial Genomics Core, University of Puerto Rico School of Dental Medicine, San Juan, PR, USA
| | - Ricardo Ledesma
- Dental and Craniofacial Genomics Core, University of Puerto Rico School of Dental Medicine, San Juan, PR, USA
| | - Myrellis Marquez
- Dental and Craniofacial Genomics Core, University of Puerto Rico School of Dental Medicine, San Juan, PR, USA
| | - Jose F Cordero
- Dental and Craniofacial Genomics Core, University of Puerto Rico School of Dental Medicine, San Juan, PR, USA
| | - Lydia M Lopez-Del Valle
- Dental and Craniofacial Genomics Core, University of Puerto Rico School of Dental Medicine, San Juan, PR, USA
| | - Maria I Salcedo
- Dental and Craniofacial Genomics Core, University of Puerto Rico School of Dental Medicine, San Juan, PR, USA
| | - Natalio Debs
- Dental and Craniofacial Genomics Core, University of Puerto Rico School of Dental Medicine, San Juan, PR, USA
| | - Aline Petrin
- Department of Orthodontics, College of Dentistry, University of Iowa, Iowa City, IA, USA
| | - Hannah Malloy
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, USA
| | - Khalid Elhadi
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, USA
| | - Olutayo James
- Department of Oral and Maxillofacial Surgery, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Mobolanle O Ogunlewe
- Department of Oral and Maxillofacial Surgery, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Fekir Abate
- College of Health Sciences, School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
| | - Abiye Hailu
- College of Health Sciences, School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
| | - Ibrahim Mohammed
- College of Health Sciences, School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
| | - Paul Gravem
- College of Health Sciences, School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
| | - Milliard Deribew
- College of Health Sciences, School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
| | - Mulualem Gesses
- College of Health Sciences, School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
| | - Mohaned Hassan
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, USA
| | - John Pape
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, USA
| | - Solomon Obiri-Yeboah
- Komfo Anokye Teaching Hospital and Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Fareed K N Arthur
- Komfo Anokye Teaching Hospital and Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Alexander A Oti
- Komfo Anokye Teaching Hospital and Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Peter Donkor
- Komfo Anokye Teaching Hospital and Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Mary L Marazita
- Center for Craniofacial and Dental Genetics, Departments of Oral Biology and Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Salil A Lachke
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, USA
| | - Adebowale A Adeyemo
- Department of Orthodontics, University of Dundee, Dundee, UK
- National Human Genomic Research Institute, Bethesda, MD, USA
| | - Jeffrey C Murray
- Department of Pediatrics, University of Iowa, Iowa City, IA, USA
| | - Azeez Butali
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
3
|
Alade A, Awotoye W, Butali A. Genetic and epigenetic studies in non-syndromic oral clefts. Oral Dis 2022; 28:1339-1350. [PMID: 35122708 DOI: 10.1111/odi.14146] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/11/2022] [Accepted: 01/20/2022] [Indexed: 11/28/2022]
Abstract
The etiology of non-syndromic oral clefts (NSOFC) is complex with genetics, genomics, epigenetics, and stochastics factors playing a role. Several approaches have been applied to understand the etiology of non-syndromic oral clefts. These include linkage, candidate gene association studies, genome-wide association studies, whole-genome sequencing, copy number variations, and epigenetics. In this review, we shared these approaches, genes, and loci reported in some studies.
Collapse
Affiliation(s)
- Azeez Alade
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, Iowa, USA
- Iowa Institute for Oral Health Research, University of Iowa, Iowa City, Iowa, USA
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, Iowa, USA
| | - Waheed Awotoye
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, Iowa, USA
- Iowa Institute for Oral Health Research, University of Iowa, Iowa City, Iowa, USA
| | - Azeez Butali
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, Iowa, USA
- Iowa Institute for Oral Health Research, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
4
|
Buczyńska A, Sidorkiewicz I, Hameed A, Krętowski AJ, Zbucka-Krętowska M. Future Perspectives in Oxidative Stress in Trisomy 13 and 18 Evaluation. J Clin Med 2022; 11:jcm11071787. [PMID: 35407395 PMCID: PMC8999694 DOI: 10.3390/jcm11071787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/07/2022] [Accepted: 03/22/2022] [Indexed: 02/05/2023] Open
Abstract
Autosomal aneuploidies are the most frequently occurring congenital abnormalities and are related to many metabolic disorders, hormonal dysfunctions, neurotransmitter abnormalities, and intellectual disabilities. Trisomies are generated by an error of chromosomal segregation during cell division. Accumulating evidence has shown that deregulated gene expression resulting from the triplication of chromosomes 13 and 18 is associated with many disturbed cellular processes. Moreover, a disturbed oxidative stress status may be implicated in the occurrence of fetal malformations. Therefore, a literature review was undertaken to provide novel insights into the evaluation of trisomy 13 (T13) and 18 (T18) pathogeneses, with a particular concern on the oxidative stress. Corresponding to the limited literature data focused on factors leading to T13 and T18 phenotype occurrence, the importance of oxidative stress evaluation in T13 and T18 could enable the determination of subsequent disturbed metabolic pathways, highlighting the related role of mitochondrial dysfunction or epigenetics. This review illustrates up-to-date T13 and T18 research and discusses the strengths, limitations, and possible directions for future studies. The progressive unification of trisomy-related research protocols might provide potential medical targets in the future along with the implementation of the foundation of modern prenatal medicine.
Collapse
Affiliation(s)
- Angelika Buczyńska
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland; (I.S.); (A.H.); (A.J.K.)
- Correspondence: (A.B.); (M.Z.-K.); Tel.: +48-85-746-85-13 (A.B.); +48-85-746-83-36 (M.Z.-K.)
| | - Iwona Sidorkiewicz
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland; (I.S.); (A.H.); (A.J.K.)
| | - Ahsan Hameed
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland; (I.S.); (A.H.); (A.J.K.)
| | - Adam Jacek Krętowski
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland; (I.S.); (A.H.); (A.J.K.)
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Monika Zbucka-Krętowska
- Department of Gynecological Endocrinology and Adolescent Gynecology, Medical University of Bialystok, 15-276 Bialystok, Poland
- Correspondence: (A.B.); (M.Z.-K.); Tel.: +48-85-746-85-13 (A.B.); +48-85-746-83-36 (M.Z.-K.)
| |
Collapse
|
5
|
Yang J, Yu X, Zhu G, Wang R, Lou S, Zhu W, Fu C, Liu J, Fan L, Li D, Shao Q, Ma L, Wang L, Wang Z, Pan Y. Integrating GWAS and eQTL to predict genes and pathways for non-syndromic cleft lip with or without palate. Oral Dis 2020; 27:1747-1754. [PMID: 33128317 DOI: 10.1111/odi.13699] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To explore susceptibility genes and pathways for non-syndromic cleft lip with or without cleft palate (NSCL/P). MATERIALS AND METHODS Two genome-wide association studies (GWAS) datasets, including 858 NSCL/P cases and 1,248 controls, were integrated with expression quantitative trait loci (eQTL) dataset identified by Genotype-Tissue Expression (GTEx) project in whole-blood samples. The expression of the candidate genes in mouse orofacial development was inquired from FaceBase. Protein-protein interaction (PPI) network was visualized to identify protein functions. Go and KEGG pathway analyses were performed to explore the underlying risk pathways. RESULTS A total of 233 eQTL single-nucleotide polymorphisms (SNPs) in 432 candidate genes were identified to be associated with the risk of NSCL/P. One hundred and eighty-three susceptible genes were expressed in mouse orofacial development according to FaceBase. PPI network analysis highlighted that these genes involved in ubiquitin-mediated proteolysis (KCTD7, ASB1, UBOX5, ANAPC4) and DNA synthesis (XRCC3, RFC3, KAT5, RHNO1) were associated with the risk of NSCL/P. GO and KEGG pathway analyses revealed that the fatty acid metabolism pathway (ACADL, HSD17B12, ACSL5, PPT1, MCAT) played an important role in the development of NSCL/P. CONCLUSIONS Our results identified novel susceptibility genes and pathways associated with the development of NSCL/P.
Collapse
Affiliation(s)
- Jing Yang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Xin Yu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Guirong Zhu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Ruimin Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Shu Lou
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Weihao Zhu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Chengyi Fu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Jinsuo Liu
- Yifangming (Beijing) Technology Co., Ltd, Beijing, China
| | - Liwen Fan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Dandan Li
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Qinghua Shao
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Lan Ma
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Lin Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Zhendong Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Yongchu Pan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
6
|
Xu Y, Xie B, Shi J, Li J, Zhou C, Lu W, Xu F, He F. Distinct Expression of miR-378 in Nonsyndromic Cleft Lip and/or Cleft Palate: A Cogitation of Skewed Sex Ratio in Prevalence. Cleft Palate Craniofac J 2020; 58:61-71. [PMID: 32580581 DOI: 10.1177/1055665620935364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Nonsyndromic cleft lip and/or cleft palate (NSCL/P) is an isolated phenotype of orofacial clefts with skewed sex ratio in prevalence. This study aims to identify differentially expressed genes (DEGs) and microRNAs (DEMs) of NSCL/P by integrated bioinformatics analysis, revealing mechanisms for sexual dimorphism in prevalence. MATERIALS AND METHODS First, we downloaded the expression profile data from Gene Expression Omnibus database to identify DEGs and DEMs. Second, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses performed DEGs' functions. Then, clustered DEGs were identified through protein-protein interaction networks. Combining clustered DEGs with key genes searched in GeneCards enlarged NSCL/P-related genes. Moreover, the genes were linked by transcription factors (TFs). Subsequently, connected by the above TFs, DEMs and genes were used to establish the miRNA-TF-messenger RNA (mRNA) regulatory networks. RESULTS The DEGs in sex-ignored group, female-only group, and male-only group were obtained, respectively. Among the DEMs, miR-378 was downregulated in females but upregulated in males. In female-only group, the miRNA-TF-mRNA regulatory networks showed miR-378-SP1-POLE2/CDK6/EZR regulatory axis was found to be key candidates of NSCL/P. CONCLUSIONS Our findings suggest that different expression of miR-378 is consistent with the skewed sex ratio in the prevalence of NSCL/P.
Collapse
Affiliation(s)
- Yuzi Xu
- Department of Oral Implantology and Prosthodontics, The Affiliated Stomatology Hospital, School of Medicine, 12377Zhejiang University, Hangzhou, China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, School of Stomatology, 12377Zhejiang University, Hangzhou, China
| | - Binbin Xie
- Department of Medical Oncology, 56660Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jue Shi
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, School of Stomatology, 12377Zhejiang University, Hangzhou, China.,Department of Oral and Maxillofacial Surgery, The Affiliated Stomatology Hospital, School of Medicine, 12377Zhejiang University, Hangzhou, China
| | - Jia Li
- Department of Oral Implantology and Prosthodontics, The Affiliated Stomatology Hospital, School of Medicine, 12377Zhejiang University, Hangzhou, China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, School of Stomatology, 12377Zhejiang University, Hangzhou, China
| | - Chuan Zhou
- Department of Oral Implantology and Prosthodontics, The Affiliated Stomatology Hospital, School of Medicine, 12377Zhejiang University, Hangzhou, China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, School of Stomatology, 12377Zhejiang University, Hangzhou, China
| | - Wei Lu
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, School of Stomatology, 12377Zhejiang University, Hangzhou, China.,Department of Periodontics, The Affiliated Stomatology Hospital, School of Medicine, 12377Zhejiang University, Hangzhou, China
| | - Fengqin Xu
- The First Affiliated Hospital of Kangda College of Nanjing Medical University, The First People's Hospital of Lianyungang, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, China
| | - Fuming He
- Department of Oral Implantology and Prosthodontics, The Affiliated Stomatology Hospital, School of Medicine, 12377Zhejiang University, Hangzhou, China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, School of Stomatology, 12377Zhejiang University, Hangzhou, China
| |
Collapse
|
7
|
Paiva KBS, Maas CS, dos Santos PM, Granjeiro JM, Letra A. Extracellular Matrix Composition and Remodeling: Current Perspectives on Secondary Palate Formation, Cleft Lip/Palate, and Palatal Reconstruction. Front Cell Dev Biol 2019; 7:340. [PMID: 31921852 PMCID: PMC6923686 DOI: 10.3389/fcell.2019.00340] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 11/29/2019] [Indexed: 12/13/2022] Open
Abstract
Craniofacial development comprises a complex process in humans in which failures or disturbances frequently lead to congenital anomalies. Cleft lip with/without palate (CL/P) is a common congenital anomaly that occurs due to variations in craniofacial development genes, and may occur as part of a syndrome, or more commonly in isolated forms (non-syndromic). The etiology of CL/P is multifactorial with genes, environmental factors, and their potential interactions contributing to the condition. Rehabilitation of CL/P patients requires a multidisciplinary team to perform the multiple surgical, dental, and psychological interventions required throughout the patient's life. Despite progress, lip/palatal reconstruction is still a major treatment challenge. Genetic mutations and polymorphisms in several genes, including extracellular matrix (ECM) genes, soluble factors, and enzymes responsible for ECM remodeling (e.g., metalloproteinases), have been suggested to play a role in the etiology of CL/P; hence, these may be considered likely targets for the development of new preventive and/or therapeutic strategies. In this context, investigations are being conducted on new therapeutic approaches based on tissue bioengineering, associating stem cells with biomaterials, signaling molecules, and innovative technologies. In this review, we discuss the role of genes involved in ECM composition and remodeling during secondary palate formation and pathogenesis and genetic etiology of CL/P. We also discuss potential therapeutic approaches using bioactive molecules and principles of tissue bioengineering for state-of-the-art CL/P repair and palatal reconstruction.
Collapse
Affiliation(s)
- Katiúcia Batista Silva Paiva
- Laboratory of Extracellular Matrix Biology and Cellular Interaction, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Clara Soeiro Maas
- Laboratory of Extracellular Matrix Biology and Cellular Interaction, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Pâmella Monique dos Santos
- Laboratory of Extracellular Matrix Biology and Cellular Interaction, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - José Mauro Granjeiro
- Clinical Research Laboratory in Dentistry, Federal Fluminense University, Niterói, Brazil
- Directory of Life Sciences Applied Metrology, National Institute of Metrology, Quality and Technology, Duque de Caxias, Brazil
| | - Ariadne Letra
- Center for Craniofacial Research, UTHealth School of Dentistry at Houston, Houston, TX, United States
- Pediatric Research Center, UTHealth McGovern Medical School, Houston, TX, United States
- Department of Diagnostic and Biomedical Sciences, UTHealth School of Dentistry at Houston, Houston, TX, United States
| |
Collapse
|