1
|
Alves GR, Javaroni JB, Moura APGE, Consolaro A, Segato RAB. Ulectomy in a patient with nephrotic syndrome under investigation for Galloway-Mowat syndrome: a case report. SPECIAL CARE IN DENTISTRY 2024; 44:1054-1058. [PMID: 38321585 DOI: 10.1111/scd.12971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/08/2024]
Abstract
The aim of this study is to report a case in which a patient with nephrotic syndrome underwent surgery to remove fibrous gum tissue (ulectomy). An 8-year-old patient, diagnosed with early onset nephrotic syndrome due to a mutation in the NUP107 gene, had received a kidney transplant and was therefore taking various medications, including immunosuppressants. On oral examination, the patient was found to have a fibrous gingiva that was preventing the eruption of the upper permanent central incisors. A ulectomy was performed and the gingival tissue was sent for histopathological analysis, which showed normal aspects. The upper right central incisor was seen in the oral cavity 15 days after surgery. A second procedure was carried out to facilitate the eruption of the upper left incisor, which was visualized in the oral cavity 30 days later. In addition, oral manifestations such as maxillary atresia, ogival palate and mouth breathing were observed. Therefore, the role of the dental surgeon in the lives of transplanted children is considered important, as they often take various medications that can affect their oral health. Thus, early diagnosis and effective treatment will be essential to prevent future malocclusions and thus improve the quality of life of these patients.
Collapse
Affiliation(s)
- Gabriela Reis Alves
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Sao Paulo, Brazil
| | - Julia Biliato Javaroni
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Sao Paulo, Brazil
| | - Ana Paula Gomes E Moura
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Sao Paulo, Brazil
| | - Alberto Consolaro
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Sao Paulo, Brazil
| | - Raquel Assed Bezerra Segato
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Sao Paulo, Brazil
| |
Collapse
|
2
|
Mohapatra D, Panda S, Mohanty N, Panda S, Lewkowicz N, Lapinska B. Comparison of Immunohistochemical Markers in Oral Submucous Fibrosis and Oral Submucous Fibrosis Transformed to Oral Squamous Cell Carcinoma-A Systematic Review and Meta-Analysis. Int J Mol Sci 2023; 24:11771. [PMID: 37511530 PMCID: PMC10380386 DOI: 10.3390/ijms241411771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
The objective of the study was to compare the expression of immunohistochemical (IHC) markers of oral submucous fibrosis (OSMF) (non-transformed group) to those of oral squamous cell carcinoma (OSCC) transformed from OSMF (transformed group). The search for comparative cross-sectional studies was carried out in PubMed and Scopus abiding to the PICO criteria, where expression of IHC markers in OSMF were compared with that of OSCC transformed from OSMF. The cellular distribution, number of positive cases, staining intensity, and mean immunoreactive score (IRS) of each IHC marker were evaluated in both groups. A total of 14 studies were included in the systematic review, in which immunoexpression of 15 epithelial and 4 connective tissue biomarkers were evaluated. Expression of β1-integrin, OCT-3, CD1a, CD207, survivin, Dickkopf-1, COX-2, hTERT, CTGF, MDM2, Ki-67, and α-SMA were increased during transformation of OSMF to OSCC. Conversely, expression of PTEN and lysyl oxidase decreased during transformation of OSMF to OSCC. Expression of a group of epithelial markers, such as COX2, hTERT, CTGF, survivin, MDM2, and p53, was 38 times lower in the non-transformed group cases compared to transformed group cases (95% CI: 58% to 10%; p = 0.01; and I2 = 90%). Meta-analysis of all markers involved in cell metabolism/apoptosis, which included β1-integrin along with the above markers also suggested 42 times lower expression in the non-transformed group as compared to the transformed group (95% CI: 58% to 10%; p = 0.01; and I2 = 90%). Sub-group analyses on cytoplasmic and nuclear epithelial markers were inconclusive. Meta-analysis of connective tissue markers was also inconclusive. No publication bias was found. Instead of delving into numerous markers without a strong basis for their use, it is advisable to further study the markers identified in this study to explore their clinical utility.
Collapse
Affiliation(s)
- Diksha Mohapatra
- Department of Oral Pathology and Microbiology, Institute of Dental Sciences, Siksha 'O' Anusandhan University, Bhubaneswar 751003, Odisha, India
| | - Swagatika Panda
- Department of Oral Pathology and Microbiology, Institute of Dental Sciences, Siksha 'O' Anusandhan University, Bhubaneswar 751003, Odisha, India
| | - Neeta Mohanty
- Department of Oral Pathology and Microbiology, Institute of Dental Sciences, Siksha 'O' Anusandhan University, Bhubaneswar 751003, Odisha, India
| | - Saurav Panda
- Department of Periodontics and Oral Implantology, Institute of Dental Sciences, Siksha 'O' Anusandhan University, Bhubaneswar 751003, Odisha, India
| | - Natalia Lewkowicz
- Department of Periodontology and Oral Diseases, Medical University of Lodz, 251 Pomorska St., 92-213 Lodz, Poland
| | - Barbara Lapinska
- Department of General Dentistry, Medical University of Lodz, 251 Pomorska St., 92-213 Lodz, Poland
| |
Collapse
|
3
|
Li B, Liang A, Zhou Y, Huang Y, Liao C, Zhang X, Gong Q. Hypoxia preconditioned DPSC-derived exosomes regulate angiogenesis via transferring LOXL2. Exp Cell Res 2023; 425:113543. [PMID: 36894050 DOI: 10.1016/j.yexcr.2023.113543] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 03/09/2023]
Abstract
Hypoxia was proved to enhance the angiogenesis of stem cells. However, the mechanism of the angiogenic potential in hypoxia-pretreated dental pulp stem cells (DPSCs) is poorly understood. We previously confirmed that hypoxia enhances the angiogenic potential of DPSC-derived exosomes with upregulation of lysyl oxidase-like 2 (LOXL2). Therefore, our study aimed to illuminate whether these exosomes promote angiogenesis via transfer of LOXL2. Exosomes were generated from hypoxia-pretreated DPSCs (Hypo-Exos) stably silencing LOXL2 after lentiviral transfection and characterized with transmission electron microscopy, nanosight and Western blot. The efficiency of silencing was verified using quantitative real-time PCR (qRT-PCR) and Western blot. CCK-8, scratch and transwell assays were conducted to explore the effects of LOXL2 silencing on DPSCs proliferation and migration. Human umbilical vein endothelial cells (HUVECs) were co-incubated with exosomes to assess the migration and angiogenic capacity through transwell and matrigel tube formation assays. The relative expression of angiogenesis-associated genes was characterized by qRT-PCR and Western blot. LOXL2 was successfully silenced in DPSCs and inhibited DPSC proliferation and migration. LOXL2 silencing in Hypo-Exos partially reduced promotion of HUVEC migration and tube formation and inhibited the expression of angiogenesis-associated genes. Thus, LOXL2 is one of various factors mediating the angiogenic effects of Hypo-Exos.
Collapse
Affiliation(s)
- Baoyu Li
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510080, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Ailin Liang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510080, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Yanling Zhou
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510080, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Yihua Huang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510080, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Chenxi Liao
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510080, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Xufang Zhang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510080, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China.
| | - Qimei Gong
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510080, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China.
| |
Collapse
|
4
|
Laczko R, Csiszar K. Lysyl Oxidase (LOX): Functional Contributions to Signaling Pathways. Biomolecules 2020; 10:biom10081093. [PMID: 32708046 PMCID: PMC7465975 DOI: 10.3390/biom10081093] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022] Open
Abstract
Cu-dependent lysyl oxidase (LOX) plays a catalytic activity-related, primary role in the assembly of the extracellular matrix (ECM), a dynamic structural and regulatory framework which is essential for cell fate, differentiation and communication during development, tissue maintenance and repair. LOX, additionally, plays both activity-dependent and independent extracellular, intracellular and nuclear roles that fulfill significant functions in normal tissues, and contribute to vascular, cardiac, pulmonary, dermal, placenta, diaphragm, kidney and pelvic floor disorders. LOX activities have also been recognized in glioblastoma, diabetic neovascularization, osteogenic differentiation, bone matrix formation, ligament remodeling, polycystic ovary syndrome, fetal membrane rupture and tumor progression and metastasis. In an inflammatory context, LOX plays a role in diminishing pluripotent mesenchymal cell pools which are relevant to the pathology of diabetes, osteoporosis and rheumatoid arthritis. Most of these conditions involve mechanisms with complex cell and tissue type-specific interactions of LOX with signaling pathways, not only as a regulatory target, but also as an active player, including LOX-mediated alterations of cell surface receptor functions and mutual regulatory activities within signaling loops. In this review, we aim to provide insight into the diverse ways in which LOX participates in signaling events, and explore the mechanistic details and functional significance of the regulatory and cross-regulatory interactions of LOX with the EGFR, PDGF, VEGF, TGF-β, mechano-transduction, inflammatory and steroid signaling pathways.
Collapse
|
5
|
Chopra V, Sangarappillai RM, Romero‐Canelón I, Jones AM. Lysyl Oxidase Like‐2 (LOXL2): An Emerging Oncology Target. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.201900119] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Vriddhi Chopra
- School of PharmacyUniversity of Birmingham Birmingham B15 2TT UK
| | | | | | - Alan M. Jones
- School of PharmacyUniversity of Birmingham Birmingham B15 2TT UK
| |
Collapse
|
6
|
Targeting the lysyl oxidases in tumour desmoplasia. Biochem Soc Trans 2019; 47:1661-1678. [DOI: 10.1042/bst20190098] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 02/08/2023]
Abstract
The extracellular matrix (ECM) is a fundamental component of tissue microenvironments and its dysregulation has been implicated in a number of diseases, in particular cancer. Tumour desmoplasia (fibrosis) accompanies the progression of many solid cancers, and is also often induced as a result of many frontline chemotherapies. This has recently led to an increased interest in targeting the underlying processes. The major structural components of the ECM contributing to desmoplasia are the fibrillar collagens, whose key assembly mechanism is the enzymatic stabilisation of procollagen monomers by the lysyl oxidases. The lysyl oxidase family of copper-dependent amine oxidase enzymes are required for covalent cross-linking of collagen (as well as elastin) molecules into the mature ECM. This key step in the assembly of collagens is of particular interest in the cancer field since it is essential to the tumour desmoplastic response. LOX family members are dysregulated in many cancers and consequently the development of small molecule inhibitors targeting their enzymatic activity has been initiated by many groups. Development of specific small molecule inhibitors however has been hindered by the lack of crystal structures of the active sites, and therefore alternate indirect approaches to target LOX have also been explored. In this review, we introduce the importance of, and assembly steps of the ECM in the tumour desmoplastic response focussing on the role of the lysyl oxidases. We also discuss recent progress in targeting this family of enzymes as a potential therapeutic approach.
Collapse
|
7
|
Mechanism for oral tumor cell lysyl oxidase like-2 in cancer development: synergy with PDGF-AB. Oncogenesis 2019; 8:34. [PMID: 31086173 PMCID: PMC6513832 DOI: 10.1038/s41389-019-0144-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/04/2019] [Accepted: 04/23/2019] [Indexed: 02/06/2023] Open
Abstract
Extracellular lysyl oxidases (LOX and LOXL1–LOXL4) are critical for collagen biosynthesis. LOXL2 is a marker of poor survival in oral squamous cell cancer. We investigated mechanisms by which tumor cell secreted LOXL2 targets proximal mesenchymal cells to enhance tumor growth and metastasis. This study identified the first molecular mechanism for LOXL2 in the promotion of cancer via its enzymatic modification of a non-collagenous substrate in the context of paracrine signaling between tumor cells and resident fibroblasts. The role and mechanism of active LOXL2 in promoting oral cancer was evaluated and employed a novel LOXL2 small molecule inhibitor, PSX-S1C, administered to immunodeficient, and syngeneic immunocompetent orthotopic oral cancer mouse models. Tumor growth, histopathology, and metastases were monitored. In vitro mechanistic studies with conditioned tumor cell medium treatment of normal human oral fibroblasts were carried out in the presence and absence of the LOXL2 inhibitor to identify signaling mechanisms promoted by LOXL2 activity. Inhibition of LOXL2 attenuated cancer growth and lymph node metastases in the orthotopic tongue mouse models. Immunohistochemistry data indicated that LOXL2 expression in and around tumors was decreased in mice treated with the inhibitor. Inhibition of LOXL2 activity by administration of PXS-S1C to mice reduced tumor cell proliferation, accompanied by changes in morphology and in the expression of epithelial to mesenchymal transition markers. In vitro studies identified PDGFRβ as a direct substrate for LOXL2, and indicated that LOXL2 and PDGF-AB together secreted by tumor cells optimally activated PDGFRβ in fibroblasts to promote proliferation and the tendency toward fibrosis via ERK activation, but not AKT. Optimal fibroblast proliferation in vitro required LOXL2 activity, while tumor cell proliferation did not. Thus, tumor cell-derived LOXL2 in the microenvironment directly targets neighboring resident cells to promote a permissive local niche, in addition to its known role in collagen maturation.
Collapse
|