1
|
Gu T, Guo R, Fang Y, Xiao Y, Chen L, Li N, Ge XK, Shi Y, Wu J, Yan M, Yu J, Li Z. METTL3-mediated pre-miR-665/DLX3 m 6A methylation facilitates the committed differentiation of stem cells from apical papilla. Exp Mol Med 2024; 56:1426-1438. [PMID: 38825638 PMCID: PMC11263550 DOI: 10.1038/s12276-024-01245-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 01/16/2024] [Accepted: 03/11/2024] [Indexed: 06/04/2024] Open
Abstract
Methyltransferase-like 3 (METTL3) is a crucial element of N6-methyladenosine (m6A) modifications and has been extensively studied for its involvement in diverse biological and pathological processes. In this study, we explored how METTL3 affects the differentiation of stem cells from the apical papilla (SCAPs) into odonto/osteoblastic lineages through gain- and loss-of-function experiments. The m6A modification levels were assessed using m6A dot blot and activity quantification experiments. In addition, we employed Me-RIP microarray experiments to identify specific targets modified by METTL3. Furthermore, we elucidated the molecular mechanism underlying METTL3 function through dual-luciferase reporter gene experiments and rescue experiments. Our findings indicated that METTL3+/- mice exhibited significant root dysplasia and increased bone loss. The m6A level and odonto/osteoblastic differentiation capacity were affected by the overexpression or inhibition of METTL3. This effect was attributed to the acceleration of pre-miR-665 degradation by METTL3-mediated m6A methylation in cooperation with the "reader" protein YTHDF2. Additionally, the targeting of distal-less homeobox 3 (DLX3) by miR-665 and the potential direct regulation of DLX3 expression by METTL3, mediated by the "reader" protein YTHDF1, were demonstrated. Overall, the METTL3/pre-miR-665/DLX3 pathway might provide a new target for SCAP-based tooth root/maxillofacial bone tissue regeneration.
Collapse
Affiliation(s)
- Tingjie Gu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University and Department of Stomatology, Nanjing Medical University, Nanjing, China
- Department of Endodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Rong Guo
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University and Department of Stomatology, Nanjing Medical University, Nanjing, China
- Department of Endodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Yuxin Fang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University and Department of Stomatology, Nanjing Medical University, Nanjing, China
- Department of Endodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Ya Xiao
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University and Department of Stomatology, Nanjing Medical University, Nanjing, China
- Department of Endodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Luyao Chen
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University and Department of Stomatology, Nanjing Medical University, Nanjing, China
- Department of Endodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Na Li
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University and Department of Stomatology, Nanjing Medical University, Nanjing, China
- Department of Endodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Xingyun Kelesy Ge
- Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Hong Kong SAR, China
| | - Yijia Shi
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University and Department of Stomatology, Nanjing Medical University, Nanjing, China
- Department of Endodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Jintao Wu
- Department of Endodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Ming Yan
- Department of Endodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Jinhua Yu
- Department of Endodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.
| | - Zehan Li
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University and Department of Stomatology, Nanjing Medical University, Nanjing, China.
- Department of Endodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
2
|
Xie Y, Peng X, Li P. MIWE: detecting the critical states of complex biological systems by the mutual information weighted entropy. BMC Bioinformatics 2024; 25:44. [PMID: 38280998 PMCID: PMC10822190 DOI: 10.1186/s12859-024-05667-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/22/2024] [Indexed: 01/29/2024] Open
Abstract
Complex biological systems often undergo sudden qualitative changes during their dynamic evolution. These critical transitions are typically characterized by a catastrophic progression of the system. Identifying the critical point is critical to uncovering the underlying mechanisms of complex biological systems. However, the system may exhibit minimal changes in its state until the critical point is reached, and in the face of high throughput and strong noise data, traditional biomarkers may not be effective in distinguishing the critical state. In this study, we propose a novel approach, mutual information weighted entropy (MIWE), which uses mutual information between genes to build networks and identifies critical states by quantifying molecular dynamic differences at each stage through weighted differential entropy. The method is applied to one numerical simulation dataset and four real datasets, including bulk and single-cell expression datasets. The critical states of the system can be recognized and the robustness of MIWE method is verified by numerical simulation under the influence of different noises. Moreover, we identify two key transcription factors (TFs), CREB1 and CREB3, that regulate downstream signaling genes to coordinate cell fate commitment. The dark genes in the single-cell expression datasets are mined to reveal the potential pathway regulation mechanism.
Collapse
Affiliation(s)
- Yuke Xie
- School of Mathematics and Statistics, Henan University of Science and Technology, Luoyang, 471000, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Xueqing Peng
- School of Mathematics and Statistics, Henan University of Science and Technology, Luoyang, 471000, China
| | - Peiluan Li
- School of Mathematics and Statistics, Henan University of Science and Technology, Luoyang, 471000, China.
| |
Collapse
|
3
|
Park SY, Kim D, Jung JW, An HJ, Lee J, Park Y, Lee D, Lee S, Kim JM. Targeting class A GPCRs for hard tissue regeneration. Biomaterials 2024; 304:122425. [PMID: 38100905 DOI: 10.1016/j.biomaterials.2023.122425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
G protein-coupled receptors (GPCRs) play important roles in various pathogeneses and physiological regulations. Owing to their functional diversity, GPCRs are considered one of the primary pharmaceutical targets. However, drugs targeting GPCRs have not been developed yet to regenerate hard tissues such as teeth and bones. Mesenchymal stromal cells (MSCs) have high proliferation and multi-lineage differentiation potential, which are essential for hard tissue regeneration. Here, we present a strategy for targeting class A GPCRs for hard tissue regeneration by promoting the differentiation of endogenous MSCs into osteogenic and odontogenic progenitor cells. Through in vitro screening targeted at class A GPCRs, we identified six target receptors (LPAR1, F2R, F2RL1, F2RL2, S1PR1, and ADORA2A) and candidate drugs with potent biomineralization effects. Through a combination of profiling whole transcriptome and accessible chromatin regions, we identified that p53 acts as a key transcriptional activator of genes that modulate the biomineralization process. Moreover, the therapeutic potential of class A GPCR-targeting drugs was demonstrated in tooth pulpotomy and calvarial defect models. The selected drugs revealed potent regenerative effects in both tooth and bone defects, represented by newly formed highly mineralized regions. Consequently, this study provides translational evidence for a new regenerative strategy for damaged hard tissue.
Collapse
Affiliation(s)
- So Young Park
- Department of Oral Microbiology and Immunology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dohyun Kim
- Department of Conservative Dentistry and Oral Science Research Center, Yonsei University College of Dentistry, Seoul, 03722, Republic of Korea
| | - Ju Won Jung
- Department of Oral Microbiology and Immunology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyun-Ju An
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, Bundang-gu, Seongnam-si, 13496, Republic of Korea
| | - Jaemin Lee
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, Bundang-gu, Seongnam-si, 13496, Republic of Korea
| | - Yeji Park
- Department of Conservative Dentistry and Oral Science Research Center, Yonsei University College of Dentistry, Seoul, 03722, Republic of Korea
| | - Dasun Lee
- Department of Conservative Dentistry and Oral Science Research Center, Yonsei University College of Dentistry, Seoul, 03722, Republic of Korea
| | - Soonchul Lee
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, Bundang-gu, Seongnam-si, 13496, Republic of Korea.
| | - Jin Man Kim
- Department of Oral Microbiology and Immunology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
4
|
Xu K, Liu Q, Huang W, Chu Y, Fan W, Liu J, He Y, Huang F. Promotive Effect of FBXO32 on the Odontoblastic Differentiation of Human Dental Pulp Stem Cells. Int J Mol Sci 2023; 24:ijms24097708. [PMID: 37175415 PMCID: PMC10178205 DOI: 10.3390/ijms24097708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/11/2023] [Accepted: 04/15/2023] [Indexed: 05/15/2023] Open
Abstract
Odontoblastic differentiation of human dental pulp stem cells (hDPSCs) is crucial for the intricate formation and repair processes in dental pulp. Until now, the literature is not able to demonstrate the role of ubiquitination in the odontoblastic differentiation of hDPSCs. This study investigated the role of F-box-only protein 32 (FBXO32), an E3 ligase, in the odontoblastic differentiation of hDPSCs. The mRNA expression profile was obtained from ribonucleic acid sequencing (RNA-Seq) data and analyzed. Immunofluorescence and immunohistochemical staining identify the FBXO32 expression in human dental pulp and hDPSCs. Small-hairpin RNA lentivirus was used for FBXO32 knockdown and overexpression. Odontoblastic differentiation of hDPSCs was determined via alkaline phosphatase activity, Alizarin Red S staining, and mRNA and protein expression levels were detected using real-time quantitative polymerase chain reaction and Western blotting. Furthermore, subcutaneous transplantation in nude mice was performed to evaluate the role of FBXO32 in mineralization in vivo using histological analysis. FBXO32 expression was upregulated in the odontoblast differentiated hDPSCs as evidenced by RNA-Seq data analysis. FBXO32 was detected in hDPSCs and the odontoblast layer of the dental pulp. Increased FBXO32 expression in hDPSCs during odontoblastic differentiation was confirmed. Through lentivirus infection method, FBXO32 downregulation in hDPSCs attenuated odontoblastic differentiation in vitro and in vivo, whereas FBXO32 upregulation promoted the hDPSCs odontoblastic differentiation, without affecting proliferation and migration. This study demonstrated, for the first time, the promotive role of FBXO32 in regulating the odontoblastic differentiation of hDPSCs, thereby providing novel insights into the regulatory mechanisms during odontoblastic differentiation in hDPSCs.
Collapse
Affiliation(s)
- Ke Xu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Qin Liu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Wushuang Huang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Yanhao Chu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Wenguo Fan
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Jiawei Liu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Yifan He
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Fang Huang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| |
Collapse
|
5
|
Zhang Y, Zhang H, Xiao Z, Yuan G, Yang G. IPO7 Promotes Odontoblastic Differentiation and Inhibits Osteoblastic Differentiation Through Regulation of RUNX2 Expression and Translocation. Stem Cells 2022; 40:1020-1030. [PMID: 35922041 DOI: 10.1093/stmcls/sxac055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022]
Abstract
RUNX2, an important transcriptional factor for both odontoblastic and osteoblastic differentiation, is upregulated during osteoblastic differentiation, but downregulated during late odontoblastic differentiation. However, the specific mechanism of the different RUNX2 expression in bone and dentin remains largely unknown. Importin 7 (IPO7), a member of the karyopherin β-superfamily, mediates nucleocytoplasmic transport of proteins. In this study, we found that IPO7 was increasingly expressed from pre-odontoblasts to mature odontoblasts. IPO7 expression was increased with odontoblastic differentiation of mouse dental papilla cells (mDPCs) and knockdown of IPO7-inhibited cell differentiation. While in MC3T3-E1 cells, IPO7 was decreased during osteoblastic differentiation and knockdown of IPO7-promoted cell differentiation. In mPDCs, IPO7 was able to bind with some odontoblastic transcription factors, and imported them into the nucleus, but not with RUNX2. Furthermore, IPO7 inhibited the total RUNX2 expression by promoting HDAC6 nuclear localization during odontoblastic differentiation. However, in MC3T3-E1 cells, IPO7 inhibited the nuclear distribution of RUNX2 but did not affect the total protein level of RUNX2. In conclusion, we found that IPO7 promotes odontoblastic differentiation and inhibits osteoblastic differentiation through regulating RUNX2 expression and translocation differently.
Collapse
Affiliation(s)
- Yue Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China
| | - Hao Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China
| | - Ziqiu Xiao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China
| | - Guohua Yuan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China
| | - Guobin Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China
| |
Collapse
|
6
|
E3 Ubiquitin Ligases: Potential Therapeutic Targets for Skeletal Pathology and Degeneration. Stem Cells Int 2022; 2022:6948367. [PMID: 36203882 PMCID: PMC9532118 DOI: 10.1155/2022/6948367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/06/2022] [Accepted: 09/03/2022] [Indexed: 11/18/2022] Open
Abstract
The ubiquitination-proteasome system (UPS) is crucial in regulating a variety of cellular processes including proliferation, differentiation, and survival. Ubiquitin protein ligase E3 is the most critical molecule in the UPS system. Dysregulation of the UPS system is associated with many conditions. Over the past few decades, there have been an increasing number of studies focusing on the UPS system and how it affects bone metabolism. Multiple E3 ubiquitin ligases have been found to mediate osteogenesis or osteolysis through a variety of pathways. In this review, we describe the mechanisms of UPS, especially E3 ubiquitin ligases on bone metabolism. To date, many E3 ubiquitin ligases have been found to regulate osteogenesis or osteoclast differentiation. We review the classification of these E3 enzymes and the mechanisms that influence upstream and downstream molecules and transduction pathways. Finally, this paper reviews the discovery of the relevant UPS inhibitors, drug molecules, and noncoding RNAs so far and prospects the future research and treatment.
Collapse
|
7
|
Xu K, Chu Y, Liu Q, Fan W, He H, Huang F. NEDD4 E3 Ligases: Functions and Mechanisms in Bone and Tooth. Int J Mol Sci 2022; 23:ijms23179937. [PMID: 36077334 PMCID: PMC9455957 DOI: 10.3390/ijms23179937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/29/2022] Open
Abstract
Protein ubiquitination is a precisely controlled enzymatic cascade reaction belonging to the post-translational modification of proteins. In this process, E3 ligases catalyze the binding of ubiquitin (Ub) to protein substrates and define specificity. The neuronally expressed developmentally down-regulated 4 (NEDD4) subfamily, belonging to the homology to E6APC terminus (HECT) class of E3 ligases, has recently emerged as an essential determinant of multiple cellular processes in different tissues, including bone and tooth. Here, we place special emphasis on the regulatory role of the NEDD4 subfamily in the molecular and cell biology of osteogenesis. We elucidate in detail the specific roles, downstream substrates, and upstream regulatory mechanisms of the NEDD4 subfamily. Further, we provide an overview of the involvement of E3 ligases and deubiquitinases in the development, repair, and regeneration of another mineralized tissue—tooth.
Collapse
Affiliation(s)
- Ke Xu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510008, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510008, China
| | - Yanhao Chu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510008, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510008, China
| | - Qin Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510008, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510008, China
| | - Wenguo Fan
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510008, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510008, China
| | - Hongwen He
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510008, China
- Correspondence: (H.H.); (F.H.)
| | - Fang Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510008, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510008, China
- Correspondence: (H.H.); (F.H.)
| |
Collapse
|
8
|
Dong L, Wang M, Gao X, Zheng X, Zhang Y, Sun L, Zhao N, Ding C, Ma Z, Wang Y. miR-9-5p promotes myogenic differentiation via the Dlx3/Myf5 axis. PeerJ 2022; 10:e13360. [PMID: 35529491 PMCID: PMC9074878 DOI: 10.7717/peerj.13360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/08/2022] [Indexed: 01/13/2023] Open
Abstract
MicroRNAs play an important role in myogenic differentiation, they bind to target genes and regulate muscle formation. We previously found that miR-9-5p, which is related to bone formation, was increased over time during the process of myogenic differentiation. However, the mechanism by which miR-9-5p regulates myogenic differentiation remains largely unknown. In the present study, we first examined myotube formation and miR-9-5p, myogenesis-related genes including Dlx3, Myod1, Mef2c, Desmin, MyoG and Myf5 expression under myogenic induction. Then, we detected the expression of myogenic transcription factors after overexpression or knockdown of miR-9-5p or Dlx3 in the mouse premyoblast cell line C2C12 by qPCR, western blot and myotube formation under myogenic induction. A luciferase assay was performed to confirm the regulatory relationships between not only miR-9-5p and Dlx3 but also Dlx3 and its downstream gene, Myf5, which is an essential transcription factor of myogenic differentiation. The results showed that miR-9-5p promoted myogenic differentiation by increasing myogenic transcription factor expression and promoting myotube formation, but Dlx3 exerted the opposite effect. Moreover, the luciferase assay showed that miR-9-5p bound to the 3'UTR of Dlx3 and downregulated Dlx3 expression. Dlx3 in turn suppressed Myf5 expression by binding to the Myf5 promoter, ultimately inhibiting the process of myogenic differentiation. In conclusion, the miR-9-5p/Dlx3/Myf5 axis is a novel pathway for the regulation of myogenic differentiation, and can be a potential target to treat the diseases related to muscle dysfunction.
Collapse
Affiliation(s)
- Liying Dong
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China,National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing, China,Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, China,Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| | - Meng Wang
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xiaolei Gao
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xuan Zheng
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yixin Zhang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| | - Liangjie Sun
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| | - Na Zhao
- Department of Restorative Dentistry and Biomaterials Sciences, Harvard School of Dental Medicine, Boston, Massachusetts, USA,Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Chong Ding
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| | - Zeyun Ma
- Department of VIP Service, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yixiang Wang
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China,Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
9
|
Zheng H, Fu J, Chen Z, Yang G, Yuan G. Dlx3 Ubiquitination by Nuclear Mdm2 Is Essential for Dentinogenesis in Mice. J Dent Res 2022; 101:1064-1074. [PMID: 35220830 DOI: 10.1177/00220345221077202] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Dentin is a major mineralized component of teeth. Odontoblasts are responsible for synthesis and secretion of dentin matrix. Previously, it has been demonstrated in a cell culture system that the E3 ubiquitin ligase, murine double minute 2 (Mdm2), promotes odontoblast-like differentiation of mouse dental papilla cells (mDPCs) by ubiquitinating p53 and the odontoblast-specific substrate Dlx3. However, whether Mdm2 plays an essential role in vivo in odontoblast differentiation and dentin formation remains unknown. In this study, we investigated the in vivo functions of Mdm2 using Dmp1-Cre;Mdm2 flox/flox mice combined with multiple histological and molecular biological methods. The results showed that Mdm2 deletion in the odontoblast layer led to defects in odontoblast differentiation and dentin formation. Unexpectedly, specific inhibition of the Mdm2-p53 axis in wild-type mice by injection of a small-molecule inhibitor Nutlin-3a indicated that the role of Mdm2 in dentinogenesis was p53 independent, which was inconsistent with the previous in vitro study. In situ proximity ligation assay (PLA) showed that Mdm2 interacted with and ubiquitinated Dlx3 in the odontoblast nucleus of mouse molars. Dlx3 promoted the translocation of Mdm2 to the nucleus, and in turn, the nuclear Mdm2 mediated ubiquitination of Dlx3 and promoted the odontoblast-like differentiation of mDPCs. Dlx3 interacted with Mdm2 through its C-terminal domain. Deletion of the C-terminal domain of Dlx3 reversed the enhanced odontoblast-like differentiation and the activation of Dspp promoter mediated by overexpression of wild-type or nuclear Mdm2. Our findings suggest that nuclear Mdm2 mediates ubiquitination of the transcription factor Dlx3, which is essential for Dlx3 transcriptional activity on Dspp as well as subsequent odontoblast differentiation and dentin formation.
Collapse
Affiliation(s)
- H. Zheng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - J. Fu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Z. Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - G. Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - G. Yuan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| |
Collapse
|
10
|
Wang M, Huan Y, Li X, Li J, Lv G. RUNX3 derived hsa_circ_0005752 accelerates the osteogenic differentiation of adipose-derived stem cells via the miR-496/MDM2-p53 pathway. Regen Ther 2021; 18:430-440. [PMID: 34754888 PMCID: PMC8546365 DOI: 10.1016/j.reth.2021.09.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 12/18/2022] Open
Abstract
Background Circular RNAs (circRNAs) are non-coding RNAs that play a pivotal role in bone diseases. RUNX3 was an essential transcriptional regulator during osteogenesis. However, it is unknown whether RUNX3 regulates hsa_circ_0005752 during osteogenic differentiation. Methods The levels of hsa_circ_0005752 and RUNX3 were measured by qRT-PCR after osteogenic differentiation of ADSCs. The osteogenic differentiation was analyzed by Alkaline phosphatase (ALP) staining and Alizarin red staining (ARS). qRT-PCR and western blot were used to assess the expressions of osteogenic differentiation-related molecules. RNA pull-down, RIP, and luciferase reporter assays determine the interactions between miR-496 and hsa_circ_0005752 or MDM2 mRNA. CHIP-PCR analyzed the interaction between RUNX3 and LPAR1. Finally, the potential roles of RUNX3 were investigated during osteogenic differentiation with or without hsa_circ_0005752 knockdown. Results Hsa_circ_0005752 and RUNX3 were significantly increased, and miR-496 was remarkably decreased in ADSCs after osteogenic differentiation. Hsa_circ_0005752 could promote osteogenic differentiation, as shown by enhancing ALP and ARS staining intensity. Hsa_circ_0005752 enhanced the expressions of Runx2, ALP, Osx, and OCN. Furthermore, hsa_circ_0005752 directly targeted miR-496, which can directly bind to MDM2. RUNX3 bound to the LPAR1 promoter and enhanced hsa_circ_0005752 expressions. Moreover, the enhanced expression of hsa_circ_0005752 by RUNX3 could promote osteogenic differentiation, whereas knockdown of hsa_circ_0005752 partially antagonized the effects of RUNX3. Conclusion Our study demonstrated that RUNX3 promoted osteogenic differentiation via regulating the hsa_circ_0005752/miR-496/MDM2 axis and thus provided a new therapeutic strategy for osteoporosis.
Collapse
Key Words
- 3′ UTR, 3′ untranslated region
- ADSCs, adipose-derived stem cells
- ALP, alkaline phosphatase
- ARS, Alizarin Red Staining
- Adipose-derived stem cells
- BCA, bicinchoninic acid
- BM-MSCs, Bone Marrow-Mesenchymal Stem Cells
- BMP2, Bone morphogenetic protein 2
- ChIP, chromatin immunoprecipitation
- Circular RNAs
- ECL, enhanced chemiluminescence
- H&E staining, Hematoxylin and Eosin staining
- LPAR1, lysophosphatidic acid receptor 1
- MDM2
- MDM2, murine double minute 2
- OCN, osteocalcin
- OM, osteogenic (differentiation) medium
- Osteogenic differentiation
- Osx, osterix
- PMSF, phenylmethylsulfonyl fluoride
- RIP, RNA immunoprecipitation
- RUNX3
- Runx2, Runt-related transcription factor 2
- Runx3, RUNX Family Transcription Factor 3
- SDS-PAGE, polyacrylamide gel electrophoresis
- UC-MSCs, Umbilical Cord-Mesenchymal Stem Cells
- circRNAs, Circular RNAs
- miRNAs, microRNA
- microRNA
- qRT-PCR, quantitative real-time polymerase chain reaction
Collapse
Affiliation(s)
- Ming Wang
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, PR China.,Department of Spine Surgery, The First Affiliated Hospital of University of South China, Hengyang 421001, Hunan Province, PR China
| | - Yifan Huan
- Department of Orthopedics, Financial and Trade Hospital of Hunan Province, Changsha 410001, Hunan Province, PR China
| | - Xiyang Li
- Department of Orthopedics, Financial and Trade Hospital of Hunan Province, Changsha 410001, Hunan Province, PR China
| | - Jing Li
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, PR China
| | - Guohua Lv
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, PR China
| |
Collapse
|
11
|
Luo X, Yin J, Miao S, Feng W, Ning T, Xu S, Huang S, Zhang S, Liao Y, Hao C, Wu B, Ma D. mTORC1 promotes mineralization via p53 pathway. FASEB J 2021; 35:e21325. [PMID: 33508145 DOI: 10.1096/fj.202002016r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/04/2020] [Accepted: 12/14/2020] [Indexed: 12/30/2022]
Abstract
The objectives of our study were to investigate the roles of mTORC1 in odontoblast proliferation and mineralization and to determine the mechanism by which mTORC1 regulates odontoblast mineralization. In vitro, MDPC23 cells were treated with rapamycin (10 nmol/L) and transfected with a lentivirus for short hairpin (shRNA)-mediated silencing of the tuberous sclerosis complex (shTSC1) to inhibit and activate mTORC1, respectively. CCK8 assays, flow cytometry, Alizarin red S staining, ALP staining, qRT-PCR, and western blot analysis were performed. TSC1-conditional knockout (DMP1-Cre+ ; TSC1f/f , hereafter CKO) mice and littermate control (DMP1-Cre- ; TSC1f/f , hereafter WT) mice were generated. H&E staining, immunofluorescence, and micro-CT analysis were performed. Transcriptome sequencing analysis was used to screen the mechanism of this process. mTORC1 inactivation decreased the cell proliferation. The qRT-PCR and western blot results showed that mineralization-related genes and proteins were downregulated in mTORC1-inactivated cells. Moreover, mTORC1 overactivation promoted cell proliferation and mineralization-related gene and protein expression. In vivo, the micro-CT results showed that DV/TV and dentin thickness were higher in CKO mice than in controls and H&E staining showed the same results. Mineralization-related proteins expression was upregulated. Transcriptome sequencing analysis revealed that p53 pathway-associated genes were differentially expressed in TSC1-deficient cells. By inhibiting p53 alone or both mTORC1 and p53 with rapamycin and a p53 inhibitor, we elucidated that p53 acts downstream of mTORC1 and that mTORC1 thereby promotes odontoblast mineralization. Taken together, our findings demonstrate that the role of mTORC1 in odontoblast proliferation and mineralization, and confirm that mTORC1 upregulates odontoblast mineralization via the p53 pathway.
Collapse
Affiliation(s)
- Xinghong Luo
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,College of Stomatology, Southern Medical University, Guangzhou, China
| | - Jingyao Yin
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,College of Stomatology, Southern Medical University, Guangzhou, China
| | - Shenghong Miao
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,College of Stomatology, Southern Medical University, Guangzhou, China
| | - Weiqing Feng
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,College of Stomatology, Southern Medical University, Guangzhou, China
| | - Tingting Ning
- College of Stomatology, Southern Medical University, Guangzhou, China.,Department of Endodontics, Stomatology Hospital, Southern Medical University, Guangzhou, China
| | - Shuaimei Xu
- College of Stomatology, Southern Medical University, Guangzhou, China.,Department of Endodontics, Stomatology Hospital, Southern Medical University, Guangzhou, China
| | - Shijiang Huang
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Sheng Zhang
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Yunjun Liao
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chunbo Hao
- Department of Stomatology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Buling Wu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,College of Stomatology, Southern Medical University, Guangzhou, China
| | - Dandan Ma
- Department of Endodontics, Stomatology Hospital, Southern Medical University, Guangzhou, China.,Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, USA
| |
Collapse
|
12
|
Xu QR, Tang J, Liao HY, Yu BT, He XY, Zheng YZ, Liu S. Long non-coding RNA MEG3 mediates the miR-149-3p/FOXP3 axis by reducing p53 ubiquitination to exert a suppressive effect on regulatory T cell differentiation and immune escape in esophageal cancer. J Transl Med 2021; 19:264. [PMID: 34140005 PMCID: PMC8212454 DOI: 10.1186/s12967-021-02907-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/24/2021] [Indexed: 01/27/2023] Open
Abstract
Background Long non-coding RNA (lncRNA) maternally expressed gene 3 (MEG3) has been implicated in the progression of esophageal cancer (EC). However, the specific mechanism of the involvement of MEG3 in EC development in relation to the regulation of immune escape remains uncertain. Thus, the aim of the current study was to investigate the effect of MEG3 on EC via microRNA-149-3p (miR-149-3p). Methods Gain- and loss-of-function experiments were initially performed in EC cells in addition to the establishment of a 4-nitroquinoline 1-oxide-induced EC mouse model aimed at evaluating the respective roles of forkhead box P3 (FOXP3), MEG3, miR-149-3p, mouse double minute 2 homolog (MDM2) and p53 in T cell differentiation and immune escape observed in EC. Results EC tissues were found to exhibit upregulated FOXP3 and MDM2 while MEG3, p53 and miR-149-3p were all downregulated. FOXP3 was confirmed to be a target gene of miR-149-3p with our data suggesting it reduced p53 ubiquitination and degradation by means of inhibiting MDM2. P53 was enriched in the promoter of miR-149-3p to upregulate miR-149-3p. The overexpression of MEG3, p53 or miR-149-3p or silencing FOXP3 was associated with a decline in CD25+FOXP3+CD4+ T cells, IL-10+CD4+ T cells and IL-4+CD4+ T cells in spleen tissues, IL-4, and IL-10 levels as well as C-myc, N-myc and Ki-67 expression in EC mice. Conclusion Collectively, MEG3 decreased FOXP3 expression and resulted in repressed regulatory T cell differentiation and immune escape in EC mice by upregulating miR-149-3p via MDM2-mediated p53. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-02907-1.
Collapse
Affiliation(s)
- Qi-Rong Xu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Jian Tang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Hong-Ying Liao
- Department of Thoracic Surgery, The Sixth Affiliated Hospital, Sun Yat-sen UniversityMedical University, No. 26, Erheng Road, Yuancun, Tianhe District, Guangzhou, 510655, Guangdong Province, P. R. China
| | - Ben-Tong Yu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Xiang-Yuan He
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Yu-Zhen Zheng
- Department of Thoracic Surgery, The Sixth Affiliated Hospital, Sun Yat-sen UniversityMedical University, No. 26, Erheng Road, Yuancun, Tianhe District, Guangzhou, 510655, Guangdong Province, P. R. China.
| | - Sheng Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China.
| |
Collapse
|
13
|
Qiao W, Huang P, Wang X, Meng L. Susceptibility to DNA damage caused by abrogation of Rad54 homolog B: A putative mechanism for chemically induced cleft palate. Toxicology 2021; 456:152772. [PMID: 33823233 DOI: 10.1016/j.tox.2021.152772] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/25/2021] [Accepted: 03/31/2021] [Indexed: 11/24/2022]
Abstract
Exposure to environmental toxicants such as all-trans retinoic acid (atRA) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) may cause cleft palate (CP), which process is related to DNA damage. Rad54B, an important DNA damage repaired protein, has been proved to be associated with non-syndromic cleft lip with palate (NSCLP). In the present study, we sought to clarify the role of Rad54B in palatal development and environment-induced CP. atRA (100 mg/kg) and TCDD (40 μg/kg) were used to induce CP in mice (C57BL/6 J mice). In this study, mouse embryonic heads were collected on embryonic day (E) 13.5∼16.5. The expression level of DNA repair protein Rad54 homolog B (Rad54B) was significantly decreased while those of the DNA double-strand breaks (DSBs) marker γ-H2A.X, apoptosis marker caspase-3 and p53 were significantly increased in the palatal shelves upon exposure to atRA and TCDD relative to the control. Primary mouse embryonic palatal mesenchymal cells (MEPMs) were cultured and transfected with siRNA or adenovirus in vitro to knock down or increase the level of Rad54B. Rad54B knockdown resulted in increased cellular S-phase arrest and apoptosis as well as decreased cell proliferation. Rad54B overexpression also increased apoptosis and reduced cell proliferation. Western blotting was used to detect the level of γ-H2A.X in transfected cells stimulated with etoposide (ETO, a DSBs inducer), and after 5 μM ETO stimulation of transfected MEPMs, the expression of γ-H2A.X was increased in Rad54B-knockdown cells. The expression of Mdm2, Mdmx and p53 with changes in Rad54B was also detected and coimmunoprecipitation was performed to analyze the combination of Mdm2 and p53 when Rad54B was changed in MEPMs. Knockdown of Rad54B inhibited the expression of Mdm2 and Mdmx, while the level of p53 increased. The coimmunoprecipitation results showed a decreased combination of Mdm2 and p53 when Rad54B was knocked down. Therefore, Rad54B can regulate the cell cycle, proliferation, and apoptosis of MEPMs. The loss of Rad54B increased the sensitivity of MEPMs to DSBs inducers, promoted apoptosis, and suppressed the proliferation of MEPMs by inhibiting the degradation of p53. Taken together, these findings suggest that Rad54B may play a key regulatory role in environment-induced CP.
Collapse
Affiliation(s)
- Weiwei Qiao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, PR China
| | - Pei Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, PR China
| | - Xinhuan Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, PR China
| | - Liuyan Meng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, PR China.
| |
Collapse
|
14
|
Chen Q, Zheng L, Zhang Y, Huang X, Wang F, Li S, Yang Z, Liang F, Hu J, Jiang Y, Li Y, Zhou P, Luo W, Zhang H. Special AT-rich sequence-binding protein 2 (Satb2) synergizes with Bmp9 and is essential for osteo/odontogenic differentiation of mouse incisor mesenchymal stem cells. Cell Prolif 2021; 54:e13016. [PMID: 33660290 PMCID: PMC8016638 DOI: 10.1111/cpr.13016] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES Mouse incisor mesenchymal stem cells (MSCs) have self-renewal ability and osteo/odontogenic differentiation potential. However, the mechanism controlling the continuous self-renewal and osteo/odontogenic differentiation of mouse incisor MSCs remains unclear. Special AT-rich sequence-binding protein 2 (SATB2) positively regulates craniofacial patterning, bone development and regeneration, whereas SATB2 deletion or mutation leads to craniomaxillofacial dysplasia and delayed tooth and root development, similar to bone morphogenetic protein (BMP) loss-of-function phenotypes. However, the detailed mechanism underlying the SATB2 role in odontogenic MSCs is poorly understood. The aim of this study was to investigate whether SATB2 can regulate self-renewal and osteo/odontogenic differentiation of odontogenic MSCs. MATERIALS AND METHODS Satb2 expression was detected in the rapidly renewing mouse incisor mesenchyme by immunofluorescence staining, quantitative RT-PCR and Western blot analysis. Ad-Satb2 and Ad-siSatb2 were constructed to evaluate the effect of Satb2 on odontogenic MSCs self-renewal and osteo/odontogenic differentiation properties and the potential role of Satb2 with the osteogenic factor bone morphogenetic protein 9 (Bmp9) in vitro and in vivo. RESULTS Satb2 was found to be expressed in mesenchymal cells and pre-odontoblasts/odontoblasts. We further discovered that Satb2 effectively enhances mouse incisor MSCs self-renewal. Satb2 acted synergistically with the potent osteogenic factor Bmp9 in inducing osteo/odontogenic differentiation of mouse incisor MSCs in vitro and in vivo. CONCLUSIONS Satb2 promotes self-renewal and osteo/odontogenic differentiation of mouse incisor MSCs. Thus, Satb2 can cooperate with Bmp9 as a new efficacious bio-factor for osteogenic regeneration and tooth engineering.
Collapse
Affiliation(s)
- Qiuman Chen
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesThe Affiliated Hospital of Stomatology of Chongqing Medical UniversityChongqingChina
- Department of Pediatric DentistryThe Affiliated Stomatology Hospital, Chongqing Medical UniversityChongqingChina
| | - Liwen Zheng
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesThe Affiliated Hospital of Stomatology of Chongqing Medical UniversityChongqingChina
- Department of Pediatric DentistryThe Affiliated Stomatology Hospital, Chongqing Medical UniversityChongqingChina
| | - Yuxin Zhang
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesThe Affiliated Hospital of Stomatology of Chongqing Medical UniversityChongqingChina
- Department of Pediatric DentistryThe Affiliated Stomatology Hospital, Chongqing Medical UniversityChongqingChina
| | - Xia Huang
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesThe Affiliated Hospital of Stomatology of Chongqing Medical UniversityChongqingChina
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingChina
| | - Feilong Wang
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesThe Affiliated Hospital of Stomatology of Chongqing Medical UniversityChongqingChina
- Department of Pediatric DentistryThe Affiliated Stomatology Hospital, Chongqing Medical UniversityChongqingChina
| | - Shuang Li
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesThe Affiliated Hospital of Stomatology of Chongqing Medical UniversityChongqingChina
- Department of Pediatric DentistryThe Affiliated Stomatology Hospital, Chongqing Medical UniversityChongqingChina
| | - Zhuohui Yang
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesThe Affiliated Hospital of Stomatology of Chongqing Medical UniversityChongqingChina
- Department of Pediatric DentistryThe Affiliated Stomatology Hospital, Chongqing Medical UniversityChongqingChina
| | - Fang Liang
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesThe Affiliated Hospital of Stomatology of Chongqing Medical UniversityChongqingChina
- Department of Pediatric DentistryThe Affiliated Stomatology Hospital, Chongqing Medical UniversityChongqingChina
| | - Jing Hu
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesThe Affiliated Hospital of Stomatology of Chongqing Medical UniversityChongqingChina
- Department of Pediatric DentistryThe Affiliated Stomatology Hospital, Chongqing Medical UniversityChongqingChina
| | - Yucan Jiang
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesThe Affiliated Hospital of Stomatology of Chongqing Medical UniversityChongqingChina
- Department of Pediatric DentistryThe Affiliated Stomatology Hospital, Chongqing Medical UniversityChongqingChina
| | - Yeming Li
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesThe Affiliated Hospital of Stomatology of Chongqing Medical UniversityChongqingChina
- Department of Pediatric DentistryThe Affiliated Stomatology Hospital, Chongqing Medical UniversityChongqingChina
| | - Pengfei Zhou
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesThe Affiliated Hospital of Stomatology of Chongqing Medical UniversityChongqingChina
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingChina
| | - Wenping Luo
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesThe Affiliated Hospital of Stomatology of Chongqing Medical UniversityChongqingChina
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingChina
| | - Hongmei Zhang
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesThe Affiliated Hospital of Stomatology of Chongqing Medical UniversityChongqingChina
- Department of Pediatric DentistryThe Affiliated Stomatology Hospital, Chongqing Medical UniversityChongqingChina
| |
Collapse
|
15
|
Jiang S, Sheng R, Qi X, Wang J, Guo Y, Yuan Q. USP34 regulates tooth root morphogenesis by stabilizing NFIC. Int J Oral Sci 2021; 13:7. [PMID: 33686052 PMCID: PMC7940473 DOI: 10.1038/s41368-021-00114-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 02/06/2023] Open
Abstract
Tooth root morphogenesis involves two biological processes, root elongation and dentinogenesis, which are guaranteed by downgrowth of Hertwig's epithelial root sheath (HERS) and normal odontoblast differentiation. Ubiquitin-dependent protein degradation has been reported to precisely regulate various physiological processes, while its role in tooth development is still elusive. Here we show ubiquitin-specific protease 34 (USP34) plays a pivotal role in root formation. Deletion of Usp34 in dental mesenchymal cells leads to short root anomaly, characterized by truncated roots and thin root dentin. The USP34-deficient dental pulp cells (DPCs) exhibit decreased odontogenic differentiation with downregulation of nuclear factor I/C (NFIC). Overexpression of NFIC partially restores the impaired odontogenic potential of DPCs. These findings indicate that USP34-dependent deubiquitination is critical for root morphogenesis by stabilizing NFIC.
Collapse
Affiliation(s)
- Shuang Jiang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Rui Sheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xingying Qi
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jun Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Periodontology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuchen Guo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China.
- Department of Oral Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Quan Yuan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China.
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
16
|
Zhang Y, Zhang H, Yuan G, Yang G. Effects of transforming growth factor-β1 on odontoblastic differentiation in dental papilla cells is determined by IPO7 expression level. Biochem Biophys Res Commun 2021; 545:105-111. [PMID: 33548622 DOI: 10.1016/j.bbrc.2021.01.076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 01/20/2021] [Indexed: 12/25/2022]
Abstract
Transforming growth factor β1 (TGF-β1) is one of the broad-spectrum growth-promoting factors that participate in tooth development. The influence of TGF-β1 on the odontoblastic differentiation is still controvercy. Mouse primary dental papilla cells (mDPCs) as well as an immortalized mouse dental papilla cell line (mDPC6Ts) were treated with exogenous TGF-β1 during odontoblastic differentiation. RT-qPCR, Western blot, alizarin red staining and ALP staining were carried out to investigate the influence of TGF-β1 on odontoblastic differentiation. IPO7, important for SMAD complex translocation was also detected in mDPCs and mDPC6Ts in response to TGF-β1. After silencing IPO7 by transfection, the translocation process of P-SMAD2 was investigated by nuclear and cytoplasmic extraction as well as co-immunoprecipitation assay. The odontogenic markers, mineralization and IPO7 expression were significantly up-regulated in TGF-β1-treated mDPCs while down-regulated in mDPC6Ts. The total level of P-SMAD2 was not influenced by IPO7 in mDPCs, however, IPO7 could bind to P-SMAD2 and affect the nuclear-cytoplasm-shuttling of P-SMAD2. Our data demonstrated that TGF-β1 plays opposite roles in odontoblast differentiation in mDPCs and immortalized mouse dental papilla cell line (mDPC6Ts), which is determined by IPO7.
Collapse
Affiliation(s)
- Yue Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, China.
| | - Hao Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, China.
| | - Guohua Yuan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, China.
| | - Guobin Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, China.
| |
Collapse
|
17
|
Fu J, Zheng H, Xue Y, Jin R, Yang G, Chen Z, Yuan G. WWP2 Promotes Odontoblastic Differentiation by Monoubiquitinating KLF5. J Dent Res 2020; 100:432-439. [PMID: 33164644 DOI: 10.1177/0022034520970866] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
WW domain-containing E3 Ub-protein ligase 2 (WWP2) belongs to the homologous to E6AP C-terminus (HECT) E3 ligase family. It has been explored to regulate osteogenic differentiation, chondrogenesis, and palatogenesis. Odontoblasts are terminally differentiated mesenchymal cells, which contribute to dentin formation in tooth development. However, it remained unknown whether WWP2 participated in odontoblast differentiation. In this study, WWP2 was found to be expressed in mouse dental papilla cells (mDPCs), odontoblasts, and odontoblastic-induced mDPCs by immunohistochemistry and Western blotting. Besides, WWP2 expression was decreased in the cytoplasm but increased in the nuclei of differentiation-induced mDPCs. When Wwp2 was knocked down, the elevated expression of odontoblast marker genes (Dmp1 and Dspp) in mDPCs induced by differentiation medium was suppressed. Meanwhile, a decrease of alkaline phosphatase (ALP) activity was observed by ALP staining, and reduced formation of mineralized matrix nodules was demonstrated by Alizarin Red S staining. Overexpression of WWP2 presented opposite results to knockdown experiments, suggesting that WWP2 promoted odontoblastic differentiation of mDPCs. Further investigation found that WWP2 was coexpressed and interacted with KLF5 in the nuclei, leading to ubiquitination of KLF5. The PPPSY (PY2) motif of KLF5 was essential for its physical binding with WWP2. Also, cysteine 838 (Cys838) of WWP2 was the active site for ubiquitination of KLF5, which did not lead to proteolysis of KLF5. Then, KLF5 was confirmed to be monoubiquitinated and transactivated by WWP2, which promoted the expression of KLF5 downstream genes Dmp1 and Dspp. Deletion of the PY2 motif of KLF5 or mutation of Cys838 of WWP2 reduced the upregulation of Dmp1 and Dspp. Besides, lysine (K) residues K31, K52, K83, and K265 of KLF5 were verified to be crucial to WWP2-mediated KLF5 transactivation. Taken together, WWP2 promoted odontoblastic differentiation by monoubiquitinating KLF5.
Collapse
Affiliation(s)
- J Fu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, HuBei, China
| | - H Zheng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, HuBei, China
| | - Y Xue
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, HuBei, China
| | - R Jin
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, HuBei, China
| | - G Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, HuBei, China
| | - Z Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, HuBei, China
| | - G Yuan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, HuBei, China
| |
Collapse
|
18
|
Gu M, Yu X, Fan L, Zhu G, Yang F, Lou S, Ma L, Pan Y, Wang L. Genetic Variants in miRNAs Are Associated With Risk of Non-syndromic Tooth Agenesis. Front Physiol 2020; 11:1052. [PMID: 32973563 PMCID: PMC7472694 DOI: 10.3389/fphys.2020.01052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/31/2020] [Indexed: 11/13/2022] Open
Abstract
Non-syndromic tooth agenesis (NSTA) is one of the most common dental abnormalities. MiRNAs participated in the craniofacial and tooth development. Therefore, single nucleotide polymorphisms (SNPs) in miRNA genes may contribute to the susceptibility of non-syndromic tooth agenesis. Here, a total of 625 non-syndromic tooth agenesis cases and 1,144 healthy controls were recruited, and four miRNA SNPs (miR-146a/rs2910164, miR-196a2/rs11614913, pre-miR-605/rs2043556, pre-miR-618/rs2682818) were genotyped by the TaqMan platform. Rs2043556 showed nominal associations with risk of non-syndromic tooth agenesis (P Add = 0.021) in the overall analysis, as well as upper lateral incisor agenesis (P Add = 0.047) and lower incisor agenesis (P Add = 0.049) in the subgroup analysis. Notably, its significant association with upper canine agenesis was observed (P Add = 0.0016). Rs2043556 affected the mature of miR-605-3p and miR-605-5p while dual-luciferase report analysis indicated that MDM2 was the binding target of miR-605-5p. Our study indicated that pre-miR-605 rs2043556 was associated with risk of non-syndromic tooth agenesis.
Collapse
Affiliation(s)
- Min Gu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Orthodontics, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, China.,Department of Dentistry, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou, China
| | - Xin Yu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Orthodontics, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, China
| | - Liwen Fan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Orthodontics, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, China
| | - Guirong Zhu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Orthodontics, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, China
| | - Fan Yang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Orthodontics, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, China
| | - Shu Lou
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Orthodontics, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, China
| | - Lan Ma
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Yongchu Pan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Orthodontics, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Lin Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Orthodontics, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
19
|
Effects of p-Cresol on Senescence, Survival, Inflammation, and Odontoblast Differentiation in Canine Dental Pulp Stem Cells. Int J Mol Sci 2020; 21:ijms21186931. [PMID: 32967298 PMCID: PMC7555360 DOI: 10.3390/ijms21186931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/09/2020] [Accepted: 09/15/2020] [Indexed: 12/12/2022] Open
Abstract
Aging, defined by a decrease in the physical and functional integrity of the tissues, leads to age-associated degenerative diseases. There is a relation between aged dental pulp and the senescence of dental pulp stem cells (DPSCs). Therefore, it is important to investigate the molecular processes underlying the senescence of DPSCs to elucidate the dental pulp aging mechanisms. p-Cresol (PC), a uremic toxin, is strongly related to cellular senescence. Here, age-related phenotypic changes including senescence, apoptosis, inflammation, and declining odontoblast differentiation in PC-treated canine DPSCs were investigated. Under the PC condition, cellular senescence was induced by decreased proliferation capacity and increased cell size, senescence-associated β-galactosidase (SA-β-gal) activity, and senescence markers p21, IL-1β, IL-8, and p53. Exposure to PC could stimulate inflammation by the increased expression of IL-6 and cause the distraction of the cell cycle by the increased level of Bax protein and decreased Bcl-2. The levels of odontoblast differentiation markers, dentin sialophosphoprotein (DSPP), dentin matrix protein 1, and osterix, were decreased. Consistent with those findings, the alizarin red staining, alkaline phosphatase, and DSPP protein level were decreased during the odontoblast differentiation process. Taken together, these findings indicate that PC could induce cellular senescence in DPSCs, which may demonstrate the changes in aging dental pulp.
Collapse
|
20
|
Gou X, Xue Y, Zheng H, Yang G, Chen S, Chen Z, Yuan G. Gelatinases Cleave Dentin Sialoprotein Intracellularly. Front Physiol 2020; 11:686. [PMID: 32670089 PMCID: PMC7330055 DOI: 10.3389/fphys.2020.00686] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/27/2020] [Indexed: 11/13/2022] Open
Abstract
Dentin sialoprotein (DSP), the NH2-terminal fragment of dentin sialophosphoprotein (DSPP), is essential for dentin formation and further processed into small fragments inside the odontoblasts. Gelatinases, including matrix metalloproteinases 9 (MMP9) and MMP2, were able to cleave DSP(P) in tooth structures. We hypothesized that gelatinases may also cleave DSP intracellularly in the odontoblasts. In this study, the co-expression and physical interaction between DSP and gelatinases were proved by double immunofluorescence and in situ proximity ligation assay (PLA). Intracellular enzymatic activity of gelatinases was verified by gelatin zymography and in situ zymography. To confirm whether DSP was cleaved by active gelatinases intracellularly, lysates of wild-type (WT) odontoblastic cells treated with a MMP2 inhibitor or a MMP9 inhibitor or a MMP general inhibitor and of Mmp9-/- odontoblastic cells were analyzed by western blotting. Compared with the WT odontoblastic cells without inhibitor treatment, all these groups exhibited significantly higher ratios of high molecular weight to low molecular weight band density. FURIN was verified to be co-localized and physically interacted with MMP9 by double immunofluorescence and in situ PLA. The ratio of proMMP9 to activated MMP9 inside the odontoblastic cells were increased when function of endogenous FURIN was inhibited. And overexpressed proMMP9 was intracellularly cleaved by FURIN in the HEK293E cells, which was completely blocked by the mutation of proMMP9 with R96TPR99 substituted by A96AAA99. Taken together, these results indicate that DSP is intracellularly processed by gelatinases, and FURIN is involved in the intracellular activation of proMMP9 through cleavage of its R96TPR99 motif.
Collapse
Affiliation(s)
- Xiaohui Gou
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yifan Xue
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Huiwen Zheng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Guobin Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Shuo Chen
- Department of Developmental Dentistry, University of Texas Health Science Center, San Antonio, TX, United States
| | - Zhi Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Guohua Yuan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|