1
|
Zhao F, Qiu Y, Liu W, Zhang Y, Liu J, Bian L, Shao L. Biomimetic Hydrogels as the Inductive Endochondral Ossification Template for Promoting Bone Regeneration. Adv Healthc Mater 2024; 13:e2303532. [PMID: 38108565 DOI: 10.1002/adhm.202303532] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/10/2023] [Indexed: 12/19/2023]
Abstract
Repairing critical size bone defects (CSBD) is a major clinical challenge and requires effective intervention by biomaterial scaffolds. Inspired by the fact that the cartilaginous template-based endochondral ossification (ECO) process is crucial to bone healing and development, developing biomimetic biomaterials to promote ECO is recognized as a promising approach for repairing CSBD. With the unique highly hydrated 3D polymeric network, hydrogels can be designed to closely emulate the physiochemical properties of cartilage matrix to facilitate ECO. In this review, the various preparation methods of hydrogels possessing the specific physiochemical properties required for promoting ECO are introduced. The materiobiological impacts of the physicochemical properties of hydrogels, such as mechanical properties, topographical structures and chemical compositions on ECO, and the associated molecular mechanisms related to the BMP, Wnt, TGF-β, HIF-1α, FGF, and RhoA signaling pathways are further summarized. This review provides a detailed coverage on the materiobiological insights required for the design and preparation of hydrogel-based biomaterials to facilitate bone regeneration.
Collapse
Affiliation(s)
- Fujian Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, P. R. China
| | - Yonghao Qiu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, P. R. China
| | - Wenjing Liu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, P. R. China
| | - Yanli Zhang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, P. R. China
| | - Jia Liu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, P. R. China
| | - Liming Bian
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Longquan Shao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, P. R. China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou, 510515, P. R. China
| |
Collapse
|
2
|
Farahat M, Hara ES, Anada R, Kazi GAS, Akhter NM, Matsumoto T. Mechanotransductive Mechanisms of Biomimetic Hydrogel Cues Modulating Meckel's Cartilage Degeneration. Adv Biol (Weinh) 2022; 6:e2101315. [PMID: 35347898 DOI: 10.1002/adbi.202101315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/13/2022] [Indexed: 01/27/2023]
Abstract
Meckel's cartilage, a cartilage rod present in the mandible during developmental stages, shows a unique developmental fate: while the anterior and posterior portions undergo ossification, the middle part degenerates. Previously, it was shown that a stiff environment promoted cartilage degeneration in the middle region, while a soft environment enhanced the mineralization in the anterior region of Meckel's cartilage. This study aims to elucidate the spatio-temporal changes in the mechanosensing properties of Meckel's cartilage during its early developmental stages and clarify the mechanotransduction-related mechanisms involved in its degeneration. The results show that the expression of Hippo pathway effector yes-associated protein (YAP) is only detectable in the Meckel's cartilage onward embryonic day (E)14.5, indicating that mechanosensing is dependent on the tissue developmental stage. Consistently, microenvironmental stiffness-induced cartilage degeneration can only be induced in cartilages onward E14.5, but not in those at earlier developmental stages. Expressions of integrin-β1 and cartilage matrix-degrading enzymes, matrix metalloproteinase 1 (MMP-1) and MMP-13, are significantly enhanced in the degeneration area. Moreover, verteporfin (YAP inhibitor) and integrin-β1 antibody block the substrate stiffness-induced degeneration by suppressing the expressions of MMP-1 and MMP-13. These data provide new insights into the interplay between biochemical and mechanical cues determining the fate of Meckel's cartilage.
Collapse
Affiliation(s)
- Mahmoud Farahat
- Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Emilio S Hara
- Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Risa Anada
- Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Gulsan A S Kazi
- Department of Applied Life Systems Engineering, Graduate School of Science and Engineering, Yamagata University, Yamagata, Japan
| | - Nahid M Akhter
- Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Takuya Matsumoto
- Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|