1
|
Gao C, Iles M, Larvin H, Bishop DT, Bunce D, Ide M, Sun F, Pavitt S, Wu J, Kang J. Genome-wide association studies on periodontitis: A systematic review. PLoS One 2024; 19:e0306983. [PMID: 39240858 PMCID: PMC11379206 DOI: 10.1371/journal.pone.0306983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/26/2024] [Indexed: 09/08/2024] Open
Abstract
OBJECTIVES This study aims to systematically review the existing literature and critically appraise the evidence of genome-wide association studies (GWAS) on periodontitis. This study also aims to synthesise the findings of genetic risk variants of periodontitis from included GWAS. METHODS A systematic search was conducted on PubMed, GWAS Catalog, MEDLINE, GLOBAL HEALTH and EMBASE via Ovid for GWAS on periodontitis. Only studies exploring single-nucleotide polymorphisms(SNPs) associated with periodontitis were eligible for inclusion. The quality of the GWAS was assessed using the Q-genie tool. Information such as study population, ethnicity, genomic data source, phenotypic characteristics(definition of periodontitis), and GWAS methods(quality control, analysis stages) were extracted. SNPs that reached conventional or suggestive GWAS significance level(5e-8 or 5e-06) were extracted and synthesized. RESULTS A total of 15 good-quality GWAS on periodontitis were included (Q-genie scores ranged from 38-50). There were huge heterogeneities among studies. There were 11 identified risk SNPs (rs242016, rs242014, rs10491972, rs242002, rs2978951, rs2738058, rs4284742, rs729876, rs149133391, rs1537415, rs12461706) at conventional GWAS significant level (p<5x10-8), and 41 at suggestive level (p<5x10-6), but no common SNPs were found between studies. Three SNPs (rs4284742 [G], rs11084095 [A], rs12461706 [T]) from three large studies were from the same gene region-SIGLEC5. CONCLUSION GWAS of periodontitis showed high heterogeneity of methodology used and provided limited SNPs statistics, making identifying reliable risk SNPs challenging. A clear guidance in dental research with requirement of expectation to make GWAS statistics available to other investigators are needed.
Collapse
Affiliation(s)
- Chenyi Gao
- School of Dentistry, University of Leeds, Leeds, United Kingdom
| | - Mark Iles
- School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Harriet Larvin
- Wolfson Institute of Population Health, Queen Mary, University of London, London, United Kingdom
| | - David Timothy Bishop
- Leeds Institute of Medical Research, School of Medicine, University of Leeds, Leeds, United Kingdom
| | - David Bunce
- School of Psychology, University of Leeds, Leeds, United Kingdom
| | - Mark Ide
- Centre for Host Microbial Interactions, Faculty of Dentistry Oral and Craniofacial Sciences, King's College London, London, United Kingdom
| | - Fanyiwen Sun
- School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Susan Pavitt
- School of Dentistry, University of Leeds, Leeds, United Kingdom
| | - Jianhua Wu
- Wolfson Institute of Population Health, Queen Mary, University of London, London, United Kingdom
| | - Jing Kang
- Oral Clinical Research Unit, Faculty of Dentistry Oral and Craniofacial Sciences, King's College London, London, United Kingdom
| |
Collapse
|
2
|
Chopra A, Bhuvanagiri G, Natu K, Chopra A. Role of CRISPR-Cas systems in periodontal disease pathogenesis and potential for periodontal therapy: A review. Mol Oral Microbiol 2024. [PMID: 39224035 DOI: 10.1111/omi.12483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/05/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPRs) are DNA sequences capable of editing a host genome sequence. CRISPR and its specific CRISPR-associated (Cas) protein complexes have been adapted for various applications. These include activating or inhibiting specific genetic sequences or acting as molecular scissors to cut and modify the host DNA precisely. CRISPR-Cas systems are also naturally present in many oral bacteria, where they aid in nutrition, biofilm formation, inter- and intraspecies communication (quorum sensing), horizontal gene transfer, virulence, inflammation modulation, coinfection, and immune response evasion. It even functions as an adaptive immune system, defending microbes against invading viruses and foreign genetic elements from other bacteria by targeting and degrading their DNA. Recently, CRISPR-Cas systems have been tested as molecular editing tools to manipulate specific genes linked with periodontal disease (such as periodontitis) and as novel methods of delivering antimicrobial agents to overcome antimicrobial resistance. With the rapidly increasing role of CRISPR in treating inflammatory diseases, its application in periodontal disease is also becoming popular. Therefore, this review aims to discuss the different types of CRISPR-Cas in oral microbes and their role in periodontal disease pathogenesis and precision periodontal therapy.
Collapse
Affiliation(s)
- Aditi Chopra
- Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Geeta Bhuvanagiri
- Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Kshitija Natu
- School of Dentistry, University of California, Los Angeles, California, USA
| | - Avneesh Chopra
- Department of Periodontology, Oral Medicine and Oral Surgery, Institute for Dental and Craniofacial Sciences, Charité-University Medicine Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
3
|
Nogawa S, Morishita S, Saito K, Kato H. Genome-wide association meta-analysis identifies two novel loci associated with dental caries. BMC Oral Health 2024; 24:1003. [PMID: 39192244 PMCID: PMC11348739 DOI: 10.1186/s12903-024-04799-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/23/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND Tooth loss significantly impacts oral function and overall health deterioration. Dental caries and periodontal disease are major contributors to tooth loss, emphasizing the critical need to prevent these conditions. Genetic studies have played a crucial role in deepening our understanding of the underlying mechanisms of these diseases. While large-scale genome-wide association studies (GWAS) on dental caries and periodontal disease have been conducted extensively, research focusing on Asian populations remains limited. Given substantial genetic and lifestyle variations across ethnicities, conducting studies across diverse populations is imperative. This study aimed to uncover new insights into the genetic mechanisms of these diseases, contributing to broader knowledge and potential targeted interventions. METHODS We conducted a GWAS using genome data from 45,525 Japanese individuals, assessing their self-reported history of dental caries and periodontal disease. Additionally, we performed a meta-analysis by integrating our results with those from a previous large-scale GWAS predominantly involving European populations. RESULTS While no new loci associated with periodontal disease were identified, we discovered two novel loci associated with dental caries. The lead variants of these loci were intron variant rs10974056 in GLIS3 and intron variant rs4801882 in SIGLEC5. CONCLUSION Our study findings are anticipated to advance understanding of the underlying mechanisms of dental caries and periodontal disease. Thes insights may inform better management strategies for patients affected by these conditions.
Collapse
Affiliation(s)
- Shun Nogawa
- Genequest Inc, Siba 5-29-11, Minato-ku, Tokyo, 108-0014, Japan
| | - Satoru Morishita
- Research and Development Headquarters, Lion Corporation, Odawara, Kanagawa, Japan
| | - Kenji Saito
- Genequest Inc, Siba 5-29-11, Minato-ku, Tokyo, 108-0014, Japan
| | - Hisanori Kato
- Laboratory of Health Nutrition, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
- Department of Applied Nutrition, School of Nutrition, Kagawa Nutrition University, 3-9-21 Chiyoda, Sakado, 350-0299, Saitama, Japan.
| |
Collapse
|
4
|
Zou M, Yang J. Novel Protein Biomarkers and Therapeutic Targets for Type 1 Diabetes and Its Complications: Insights from Summary-Data-Based Mendelian Randomization and Colocalization Analysis. Pharmaceuticals (Basel) 2024; 17:766. [PMID: 38931433 PMCID: PMC11206317 DOI: 10.3390/ph17060766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/06/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Millions of patients suffer from type 1 diabetes (T1D) and its associated complications. Nevertheless, the pursuit of a cure for T1D has encountered significant challenges, with a crucial impediment being the lack of biomarkers that can accurately predict the progression of T1D and reliable therapeutic targets for T1D. Hence, there is an urgent need to discover novel protein biomarkers and therapeutic targets, which holds promise for targeted therapy for T1D. In this study, we extracted summary-level data on 4907 plasma proteins from 35,559 Icelanders and 2923 plasma proteins from 54,219 UK participants as exposures. The genome-wide association study (GWAS) summary statistics on T1D and T1D with complications were obtained from the R9 release results from the FinnGen consortium. Summary-data-based Mendelian randomization (SMR) analysis was employed to evaluate the causal associations between the genetically predicted levels of plasma proteins and T1D-associated outcomes. Colocalization analysis was utilized to investigate the shared genetic variants between the exposure and outcome. Moreover, transcriptome analysis and a protein-protein interaction (PPI) network further illustrated the expression patterns of the identified protein targets and their interactions with the established targets of T1D. Finally, a Mendelian randomization phenome-wide association study evaluated the potential side effects of the identified core protein targets. In the primary SMR analysis, we identified 72 potential protein targets for T1D and its complications, and nine of them were considered crucial protein targets. Within the group were five risk targets and four protective targets. Backed by evidence from the colocalization analysis, the protein targets were classified into four tiers, with MANSC4, CTRB1, SIGLEC5 and MST1 being categorized as tier 1 targets. Delving into the DrugBank database, we retrieved 11 existing medications for T1D along with their therapeutic targets. The PPI network clarified the interactions among the identified potential protein targets and established ones. Finally, the Mendelian randomization phenome-wide association study corroborated MANSC4 as a reliable target capable of mitigating the risk of various forms of diabetes, and it revealed the absence of adverse effects linked to CTRB1, SIGLEC5 and MST1. This study unveiled many protein biomarkers and therapeutic targets for T1D and its complications. Such advancements hold great promise for the progression of drug development and targeted therapy for T1D.
Collapse
Affiliation(s)
- Mingrui Zou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-Coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
- Peking University First School of Clinical Medicine, Peking University First Hospital, Beijing 100034, China;
| | - Jichun Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-Coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
5
|
Schwartz J, Capistrano KJ, Gluck J, Hezarkhani A, Naqvi AR. SARS-CoV-2, periodontal pathogens, and host factors: The trinity of oral post-acute sequelae of COVID-19. Rev Med Virol 2024; 34:e2543. [PMID: 38782605 PMCID: PMC11260190 DOI: 10.1002/rmv.2543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/04/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
COVID-19 as a pan-epidemic is waning but there it is imperative to understand virus interaction with oral tissues and oral inflammatory diseases. We review periodontal disease (PD), a common inflammatory oral disease, as a driver of COVID-19 and oral post-acute-sequelae conditions (PASC). Oral PASC identifies with PD, loss of teeth, dysgeusia, xerostomia, sialolitis-sialolith, and mucositis. We contend that PD-associated oral microbial dysbiosis involving higher burden of periodontopathic bacteria provide an optimal microenvironment for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. These pathogens interact with oral epithelial cells activate molecular or biochemical pathways that promote viral adherence, entry, and persistence in the oral cavity. A repertoire of diverse molecules identifies this relationship including lipids, carbohydrates and enzymes. The S protein of SARS-CoV-2 binds to the ACE2 receptor and is activated by protease activity of host furin or TRMPSS2 that cleave S protein subunits to promote viral entry. However, PD pathogens provide additional enzymatic assistance mimicking furin and augment SARS-CoV-2 adherence by inducing viral entry receptors ACE2/TRMPSS, which are poorly expressed on oral epithelial cells. We discuss the mechanisms involving periodontopathogens and host factors that facilitate SARS-CoV-2 infection and immune resistance resulting in incomplete clearance and risk for 'long-haul' oral health issues characterising PASC. Finally, we suggest potential diagnostic markers and treatment avenues to mitigate oral PASC.
Collapse
Affiliation(s)
- Joel Schwartz
- Department of Oral Medicine and Diagnostic Sciences, University of Illinois Chicago, Chicago, Illinois, 60612, USA
| | | | - Joseph Gluck
- Department of Periodontics, University of Illinois Chicago, Chicago, Illinois, 60612, USA
| | - Armita Hezarkhani
- Department of Periodontics, University of Illinois Chicago, Chicago, Illinois, 60612, USA
| | - Afsar R. Naqvi
- Department of Periodontics, University of Illinois Chicago, Chicago, Illinois, 60612, USA
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois, 60612, USA
| |
Collapse
|
6
|
De Almeida SD, Richter GM, de Coo A, Jepsen S, Kapferer-Seebacher I, Dommisch H, Berger K, Laudes M, Lieb W, Loos BG, van der Velde N, van Schoor N, de Groot L, Blanco J, Carracedo A, Cruz R, Schaefer AS. A genome-wide association study meta-analysis in a European sample of stage III/IV grade C periodontitis patients ≤35 years of age identifies new risk loci. J Clin Periodontol 2024; 51:431-440. [PMID: 38140892 DOI: 10.1111/jcpe.13922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/07/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023]
Abstract
AIM Few genome-wide association studies (GWAS) have been conducted for severe forms of periodontitis (stage III/IV grade C), and the number of known risk genes is scarce. To identify further genetic risk variants to improve the understanding of the disease aetiology, a GWAS meta-analysis in cases with a diagnosis at ≤35 years of age was performed. MATERIALS AND METHODS Genotypes from German, Dutch and Spanish GWAS studies of III/IV-C periodontitis diagnosed at age ≤35 years were imputed using TopMed. After quality control, a meta-analysis was conducted on 8,666,460 variants in 1306 cases and 7817 controls with METAL. Variants were prioritized using FUMA for gene-based tests, functional annotation and a transcriptome-wide association study integrating eQTL data. RESULTS The study identified a novel genome-wide significant association in the FCER1G gene (p = 1.0 × 10-9 ), which was previously suggestively associated with III/IV-C periodontitis. Six additional genes showed suggestive association with p < 10-5 , including the known risk gene SIGLEC5. HMCN2 showed the second strongest association in this study (p = 6.1 × 10-8 ). CONCLUSIONS This study expands the set of known genetic loci for severe periodontitis with an age of onset ≤35 years. The putative functions ascribed to the associated genes highlight the significance of oral barrier tissue stability, wound healing and tissue regeneration in the aetiology of these periodontitis forms and suggest the importance of tissue regeneration in maintaining oral health.
Collapse
Affiliation(s)
- Silvia Diz De Almeida
- Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), Instituto de Salud Carlos III, Madrid, Spain
| | - Gesa M Richter
- Department of Periodontology, Oral Medicine and Oral Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Alicia de Coo
- Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Søren Jepsen
- Department of Periodontology, Operative and Preventive Dentistry, University of Bonn, Bonn, Germany
| | - Ines Kapferer-Seebacher
- Department of Dental and Oral Medicine and Cranio-Maxillofacial and Oral Surgery, University Hospital for Conservative Dentistry and Periodontology, Medical University Innsbruck, Innsbruck, Austria
| | - Henrik Dommisch
- Department of Periodontology, Oral Medicine and Oral Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Klaus Berger
- Institute of Epidemiology and Social Medicine, University Münster, Münster, Germany
| | - Matthias Laudes
- Institute of Diabetes and Clinical Metabolic Research, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Wolfgang Lieb
- Institute of Epidemiology, Christian-Albrechts-University, Kiel, Germany
| | - Bruno G Loos
- Department of Periodontology and Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Nathalie van der Velde
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Internal Medicine Section of Geriatrics, Amsterdam Medical Center, Amsterdam, The Netherlands
| | - Natasja van Schoor
- Department of Epidemiology and Data Science, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Lisette de Groot
- Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Juan Blanco
- Research Group of Medical-Surgery Dentistry (OMEQUI), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Angel Carracedo
- Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), Instituto de Salud Carlos III, Madrid, Spain
- Fundación Pública Galega de Medicina Xenómica, Sistema Galego de Saúde (SERGAS) Santiago de Compostela, Santiago de Compostela, Spain
- Genetics Research Group, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain
| | - Raquel Cruz
- Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), Instituto de Salud Carlos III, Madrid, Spain
| | - Arne S Schaefer
- Department of Periodontology, Oral Medicine and Oral Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
7
|
Zheng L, Chopra A, Weiner J, Beule D, Dommisch H, Schaefer AS. miRNAs from Inflamed Gingiva Link Gene Signaling to Increased MET Expression. J Dent Res 2023; 102:1488-1497. [PMID: 37822091 PMCID: PMC10683346 DOI: 10.1177/00220345231197984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023] Open
Abstract
Several array-based microRNA (miRNA) expression studies independently showed increased expression of miRNAs hsa-miR-130a-3p, -142-3p, -144-3p, -144-5p, -223-3p, -17-5p, and -30e-5p in gingiva affected by periodontal inflammation. We aimed to determine direct target genes and signaling pathways regulated by these miRNAs to identify processes relevant to gingival inflammatory responses and tissue homeostasis. We transfected miRNA mimics (mirVana) for each of the 7 miRNAs separately into human primary gingival fibroblasts cultured from 3 different donors. Following RNA sequencing, differential gene expression and second-generation gene set enrichment analyses were performed. miRNA inhibition and upregulation was validated at the transcript and protein levels using quantitative reverse transcriptase polymerase chain reaction, Western blotting, and reporter gene assays. All 7 miRNAs significantly increased expression of the gene MET proto-oncogene, receptor tyrosine kinase (MET). Expression of known periodontitis risk genes CPEB1, ABCA1, and ATP6V1C1 was significantly repressed by hsa-miR-130a-3p, -144-3p, and -144-5p, respectively. The genes WASL, ENPP5, ARL6IP1, and IDH1 showed the most significant and strongest downregulation after hsa-miR-142-3p, -17-5p, -223-3p, and -30e-5p transfection, respectively. The most significantly regulated gene set of each miRNA related to cell cycle (hsa-miRNA-144-3p and -5p [Padj = 4 × 10-40 and Padj = 4 × 10-6], -miR-17-5p [Padj = 9.5 × 10-23], -miR-30e-5p [Padj = 8.2 × 10-18], -miR-130a-3p [Padj = 5 × 10-15]), integrin cell surface interaction (-miR-223-3p [Padj = 2.4 × 10-7]), and interferon signaling (-miR-142-3p [Padj = 5 × 10-11]). At the end of acute inflammation, gingival miRNAs bring together complex regulatory networks that lead to increased expression of the gene MET. This underscores the importance of mesenchymal cell migration and invasion during gingival tissue remodeling and proliferation in restoring periodontal tissue homeostasis after active inflammation. MET, a receptor of the mitogenic hepatocyte growth factor fibroblast secreted, is a core gene of this process.
Collapse
Affiliation(s)
- L. Zheng
- Department of Periodontology, Oral Medicine and Oral Surgery, Institute for Dental and Craniofacial Sciences, Charité–University Medicine Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - A. Chopra
- Department of Periodontology, Oral Medicine and Oral Surgery, Institute for Dental and Craniofacial Sciences, Charité–University Medicine Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - J. Weiner
- Core Unit Bioinformatics, Berlin Institute of Health, Berlin, Germany
| | - D. Beule
- Core Unit Bioinformatics, Berlin Institute of Health, Berlin, Germany
| | - H. Dommisch
- Department of Periodontology, Oral Medicine and Oral Surgery, Institute for Dental and Craniofacial Sciences, Charité–University Medicine Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - A. S. Schaefer
- Department of Periodontology, Oral Medicine and Oral Surgery, Institute for Dental and Craniofacial Sciences, Charité–University Medicine Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
8
|
Circulating miRNAs as Epigenetic Mediators of Periodontitis and Preeclampsia Association. DISEASE MARKERS 2022; 2022:2771492. [PMID: 35860693 PMCID: PMC9293528 DOI: 10.1155/2022/2771492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/20/2022] [Accepted: 06/30/2022] [Indexed: 11/18/2022]
Abstract
Objective Periodontal disease has been associated with pregnancy complications including preeclampsia. This bioinformatic study is aimed at investigating the possible role of circulating microRNAs (miRNAs) as mediators of the association between maternal periodontal disease and preeclampsia. Methods Peripheral blood miRNA profiles of periodontitis and controls were sought from Gene Expression Omnibus (GEO), and differential expression analysis was performed. Experimentally validated circulating miRNAs associated with preeclampsia were determined from the Human MicroRNA Disease Database (HMDD v3.0). Venn diagrams were drawn to identify shared circulating differential miRNAs (DEmiRNAs). Significantly enriched target genes, KEGG pathways, and Gene Ontology (GO) terms for the set of shared DEmiRNA were predicted using miRNA enrichment analysis and annotation tool (miEAA v 2.0). Additionally, the shared DEmiRNA-enriched target genes were analyzed for enriched WikiPathways, BioCarta metabolic pathways, and tissue proteins in the human proteome map. Results Among 183 circulating DEmiRNA in periodontitis and 60 experimentally validated miRNA in preeclampsia, 9 shared DEmiRNA were identified. The top among 32 overrepresented target genes included MAFB, PSAP, and CDK5RAP2, top among 14 enriched KEGG pathways were renin-angiotensin system and graft-versus-host disease, and that among enriched 44 GO profiles included “positive regulation of epidermal growth factor-activated receptor activity” and “sequestering of calcium ion.” In the overrepresented target gene set, among 10 enriched WikiPathways, the top included “NAD metabolism, sirtuins, and aging” and “regulation of Wnt/B-catenin signaling by small molecule compounds” and PPAR-related mechanisms was top among 13 enriched BioCarta metabolic pathways. Conclusion A circulating 9-DEmiRNA set was significantly linked to both periodontitis and preeclampsia. Enrichment analysis identified specific genes, pathways, and functional mechanisms, which may be epigenetically altered and thereby mediate the biological association of periodontitis and preeclampsia.
Collapse
|