1
|
Tsadaris SA, Komatsu DE, Grubisic V, Ramos RL, Hadjiargyrou M. A GCaMP reporter mouse with chondrocyte specific expression of a green fluorescent calcium indicator. Bone 2024; 188:117234. [PMID: 39147354 PMCID: PMC11392458 DOI: 10.1016/j.bone.2024.117234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/08/2024] [Accepted: 08/11/2024] [Indexed: 08/17/2024]
Abstract
One of the major processes occurring during the healing of a fractured long bone is chondrogenesis, leading to the formation of the soft callus, which subsequently undergoes endochondral ossification and ultimately bridges the fracture site. Thus, understanding the molecular mechanisms of chondrogenesis can enhance our knowledge of the fracture repair process. One such molecular process is calciun (Ca++) signaling, which is known to play a critical role in the development and regeneration of multiple tissues, including bone, in response to external stimuli. Despite the existence of various mouse models for studying Ca++ signaling, none of them were designed to specifically examine the skeletal system or the various musculoskeletal cell types. As such, we generated a genetically engineered mouse model that is specific to cartilage (crossed with Col2a1 Cre mice) to study chondrocytes. Herein, we report on the characterization of this transgenic mouse line using conditional expression of GCaMP6f, a Ca++-indicator protein. Specifically, this mouse line exhibits increased GCaMP6f fluorescence following Ca++ binding in chondrocytes. Using this model, we show real-time Ca++ signaling in embryos, newborn and adult mice, as well as in fracture calluses. Further, robust expression of GCaMP6f in chondrocytes can be easily detected in embryos, neonates, adults, and fracture callus tissue sections. Finally, we also report on Ca++ signaling pathway gene expression, as well as real-time Ca++ transient measurements in fracture callus chondrocytes. Taken together, these mice provide a new experimental tool to study chondrocyte-specific Ca++ signaling during skeletal development and regeneration, as well as various in vitro perturbations.
Collapse
Affiliation(s)
- Sotirios A Tsadaris
- Department of Biological & Chemical Sciences, New York Institute of Technology, Old Westbury, NY, USA
| | - David E Komatsu
- Department of Orthopaedics and Rehabilitation, Stony Brook University, Stony Brook, NY, USA
| | - Vladimir Grubisic
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, USA; Center for Biomedical Innovation, College of Osteopathic Medicine, New York Institute of Technology, USA
| | - Raddy L Ramos
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, USA
| | - Michael Hadjiargyrou
- Department of Biological & Chemical Sciences, New York Institute of Technology, Old Westbury, NY, USA.
| |
Collapse
|
2
|
Voss JO, Pivetta F, Elkilany A, Schmidt-Bleek K, Duda GN, Odaka K, Dimitriou IM, Ort MJ, Streitz M, Heiland M, Koerdt S, Reinke S, Geissler S. Prognostic implications of a CD8 + T EMRA to CD4 +T reg imbalance in mandibular fracture healing: a prospective analysis of immune profiles. Front Immunol 2024; 15:1476009. [PMID: 39507538 PMCID: PMC11537918 DOI: 10.3389/fimmu.2024.1476009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 10/08/2024] [Indexed: 11/08/2024] Open
Abstract
Introduction Open reduction and fixation are the standard of care for treating mandibular fractures and usually lead to successful healing. However, complications such as delayed healing, non-union, and infection can compromise patient outcomes and increase healthcare costs. The initial inflammatory response, particularly the response involving specific CD8+ T cell subpopulations, is thought to play a critical role in healing long bone fractures. In this study, we investigated the role of these immune cell profiles in patients with impaired healing of mandibular fractures. Materials and methods In this prospective study, we included patients with mandibular fractures surgically treated at Charité - Universitätsmedizin Berlin, Germany, between September 2020 and December 2022. We used follow-up imaging and clinical assessment to evaluate bone healing. In addition, we analyzed immune cell profiles using flow cytometry and quantified cytokine levels using electrochemiluminescence-based multiplex immunoassays in preoperative blood samples. Results Out of the 55 patients enrolled, 38 met the inclusion criteria (30 men and 8 women; mean age 32.18 years). Radiographic evaluation revealed 31 cases of normal healing and 7 cases of incomplete consolidation, including 1 case of non-union. Patients with impaired healing exhibited increased levels of terminally differentiated effector memory CD8+ T cells (TEMRA) and a higher TEMRA to regulatory T cell (Treg) ratio, compared with those with normal healing. Conclusions Our analysis of mandibular fracture cases confirms our initial hypothesis derived from long bone fracture healing: monitoring the TEMRA to Treg ratio in preoperative blood can be an early indicator of patients at risk of impaired bone healing. Radiologic follow-up enabled us to detect healing complications that might not be detected by clinical assessment only. This study highlights the potential of individual immune profiles to predict successful healing and may form the basis for future strategies to manage healing complications.
Collapse
Affiliation(s)
- Jan Oliver Voss
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Oral and Maxillofacial Surgery, Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, BIH Academy, Clinician Scientist Program, Berlin, Germany
| | - Fabio Pivetta
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Department of Radiology, Berlin, Germany
| | - Aboelyazid Elkilany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Department of Radiology, Berlin, Germany
| | - Katharina Schmidt-Bleek
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Julius Wolff Institute (JWI), Berlin, Germany
- Berlin Institute of Health at Charité Universitätsmedizin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany
| | - Georg N. Duda
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Julius Wolff Institute (JWI), Berlin, Germany
- Berlin Institute of Health at Charité Universitätsmedizin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany
| | - Kento Odaka
- Department of Oral and Maxillofacial Radiology, Tokyo Dental College, Chiyoda-Ku, Tokyo, Japan
| | - Ioanna Maria Dimitriou
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Julius Wolff Institute (JWI), Berlin, Germany
- Berlin Institute of Health at Charité Universitätsmedizin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Berlin, Germany
| | - Melanie Jasmin Ort
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Julius Wolff Institute (JWI), Berlin, Germany
- Berlin Institute of Health at Charité Universitätsmedizin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Berlin, Germany
| | - Mathias Streitz
- Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Greifswald – Insel Riems, Germany
| | - Max Heiland
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Oral and Maxillofacial Surgery, Berlin, Germany
| | - Steffen Koerdt
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Oral and Maxillofacial Surgery, Berlin, Germany
| | - Simon Reinke
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Julius Wolff Institute (JWI), Berlin, Germany
- Berlin Institute of Health at Charité Universitätsmedizin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany
| | - Sven Geissler
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Julius Wolff Institute (JWI), Berlin, Germany
- Berlin Institute of Health at Charité Universitätsmedizin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany
| |
Collapse
|
3
|
Hu Y, Li H. Effects of unilateral nasal obstruction on mandibular condyle in mice of different ages: An exploration based on H-type angiogenesis coupling osteogenesis. FASEB J 2024; 38:e70082. [PMID: 39344592 DOI: 10.1096/fj.202401273r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/01/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024]
Abstract
Nasal obstruction leads to a hypoxia condition throughout the entire body. In this study, the unilateral nasal obstruction (UNO) mouse model was established by blocking the left nostril of mice. The aim of this study was to investigate the effects of UNO-induced hypoxia on mandibular condyle in juvenile (3-week-old), adolescent (6-week-old) and adult (12-week-old) male C57BL/6J mice from the perspective of H-type angiogenesis coupling osteogenesis. Firstly, UNO exerted a significant inhibitory effect on weight gain in mice of all ages. However, only in adolescent mice did UNO have an obvious detrimental effect on femoral bone mass accrual. Subsequently, micro-computed tomography (CT) analysis of mandibular condylar bone mass revealed that UNO significantly retarded condylar head volume gain but increased condylar head trabecular number (Tb.N) in juvenile and adolescent mice. Furthermore, UNO promoted the ratio of proliferative layer to cartilage layer in condylar cartilage and facilitated the chondrocyte-to-osteoblast transformation in juvenile and adolescent mice. Moreover, although UNO enhanced the positive expression of hypoxia-inducible factor (HIF)-1α in the condylar subchondral bone of mice in all ages, an increase in H-type vessels and Osterix+ cells was only detected in juvenile and adolescent mice. In summary, on the one hand, in terms of condylar morphology, UNO has a negative effect on condylar growth, hindering the increase in condylar head volume in juvenile and adolescent mice. However, on the other hand, in terms of condylar microstructure, UNO has a positive effect on condylar osteogenesis, promoting the increase of condylar Tb.N, chondrocyte-to-osteoblast transformation, HIF-1α expression, H-type angiogenesis and Osterix+ cells in juvenile and adolescent mice. Although the changes in condylar morphology and microstructure caused by UNO have not yet been fully elucidated, these findings improve our current understanding of the effects of UNO on condylar bone homeostasis.
Collapse
Affiliation(s)
- Yun Hu
- Department of Orthodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Hegang Li
- Department of Orthodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| |
Collapse
|
4
|
Zhang S, Zhu J, Jin S, Sun W, Ji W, Chen Z. Jawbone periosteum-derived cells with high osteogenic potential controlled by R-spondin 3. FASEB J 2024; 38:e70079. [PMID: 39340242 DOI: 10.1096/fj.202400988rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/04/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024]
Abstract
The jawbone periosteum, the easily accessible tissue responding to bone repair, has been overlooked in the recent development of cell therapy for jawbone defect reconstruction. Therefore, this study aimed to elucidate the in vitro and in vivo biological characteristics of jawbone periosteum-derived cells (jb-PDCs). For this purpose, we harvested the jb-PDCs from 8-week-old C57BL/6 mice. The in vitro cultured jb-PDCs (passages 1 and 3) contained skeletal stem/progenitor cells and exhibited clonogenicity and tri-lineage differentiation capacity. When implanted in vivo, the jb-PDCs (passage 3) showed evident ectopic bone formation after 4-week subcutaneous implantation, and active contribution to repair the critical-size jawbone defects in mice. Molecular profiling suggested that R-spondin 3 was strongly associated with the superior in vitro and in vivo osteogenic potentials of jb-PDCs. Overall, our study highlights the significance of comprehending the biological characteristics of the jawbone periosteum, which could pave the way for innovative cell-based therapies for the reconstruction of jawbone defects.
Collapse
Affiliation(s)
- Shu Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jingxian Zhu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Siyu Jin
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Wei Sun
- Department of Implantology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Wei Ji
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Implantology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhi Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
5
|
Song H, Hao Y, Xie Q, Chen X, Li N, Wang J, Zhang X, Zhang Y, Hong J, Xue S, Zhang P, Xie S, Wang X. Hoxc10-mediated 'positional memory' regulates cartilage formation subsequent to femoral heterotopic grafting. J Cell Mol Med 2024; 28:e70140. [PMID: 39434203 PMCID: PMC11493555 DOI: 10.1111/jcmm.70140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 09/18/2024] [Accepted: 10/01/2024] [Indexed: 10/23/2024] Open
Abstract
The Hox gene plays a crucial role in the bone development, determining their structure and morphology. Limb bone grafts expressing Hox positive genes are commonly used for free transplantation to repair Hox negative mandibular critical bone defects. However, the specific role of original Hox genes in newly formed bone during the cross-layer bone grafting healing process remains unexplored. Our findings demonstrate that femurs ectopically grafted into the mandibular environment retained a significant ability to differentiate into cartilage and form cartilaginous callus, which may be a key factor contributing to differences in bone graft healing. Hoxc10, an embryonic layer-specific genes, regulates cartilage formation during bone healing. Mechanistically, we observed Hoxc10 retention in co-cultured femoral BMSCs. Knocking out Hoxc10 narrows the bone gap and reduces cartilage formation. In summary, we reveal Hoxc10's 'positional memory' after adult cross-layer bone graft, influencing the outcomes of autologous bone graft.
Collapse
Affiliation(s)
- Haoyue Song
- Shanxi Medical University School and Hospital of StomatologyTaiyuanChina
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New MaterialsTaiyuanChina
| | - Yujia Hao
- Shanxi Medical University School and Hospital of StomatologyTaiyuanChina
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New MaterialsTaiyuanChina
| | - Qingpeng Xie
- Shanxi Medical University School and Hospital of StomatologyTaiyuanChina
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New MaterialsTaiyuanChina
| | - Xiaohang Chen
- Shanxi Medical University School and Hospital of StomatologyTaiyuanChina
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New MaterialsTaiyuanChina
| | - Na Li
- Shanxi Medical University School and Hospital of StomatologyTaiyuanChina
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New MaterialsTaiyuanChina
| | - Jia Wang
- Shanxi Medical University School and Hospital of StomatologyTaiyuanChina
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New MaterialsTaiyuanChina
| | - Xiaoxuan Zhang
- Shanxi Medical University School and Hospital of StomatologyTaiyuanChina
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New MaterialsTaiyuanChina
| | - Yuan Zhang
- Shanxi Medical University School and Hospital of StomatologyTaiyuanChina
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New MaterialsTaiyuanChina
| | - Jinjia Hong
- Shanxi Medical University School and Hospital of StomatologyTaiyuanChina
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New MaterialsTaiyuanChina
| | - Shuyun Xue
- Shanxi Medical University School and Hospital of StomatologyTaiyuanChina
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New MaterialsTaiyuanChina
| | - Pengfei Zhang
- Shanxi Medical University School and Hospital of StomatologyTaiyuanChina
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New MaterialsTaiyuanChina
| | - Si Xie
- Shanxi Medical University School and Hospital of StomatologyTaiyuanChina
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New MaterialsTaiyuanChina
| | - Xing Wang
- Shanxi Medical University School and Hospital of StomatologyTaiyuanChina
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New MaterialsTaiyuanChina
| |
Collapse
|
6
|
Ramteke P, Watson B, Toci M, Tran VA, Johnston S, Tsingas M, Barve RA, Mitra R, Loeser RF, Collins JA, Risbud MV. SIRT6 loss causes intervertebral disc degeneration in mice by promoting senescence and SASP status. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.612072. [PMID: 39314282 PMCID: PMC11419082 DOI: 10.1101/2024.09.09.612072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Intervertebral disc degeneration is a major risk factor contributing to chronic low back and neck pain. While the etiological factors for disc degeneration vary, age is still one of the most important risk factors. Recent studies have shown the promising role of SIRT6 in mammalian aging and skeletal tissue health, however its role in the intervertebral disc health remains unexplored. We investigated the contribution of SIRT6 to disc health by studying the age-dependent spinal phenotype of mice with conditional deletion of Sirt6 in the disc (Acan CreERT2 ; Sirt6 fl/fl ). Histological studies showed a degenerative phenotype in knockout mice compared to Sirt6 fl/fl control mice at 12 months which became pronounced at 24 months. RNA-Seq analysis of NP and AF tissues, quantitative histone analysis, and in vitro multiomics employing RNA-seq with ATAC-seq revealed that SIRT6-loss resulted in changes in acetylation and methylation status of specific Histone 3 lysine residues, thereby affecting DNA accessibility and transcriptomic landscape. A decrease in autophagy and an increase in DNA damage were also noted in Sirt6-deficient cells. Further mechanistic insights revealed that loss of SIRT6 increased senescence and SASP burden in the disc characterized by increased p21, γH2AX, IL-6, and TGF-β abundance. Taken together our study highlights the contribution of SIRT6 in modulating DNA damage, autophagy and cell senescence, and its importance in maintaining disc health during aging thereby underscoring it as a potential therapeutic target to treat intervertebral disc degeneration.
Collapse
Affiliation(s)
- Pranay Ramteke
- Department of Orthopedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Bahiyah Watson
- Department of Orthopedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Mallory Toci
- Department of Orthopedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Victoria A Tran
- Department of Orthopedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Shira Johnston
- Department of Orthopedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Maria Tsingas
- Department of Orthopedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Ruteja A. Barve
- Department of Genetics, Genome Technology Access Centre at the McDonnell Genome Institute, Washington University, School of Medicine, St. Louis, MO, 63110, USA
| | - Ramkrishna Mitra
- Department of Pharmacology and Biostatistics, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Richard F. Loeser
- Thurston Arthritis Research Center and the Division of Rheumatology, Allergy, and Immunology, 3300 Thurston Building, Campus Box 7280, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7280, USA
| | - John A. Collins
- Department of Orthopedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Makarand V. Risbud
- Department of Orthopedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| |
Collapse
|
7
|
Nelson AL, Mancino C, Gao X, Choe JA, Chubb L, Williams K, Czachor M, Marcucio R, Taraballi F, Cooke JP, Huard J, Bahney C, Ehrhart N. β-catenin mRNA encapsulated in SM-102 lipid nanoparticles enhances bone formation in a murine tibia fracture repair model. Bioact Mater 2024; 39:273-286. [PMID: 38832305 PMCID: PMC11145078 DOI: 10.1016/j.bioactmat.2024.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 06/05/2024] Open
Abstract
Fractures continue to be a global economic burden as there are currently no osteoanabolic drugs approved to accelerate fracture healing. In this study, we aimed to develop an osteoanabolic therapy which activates the Wnt/β-catenin pathway, a molecular driver of endochondral ossification. We hypothesize that using an mRNA-based therapeutic encoding β-catenin could promote cartilage to bone transformation formation by activating the canonical Wnt signaling pathway in chondrocytes. To optimize a delivery platform built on recent advancements in liposomal technologies, two FDA-approved ionizable phospholipids, DLin-MC3-DMA (MC3) and SM-102, were used to fabricate unique ionizable lipid nanoparticle (LNP) formulations and then tested for transfection efficacy both in vitro and in a murine tibia fracture model. Using firefly luciferase mRNA as a reporter gene to track and quantify transfection, SM-102 LNPs showed enhanced transfection efficacy in vitro and prolonged transfection, minimal fracture interference and no localized inflammatory response in vivo over MC3 LNPs. The generated β-cateninGOF mRNA encapsulated in SM-102 LNPs (SM-102-β-cateninGOF mRNA) showed bioactivity in vitro through upregulation of downstream canonical Wnt genes, axin2 and runx2. When testing SM-102-β-cateninGOF mRNA therapeutic in a murine tibia fracture model, histomorphometric analysis showed increased bone and decreased cartilage composition with the 45 μg concentration at 2 weeks post-fracture. μCT testing confirmed that SM-102-β-cateninGOF mRNA promoted bone formation in vivo, revealing significantly more bone volume over total volume in the 45 μg group. Thus, we generated a novel mRNA-based therapeutic encoding a β-catenin mRNA and optimized an SM-102-based LNP to maximize transfection efficacy with a localized delivery.
Collapse
Affiliation(s)
- Anna Laura Nelson
- Steadman Philippon Research Institute (SPRI), Center for Regenerative and Personalized Medicine, Vail, CO, USA
- Colorado State University, School of Biomedical Engineering, Fort Collins CO, USA
| | - Chiara Mancino
- Houston Methodist Research Institute, Center for Musculoskeletal Regeneration, Houston TX, USA
| | - Xueqin Gao
- Steadman Philippon Research Institute (SPRI), Center for Regenerative and Personalized Medicine, Vail, CO, USA
| | - Joshua A. Choe
- University of Wisconsin-Madison, Department of Orthopedics and Rehabilitation, Department of Biomedical Engineering, Medical Scientist Training Program, Madison, WI, USA
| | - Laura Chubb
- Colorado State University, Department of Clinical Sciences, Fort Collins CO, USA
| | - Katherine Williams
- Colorado State University, Department of Microbiology, Immunology, and Pathology, Fort Collins, CO, USA
| | - Molly Czachor
- Steadman Philippon Research Institute (SPRI), Center for Regenerative and Personalized Medicine, Vail, CO, USA
| | - Ralph Marcucio
- University of California, San Francisco (UCSF), Orthopaedic Trauma Institute, San Francisco, CA, USA
| | - Francesca Taraballi
- Houston Methodist Research Institute, Center for Musculoskeletal Regeneration, Houston TX, USA
| | - John P. Cooke
- Houston Methodist Research Institute, Center for RNA Therapeutics, Department of Cardiovascular Sciences, Houston, TX, USA
| | - Johnny Huard
- Steadman Philippon Research Institute (SPRI), Center for Regenerative and Personalized Medicine, Vail, CO, USA
- Colorado State University, Department of Clinical Sciences, Fort Collins CO, USA
| | - Chelsea Bahney
- Steadman Philippon Research Institute (SPRI), Center for Regenerative and Personalized Medicine, Vail, CO, USA
- Colorado State University, Department of Clinical Sciences, Fort Collins CO, USA
- University of California, San Francisco (UCSF), Orthopaedic Trauma Institute, San Francisco, CA, USA
| | - Nicole Ehrhart
- Colorado State University, School of Biomedical Engineering, Fort Collins CO, USA
- Colorado State University, Department of Clinical Sciences, Fort Collins CO, USA
- Colorado State University, Department of Microbiology, Immunology, and Pathology, Fort Collins, CO, USA
| |
Collapse
|
8
|
Matsumura D, Kawao N, Yamada A, Okumoto K, Ohira T, Mizukami Y, Goto K, Kaji H. Tmem119 deficiency delays bone repair in mice. Bone 2024; 186:117177. [PMID: 38942344 DOI: 10.1016/j.bone.2024.117177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/12/2024] [Accepted: 06/24/2024] [Indexed: 06/30/2024]
Abstract
Tmem119 was identified as a bone anabolic factor in osteoblasts, however the roles of Tmem119 on bone repair have remained unknown. Therefore, we herein investigated the roles of Tmem119 on bone repair by examining the bone repair process after a femoral bone defect using Tmem119-deficient mice. In Tmem119-deficient mice, bone repair after a femoral bone defect was significantly delayed 10 and 14 days after bone injury in female and male mice with 3-dimensional micro-computed tomography analyses, respectively. The number of alkaline phosphatase-positive cells at the damaged sites was significantly decreased 7 days after bone injury in Tmem119-deficient mice, although the number of Osterix-positive cells was not significantly different 4 days after bone injury. The number of tartrate-resistant acid phosphatase-positive multinucleated cells as well as the number and luminal area of CD31-positive vessels at the damaged sites were not significantly different between Tmem119-deficient and wild-type mice. The present study first showed that Tmem119 deficiency delayed bone repair partly through a decrease in the osteoblastic bone formation of differentiated osteoblasts.
Collapse
Affiliation(s)
- Daichi Matsumura
- Department of Orthopaedic Surgery, Kindai University Faculty of Medicine, Osakasayama, Japan; Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Naoyuki Kawao
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Ayaka Yamada
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Katsumi Okumoto
- Life Science Research Institute, Kindai University, Osakasayama, Japan
| | - Takashi Ohira
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Yuya Mizukami
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Koji Goto
- Department of Orthopaedic Surgery, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Hiroshi Kaji
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osakasayama, Japan.
| |
Collapse
|
9
|
Zhu J, Zhang S, Jin S, Huang C, Shi B, Chen Z, Ji W. Endochondral Repair of Jawbone Defects Using Periosteal Cell Spheroids. J Dent Res 2024; 103:31-41. [PMID: 37968792 DOI: 10.1177/00220345231205273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023] Open
Abstract
Recapitulation of the natural healing process is receiving increasing recognition as a strategy to induce robust tissue regeneration. Endochondral ossification has been recognized as an essential reparative approach in natural jawbone defect healing. However, such an approach has been overlooked in the recent development of cell-based therapeutics for jawbone repair. Therefore, this study aimed to explore a bioinspired stem cell-based strategy for jawbone repair by mimicking the mesenchymal condensation of progenitor cells during the early endochondral ossification process. For this purpose, passage 3 of jawbone periosteum-derived cells (jb-PDCs) was cultured in our previously reported nonadherent microwells (200 µm in diameter, 148 µm in depth, and 100 µm space in between) and self-assembled into spheroids with a diameter of 96.4 ± 5.8 µm after 48 h. Compared to monolayer culture, the jb-PDC spheroids showed a significant reduction of stemness marker expression evidenced by flow cytometry. Furthermore, a significant upregulation of chondrogenic transcription factor SOX9 in both gene and protein levels was observed in the jb-PDC spheroids after 48 h of chondrogenic induction. RNA sequencing and Western blotting analysis further suggested that the enhanced SOX9-mediated chondrogenic differentiation in jb-PDC spheroids was attributed to the activation of the p38 MAPK pathway. Impressively, inhibition of p38 kinase activity significantly attenuated chondrogenic differentiation jb-PDC spheroids, evidenced by a significant decline of SOX9 in both gene and protein levels. Strikingly, the jb-PDC spheroids implanted in 6- to 8-wk-old male C57BL/6 mice with critical-size jawbone defects (1.8 mm in diameter) showed an evident contribution to cartilaginous callus formation after 1 wk, evidenced by histological analysis. Furthermore, micro-computed tomography analysis showed that the jb-PDC spheroids significantly accelerated bone healing after 2 wk in the absence of exogenous growth factors. In sum, the presented findings represent the successful development of cell-based therapeutics to reengineer the endochondral bone repair process and illustrate the potential application to improve bone repair and regeneration in the craniofacial skeleton.
Collapse
Affiliation(s)
- J Zhu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - S Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - S Jin
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - C Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - B Shi
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
- Department of Implantology, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Z Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - W Ji
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
- Department of Implantology, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
10
|
Zhang M, Fukushima Y, Nozaki K, Nakanishi H, Deng J, Wakabayashi N, Itaka K. Enhancement of bone regeneration by coadministration of angiogenic and osteogenic factors using messenger RNA. Inflamm Regen 2023; 43:32. [PMID: 37340499 DOI: 10.1186/s41232-023-00285-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/08/2023] [Indexed: 06/22/2023] Open
Abstract
BACKGROUND Bone defects remain a challenge today. In addition to osteogenic activation, the crucial role of angiogenesis has also gained attention. In particular, vascular endothelial growth factor (VEGF) is likely to play a significant role in bone regeneration, not only to restore blood supply but also to be directly involved in the osteogenic differentiation of mesenchymal stem cells. In this study, to produce additive angiogenic-osteogenic effects in the process of bone regeneration, VEGF and Runt-related transcription factor 2 (Runx2), an essential transcription factor for osteogenic differentiation, were coadministered with messenger RNAs (mRNAs) to bone defects in the rat mandible. METHODS The mRNAs encoding VEGF or Runx2 were prepared via in vitro transcription (IVT). Osteogenic differentiation after mRNA transfection was evaluated using primary osteoblast-like cells, followed by an evaluation of the gene expression levels of osteogenic markers. The mRNAs were then administered to a bone defect prepared in the rat mandible using our original cationic polymer-based carrier, the polyplex nanomicelle. The bone regeneration was evaluated by micro-computerized tomography (μCT) imaging, and histologic analyses. RESULTS Osteogenic markers such as osteocalcin (Ocn) and osteopontin (Opn) were significantly upregulated after mRNA transfection. VEGF mRNA was revealed to have a distinct osteoblastic function similar to that of Runx2 mRNA, and the combined use of the two mRNAs resulted in further upregulation of the markers. After in vivo administration into the bone defect, the two mRNAs induced significant enhancement of bone regeneration with increased bone mineralization. Histological analyses using antibodies against the Cluster of Differentiation 31 protein (CD31), alkaline phosphatase (ALP), or OCN revealed that the mRNAs induced the upregulation of osteogenic markers in the defect, together with increased vessel formation, leading to rapid bone formation. CONCLUSIONS These results demonstrate the feasibility of using mRNA medicines to introduce various therapeutic factors, including transcription factors, into target sites. This study provides valuable information for the development of mRNA therapeutics for tissue engineering.
Collapse
Affiliation(s)
- Maorui Zhang
- Department of Biofunction Research, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Tokyo, 1010062, Japan
- Department of Advanced Prosthodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, 1138549, Japan
- Department of Oral Implantology, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Yuta Fukushima
- Department of Biofunction Research, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Tokyo, 1010062, Japan
| | - Kosuke Nozaki
- Department of Advanced Prosthodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, 1138549, Japan
| | - Hideyuki Nakanishi
- Department of Biofunction Research, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Tokyo, 1010062, Japan
| | - Jia Deng
- Department of Biofunction Research, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Tokyo, 1010062, Japan
- Department of Masticatory Function and Health Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8549, Japan
| | - Noriyuki Wakabayashi
- Department of Advanced Prosthodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, 1138549, Japan
| | - Keiji Itaka
- Department of Biofunction Research, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Tokyo, 1010062, Japan.
- Clinical Biotechnology Team, Center for Infectious Disease Education and Research (CiDER), Osaka University, Osaka, 565-0871, Japan.
| |
Collapse
|
11
|
Liu Z, Zhu J, Li Z, Liu H, Fu C. Biomaterial scaffolds regulate macrophage activity to accelerate bone regeneration. Front Bioeng Biotechnol 2023; 11:1140393. [PMID: 36815893 PMCID: PMC9932600 DOI: 10.3389/fbioe.2023.1140393] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023] Open
Abstract
Bones are important for maintaining motor function and providing support for internal organs. Bone diseases can impose a heavy burden on individuals and society. Although bone has a certain ability to repair itself, it is often difficult to repair itself alone when faced with critical-sized defects, such as severe trauma, surgery, or tumors. There is still a heavy reliance on metal implants and autologous or allogeneic bone grafts for bone defects that are difficult to self-heal. However, these grafts still have problems that are difficult to circumvent, such as metal implants that may require secondary surgical removal, lack of bone graft donors, and immune rejection. The rapid advance in tissue engineering and a better comprehension of the physiological mechanisms of bone regeneration have led to a new focus on promoting endogenous bone self-regeneration through the use of biomaterials as the medium. Although bone regeneration involves a variety of cells and signaling factors, and these complex signaling pathways and mechanisms of interaction have not been fully understood, macrophages undoubtedly play an essential role in bone regeneration. This review summarizes the design strategies that need to be considered for biomaterials to regulate macrophage function in bone regeneration. Subsequently, this review provides an overview of therapeutic strategies for biomaterials to intervene in all stages of bone regeneration by regulating macrophages.
Collapse
Affiliation(s)
- Zongtai Liu
- Department of Spine Surgery, First Hospital of Jilin University, Changchun, China
- Department of Orthopedics, Affiliated Hospital of Beihua University, Jilin, China
| | - Jiabo Zhu
- Department of Orthopedics, Affiliated Hospital of Beihua University, Jilin, China
| | - Zhuohan Li
- Department of Gynecology, Affiliated Hospital of Beihua University, Jilin, China
| | - Hanyan Liu
- Department of Orthopedics, Baicheng Central Hospital, Baicheng, China
| | - Changfeng Fu
- Department of Spine Surgery, First Hospital of Jilin University, Changchun, China
| |
Collapse
|