1
|
Aoba T, Fejerskov O. Dental fluorosis: chemistry and biology. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 2003; 13:155-70. [PMID: 12097358 DOI: 10.1177/154411130201300206] [Citation(s) in RCA: 241] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This review aims at discussing the pathogenesis of enamel fluorosis in relation to a putative linkage among ameloblastic activities, secreted enamel matrix proteins and multiple proteases, growing enamel crystals, and fluid composition, including calcium and fluoride ions. Fluoride is the most important caries-preventive agent in dentistry. In the last two decades, increasing fluoride exposure in various forms and vehicles is most likely the explanation for an increase in the prevalence of mild-to-moderate forms of dental fluorosis in many communities, not the least in those in which controlled water fluoridation has been established. The effects of fluoride on enamel formation causing dental fluorosis in man are cumulative, rather than requiring a specific threshold dose, depending on the total fluoride intake from all sources and the duration of fluoride exposure. Enamel mineralization is highly sensitive to free fluoride ions, which uniquely promote the hydrolysis of acidic precursors such as octacalcium phosphate and precipitation of fluoridated apatite crystals. Once fluoride is incorporated into enamel crystals, the ion likely affects the subsequent mineralization process by reducing the solubility of the mineral and thereby modulating the ionic composition in the fluid surrounding the mineral. In the light of evidence obtained in human and animal studies, it is now most likely that enamel hypomineralization in fluorotic teeth is due predominantly to the aberrant effects of excess fluoride on the rates at which matrix proteins break down and/or the rates at which the by-products from this degradation are withdrawn from the maturing enamel. Any interference with enamel matrix removal could yield retarding effects on the accompanying crystal growth through the maturation stages, resulting in different magnitudes of enamel porosity at the time of tooth eruption. Currently, there is no direct proof that fluoride at micromolar levels affects proliferation and differentiation of enamel organ cells. Fluoride does not seem to affect the production and secretion of enamel matrix proteins and proteases within the dose range causing dental fluorosis in man. Most likely, the fluoride uptake interferes, indirectly, with the protease activities by decreasing free Ca(2+) concentration in the mineralizing milieu. The Ca(2+)-mediated regulation of protease activities is consistent with the in situ observations that (a) enzymatic cleavages of the amelogenins take place only at slow rates through the secretory phase with the limited calcium transport and that, (b) under normal amelogenesis, the amelogenin degradation appears to be accelerated during the transitional and early maturation stages with the increased calcium transport. Since the predominant cariostatic effect of fluoride is not due to its uptake by the enamel during tooth development, it is possible to obtain extensive caries reduction without a concomitant risk of dental fluorosis. Further efforts and research are needed to settle the currently uncertain issues, e.g., the incidence, prevalence, and causes of dental or skeletal fluorosis in relation to all sources of fluoride and the appropriate dose levels and timing of fluoride exposure for prevention and control of dental fluorosis and caries.
Collapse
Affiliation(s)
- T Aoba
- The Nippon Dental University, Department of Pathology, 1-9-20 Fujimi, Chiyoda-ku, Tokyo 102, Japan.
| | | |
Collapse
|
2
|
Li L. The biochemistry and physiology of metallic fluoride: action, mechanism, and implications. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 2003; 14:100-14. [PMID: 12764073 DOI: 10.1177/154411130301400204] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Fluoride is a well-known G protein activator. Activation of heterotrimeric GTP-binding proteins by fluoride requires trace amounts of Al3+ or Be2+ ions. AlFx mimics a gamma-phosphate at its transition state in a Galpha protein and is therefore able to inhibit its GTPase activity. AlFx also forms complexes with small GTP-binding proteins in the presence of their GTPase-activating proteins (GAP). As phosphate analogs, AlFx or BeFx affect the activity of a variety of phosphoryl transfer enzymes. Most of these enzymes are fundamentally important in cell signal transduction or energy metabolism. Al3+ and F- tend to form stable complexes in aqueous solution. The exact structure and concentration of AlFx depend on the pH and the amount of F- and Al3+ in the solution. Humans are exposed to both F and Al. It is possible that Al-F complexes may be formed in vivo, or formed in vitro prior to their intake by humans. Al-F complexes may play physiological or pathological roles in bone biology, fluorosis, neurotoxicity, and oral diseases such as dental caries and periodontal disease. The aim of this review is to discuss the basic chemical, biochemical, and toxicological properties of metallic fluoride, to explore its potential physiological and clinical implications.
Collapse
Affiliation(s)
- Liang Li
- Faculty of Dentistry, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
3
|
Aoba T. The effect of fluoride on apatite structure and growth. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 1997; 8:136-53. [PMID: 9167089 DOI: 10.1177/10454411970080020301] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Fluoride participates in many aspects of calcium phosphate formation in vivo and has enormous effects on the process and on the nature and properties of formed mineral. The most well-documented effect of fluoride is that this ion substitutes for a column hydroxyl in the apatite structure, giving rise to a reduction of crystal volume and a concomitant increase in structural stability. In the process of enamel mineralization during amelogenesis (a unique model for the cell-mediated formation of well-crystallized carbonatoapatite), free fluoride ions in the fluid phase are supposed to accelerate the hydrolysis of acidic precursor(s) and increase the driving force for the growth of apatitic mineral. Once fluoride is incorporated into the enamel mineral, the ion likely affects the subsequent mineralization process by reducing the solubility of the mineral and thereby modulating the ionic composition in the fluid surrounding the mineral, and enhancing the matrix protein-mineral interaction. But excess fluoride leads to anomalous enamel formation by retarding tissue maturation. It is worth noting that enameloid/enamel minerals found in vertebrate teeth have a wide range of CO3 and fluoride substitutions. In the evolutionary process from elasmobranch through enameloid to mammalian enamel, the biosystems appear to develop regulatory functions for limiting the fluoridation of the formed mineral, but this development is accompanied by an increase of carbonate substitution or defects in the mineral. In research on the cariostatic effect of fluoride, considerable emphasis is placed on the roles of free fluoride ions (i.e., preventing the dissolution and accelerating the kinetics of remineralization) in the oral fluid bathing tooth mineral. Fluoride also has been used for the treatment of osteoporosis, but much still remains to be learned about maximizing the benefit and minimizing the risk of fluoride when used as a public health measure.
Collapse
Affiliation(s)
- T Aoba
- Nippon Dental University, Department of Pathology, Tokyo, Japan
| |
Collapse
|
4
|
Zhou R, Zaki AE, Eisenmann DR. Morphometry and autoradiography of altered rat enamel protein processing due to chronic exposure to fluoride. Arch Oral Biol 1996; 41:739-47. [PMID: 9022911 DOI: 10.1016/s0003-9969(96)00078-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Female Sprague-Dawley rats had 6 weeks of 0 (control), 75 or 100 parts/10(6) sodium fluoride in their drinking water. Whole mandibular incisors were removed, fixed, demineralized and sections prepared for light-microscopic morphometric analysis of dose-related alterations in enamel protein retention. Other rats given 0 and 75 parts/10(6) only (control and experimental groups) were used for autoradiographic evaluation of alterations in enamel protein removal 35S-methionine was applied directly over secretory ameloblasts at the end of the fifth week of fluoride exposure. Incisors were removed either 5 or 7 days later and processed for autoradiographic analysis. The results indicated: (1) extended retention of enamel proteins in fluoride-exposed maturation enamel as well as reduced enamel protein synthesis and/or secretion in the secretory stage; (2) negative linear correlation between extended enamel protein retention and reduced enamel protein secretion among groups; and (3) repression of enamel protein removal. The data are also consistent with the concept that the fluoride effect is multifactorial.
Collapse
Affiliation(s)
- R Zhou
- Department of Oral Biology, University of Illinois at Chicago 60612, USA
| | | | | |
Collapse
|
5
|
Abstract
BACKGROUND Enamel mineralization taking place during amelogenesis is a unique model to investigate carbonatoapatite formation in vivo. The abundance of proteinaceous crystal growth inhibitors, in particular amelogenins, contributes significantly to the mineralization process. Their putative roles are to prevent random proliferation of crystal nuclei and to regulate the growth kinetics and orientation of the formed enamel crystals. METHODS The enamel fluid surrounding the forming enamel crystals contains high concentrations of carbonate and magnesium ions, both of which seem to modulate the mineralization process. Particularly, Mg ions can adsorb onto enamel crystal surfaces in a manner to compete with Ca ions. Enamel mineral formed during amelogenesis is featured as calcium-deficient, acid phosphate-rich carbonatoapatites. Currently the most putative stoichiometry model for enamel mineral is (Ca)5-x(HPO4)v(CO3)w(PO4)3-x (OH)1-x. RESULTS Very significant changes in the morphology, stoichiometry, and solubility of enamel crystals occur during the various stages of amelogenesis. The early enamel mineralization comprises two events: the initial precipitation of the well-documented thin ribbons and the subsequent overgrowth of apatite crystals on those templates. The thin ribbons precipitated in the vicinity of the secretory ameloblasts have the highest contents of acid phosphate, particularly in the form of exchangeable species, whereas both the exchangeable and unexchangeable acid phosphate decrease concomitantly with the progress of the apatite overgrowth and the appearance of elongated hexagonal crystals in the late secretory stages. CONCLUSIONS Those morphological and compositional features seem to be consistent with the formation of precursors, such as octacalcium phosphate.
Collapse
Affiliation(s)
- T Aoba
- Department of Pathology, Nippon Dental University, Tokyo, Japan
| |
Collapse
|
6
|
Suckling G, Coote GE, Cutress TW, Gao J. Proton microprobe assessment of the distribution of fluoride in the enamel and dentine of developing central incisors of sheep and changes induced by daily fluoride supplements. Arch Oral Biol 1995; 40:439-46. [PMID: 7639647 DOI: 10.1016/0003-9969(94)00154-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Ten sheep were given 0.5 mg fluoride (F) and 10 sheep 0.2 mg F/kg body wt orally for periods of 1-6 months while 8 sheep received no additional F. One incisor from each sheep was sectioned longitudinally in the midline and, using the proton microprobe, multiple scans for calcium and F were made across the enamel and dentine. F was determined by proton-induced gamma-ray emission and calcium by X-ray emission. Tooth length and hence the stage of ameloblast activity for each of the 28 teeth at the start of the experiment was determined using a tetracycline marker. In addition, the stage of enamel development of the eight control teeth (no dietary F) at the time of their extraction was assessed from their macroscopic appearance. Continuous changes in F levels occurred in both enamel and dentine throughout tooth development and also in the mature enamel and associated dentine after ameloblast regression. All scans for all stages of tooth development and all F treatments showed a high F concentration at the enamel surface. Early in the secretory phase, a wide-based F peak occupied the entire width of the enamel with a similar F peak in the dentine. In the control teeth, no consistent increase in F concentration occurred at the enamel surface during later development. When F supplements were started early in the maturation phase an increase in F concentration only at the enamel surface was recorded. When F supplements were also given during the secretory phase, higher F concentrations were recorded not only at the enamel surface but also for the inner enamel and dentine plateau. These findings, based on a small number of sheep, indicate that further research is needed to clarify the method and control of F uptake and to determine the changes in these processes during the different stages of tooth development.
Collapse
Affiliation(s)
- G Suckling
- Dental Research Unit, Health Research Council of New Zealand, Wellington
| | | | | | | |
Collapse
|
7
|
Abstract
The exact biochemical events which result in enamel lesions from excess fluoride ingestion are still unknown. A number of effects of fluoride on enamel organs and on the enamel matrix components of developing teeth are, however, known. These are briefly reviewed, making reference to more recent studies. Two major influences of chronic, low-level fluoride exposure are proposed: fluoride interferes with the processes responsible for the efficient removal of organic matrix components, resulting in protein retention and disorganized enamel crystal formation, or fluoride disrupts the activities of the enamel organ cells which indirectly interferes with normal crystal formation.
Collapse
Affiliation(s)
- H Limeback
- Faculty of Dentistry, University of Toronto, Canada
| |
Collapse
|
8
|
Aoba T. Strategies for improving the assessment of dental fluorosis: focus on chemical and biochemical aspects. Adv Dent Res 1994; 8:66-74. [PMID: 7993562 DOI: 10.1177/08959374940080011201] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In order to assess fluoride accumulation and effects in developing dental tissues, one must determine the concentration profile of fluoride in the tissue and to assess separately the labile (i.e., free ions in fluid and ions associated with organic matter) and stable (i.e., incorporated into apatite lattice) pools of fluoride. Free fluoride ions in the mineralizing milieu markedly affect the driving force for precipitation and, as a result, the nature of precipitating crystals. The fluoride incorporated into the crystalline lattice increases the stability of the formed mineral. Improvement in the understanding of the mechanism of dental fluorosis requires more comprehensive information about the effects of fluoride on the ionic composition of the fluid phase, the nature of the initially precipitating mineral(s), the interactions between crystals and matrix proteins, and the enzymatic degradation of the proteins. Recent observations relevant to the role of fluoride in enamel formation include: (1) that there are threshold concentrations of fluoride below which the precipitation and hydrolysis of thin-platy octacalcium phosphate is facilitated but beyond which de novo apatite precipitation prevails; (2) that the presence of fluoride in the mineralizing milieu most likely affects the steady-state concentrations of mineral lattice ions; (3) that incorporation of fluoride into the stable pool is retarded by the presence of matrix proteins, particularly amelogenins, which inhibit the growth of apatite crystals; (4) that increasing the degree of fluoridation of apatite crystals enhances the adsorption of amelogenins onto the crystal surface, and (5) that amelogenins pre-adsorbed onto apatite crystals are more resistant to enzymatic cleavages by trypsin (used as a prototype of amelogeninases).
Collapse
Affiliation(s)
- T Aoba
- Nippon Dental University, Department of Pathology, Tokyo, Japan
| |
Collapse
|
9
|
Abstract
It is now well-established that a linear relationship exists between fluoride dose and enamel fluorosis in human populations. With increasing severity, the subsurface enamel all along the tooth becomes increasingly porous (hypomineralized), and the lesion extends toward the inner enamel. In dentin, hypomineralization results in an enhancement of the incremental lines. After eruption, the more severe forms are subject to extensive mechanical breakdown of the surface. The continuum of fluoride-induced changes can best be classified by the TF index, which reflects, on an ordinal scale, the histopathological features and increases in enamel fluoride concentrations. Human and animal studies have shown that it is possible to develop dental fluorosis by exposure during enamel maturation alone. It is less apparent whether an effect of fluoride on the stage of enamel matrix secretion, alone, is able to produce changes in enamel similar to those described as dental fluorosis in man. The clinical concept of post-eruptive maturation of erupting sound human enamel, resulting in fluoride uptake, most likely reflects subclinical caries. Incorporation of fluoride into enamel is principally possible only as a result of concomitant enamel dissolution (caries lesion development). At higher fluoride concentrations, calcium-fluoride-like material may form, although the formation, identification, and dissolution of this compound are far from resolved. It is concluded that dental fluorosis is a sensitive way of recording past fluoride exposure because, so far, no other agent or condition in man is known to create changes within the dentition similar to those induced by fluoride. Since the predominant cariostatic effect of fluoride is not due to its uptake by the enamel during tooth development, it is possible to obtain extensive caries reductions without a concomitant risk of dental fluorosis.
Collapse
Affiliation(s)
- O Fejerskov
- Department of Oral Anatomy, Dental Pathology and Operative Dentistry, Royal Dental College, Faculty of Health Sciences, University of Aarhus, Denmark
| | | | | | | |
Collapse
|
10
|
Aoba T, Shimoda S, Moreno EC. Labile or surface pools of magnesium, sodium, and potassium in developing porcine enamel mineral. J Dent Res 1992; 71:1826-31. [PMID: 1401446 DOI: 10.1177/00220345920710111201] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The present study was undertaken to assess the labile or surface pools of Mg, Na, and K ions in porcine enamel tissues at various developmental stages. The enamel samples, corresponding to the outer and the inner secretory, the early maturing, and the mature hard enamel, were dissected from the labial sides of permanent incisors of 6- to 8-month-old piglets. Each enamel sample was extracted successively with solutions of de-ionized water and 50 mmol/L Tris-4 mol/L guanidine buffer (for removal of organic matrix proteins, mainly amelogenins). The labile (free or organically bound) pools of Mg, Na, and K were assessed by the total amounts of these ionic species extracted by the water and Tris-guanidine buffer. The surface (adsorbed onto enamel mineral) pool of Mg was assessed directly by determination of the adsorption of Mg onto enamel mineral at various developmental stages. The results showed that: (i) 30-40% of the Mg in the secretory and early maturation enamel was in the surface pool (adsorbed onto the enamel mineral); (ii) 25 to 40% of the total sodium in the enamel samples was in labile forms; and (iii) most (around 70-80%) of the total potassium was readily extracted in water and appeared to originate from the enamel fluid; only marginal portions remained in the solids. The present adsorption studies also indicated that the maximum uptake of magnesium in the early maturation enamel was due mostly to an increase of the occupancy by Mg ions of adsorption sites on the crystal surfaces, which become accessible with a massive removal of enamel matrix proteins.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- T Aoba
- Forsyth Dental Center, Boston, Massachusetts 02115
| | | | | |
Collapse
|
11
|
Shimoda S, Aoba T, Moreno EC. Changes in acid-phosphate content in enamel mineral during porcine amelogenesis. J Dent Res 1991; 70:1516-23. [PMID: 1774383 DOI: 10.1177/00220345910700120801] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The present study was undertaken to investigate changes in the acid-phosphate content of porcine enamel mineral during its development and to assess separately the HPO4(2-) pools in labile and stable forms. Enamel samples at the secretory and maturing stages of amelogenesis were obtained from the permanent incisors of five- to six-month-old slaughtered piglets. Human enamel from erupted, extracted teeth, synthetic hydroxyapatite, and carbonatoapatite containing acid phosphate were included as references. The acid-phosphate content of each sample was determined chemically through its pyrolytic conversion to pyrophosphate. The assessment of HPO4(2-) in labile forms was made by analysis of samples preequilibrated with solutions containing 3 mmol/L phosphate at pH11 (to de-protonate the HPO4(2-) species on crystal surfaces). The analytical results of porcine enamel samples showed that: (a) the outermost secretory (youngest) enamel contained the highest HPO4(2-), corresponding to about 16% of the total phosphate; (b) the acid-phosphate content decreased gradually to 10% in the inner (older) secretory and to 6% in the maturing tissue; (c) a substantial part of the HPO4(2-) in developing enamel tissue (50-60% of the HPO4(2-) for the secretory enamel) was in labile forms; and (d) the pool of the labile HPO4(2-) decreased with the growth of enamel mineral. In parallel studies with mature human enamel, it was ascertained that the total acid phosphate was only about 3% of the total phosphate, much lower than in developing porcine enamel, and that the labile pool of HPO4(2-) was also small, corresponding to about 15% of the total acid phosphate determined.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- S Shimoda
- Forsyth Dental Center, Boston, Massachusetts 02115
| | | | | |
Collapse
|
12
|
Aoba T, Moreno EC, Tanabe T, Fukae M. Effects of fluoride on matrix proteins and their properties in rat secretory enamel. J Dent Res 1990; 69:1248-55. [PMID: 2162362 DOI: 10.1177/00220345900690060501] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
This publication concerns the selective adsorption of rat enamel proteins onto hydroxyapatite, their solubility in aqueous solutions, and the effect that systemic fluoride has on these properties. The enamel proteins used as adsorbates were extracted in 0.5 mol/L acetic acid from the secretory enamel of the upper and lower incisors of SD rats (females, 200-220 g body weight). Equilibration of the proteins with hydroxyapatite was performed in two solutions: (i) 50 mmol/L acetate buffer at pH 6.0 and 0 degrees C, and (ii) 50 mmol/L Tris buffer containing 4 mol/L guanidine at pH 7.4 and room temperature. Enamel was dissected from animals, which were given either de-ionized water (control group) or water containing 25, 50, 75, or 100 ppm fluoride as NaF for four weeks. From these enamel samples, the proteins were extracted in sequence with 160 mmol/L NaCl and 3 mmol/L phosphate (pH 7.3), 50 mmol/L carbonate buffer (pH 10.8), and finally, with 0.5 mol/L acetic acid for dissolution of the enamel mineral. The F, Ca, and P contents of the various enamel samples were determined.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- T Aoba
- Forsyth Dental Center, Boston, Massachusetts 02115
| | | | | | | |
Collapse
|