Yokota S. Degradation of normal and proliferated peroxisomes in rat hepatocytes: regulation of peroxisomes quantity in cells.
Microsc Res Tech 2003;
61:151-60. [PMID:
12740821 DOI:
10.1002/jemt.10324]
[Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Degradation and turnover of peroxisomes is reviewed. First, we describe the historical aspects of peroxisome degradation research and the two major concepts for breakdown of peroxisomes, i.e., autophagy and autolysis. Next, the comprehensive knowledge on autophagy of peroxisomes in mammalian and yeast cells is reviewed. It has been shown that proliferated peroxisomes are degraded by selective autophagy, and studies using yeast cells have been especially helpful in shedding light on the molecular mechanisms of this process. The degradation of extraperoxisomal urate oxidase crystalloid is noted. Overexpressed wild-type urate oxidase in cultured cells has been shown to be degraded through an unknown proteolytic pathway distinct from the lysosomal system including autophagy or the ubiquitin-proteasome system. Finally, peroxisome autolysis mediated by 15-lipoxygenase (15-LOX) is described. 15-LOX is integrated into the peroxisome membrane causing focal membrane disruptions. The content of the peroxisomes is then exposed to cytosol proteases and seems to be digested quickly. In conclusion, the number of peroxisomes appears to be regulated by two selective pathways, autophagy, including macro- and microautophagy, and 15-LOX-mediated autolysis.
Collapse