1
|
Qu W, Chen Z, Hu X, Zou T, Huang Y, Zhang Y, Hu Y, Tian S, Wan J, Liao R, Bai L, Xue J, Ding Y, Hu M, Zhang XJ, Zhang X, Zhao J, Cheng X, She ZG, Li H. Profound Perturbation in the Metabolome of a Canine Obesity and Metabolic Disorder Model. Front Endocrinol (Lausanne) 2022; 13:849060. [PMID: 35620391 PMCID: PMC9128610 DOI: 10.3389/fendo.2022.849060] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/17/2022] [Indexed: 12/19/2022] Open
Abstract
Canine models are increasingly being used in metabolic studies due to their physiological similarity with humans. The present study aimed to identify changes in metabolic pathways and biomarkers with potential clinical utility in a canine model of obesity and metabolic disorders induced by a high-fat diet (HFD). Eighteen male beagles were included in this study, 9 of which were fed a HFD for 24 weeks, and the remaining 9 were fed normal chow (NC) during the same period. Plasma and urine samples were collected at weeks 12 and 24 for untargeted metabolomic analysis. Dogs fed a HFD showed a gradual body weight increase during the feeding period and had hyperlipidemia, increased leukocyte counts, and impaired insulin sensitivity at week 24. Plasma and urine metabonomics analysis displayed clear separations between the HFD-fed and NC-fed dogs. A total of 263 plasma metabolites varied between the two groups, including stearidonic acid, linolenic acid, carnitine, long-chain ceramide, 3-methylxanthine, and theophylline, which are mainly engaged in fatty acid metabolism, sphingolipid metabolism, and caffeine metabolism. A total of 132 urine metabolites related to HFD-induced obesity and metabolic disorders were identified, including 3-methylxanthine, theophylline, pyridoxal 5'-phosphate, and harmine, which participate in pathways such as caffeine metabolism and vitamin digestion and absorption. Eight metabolites with increased abundance (e.g., 3-methylxanthine, theophylline, and harmine) and 4 metabolites with decreased abundance (e.g., trigonelline) in both the plasma and urine of the HFD-fed dogs were identified. In conclusion, the metabolomic analysis revealed molecular events underlying a canine HFD model and identified several metabolites as potential targets for the prevention and treatment of obesity-related metabolic disorders.
Collapse
Affiliation(s)
- Weiyi Qu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Ze Chen
- Institute of Model Animal, Wuhan University, Wuhan, China
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xing Hu
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China
| | - Toujun Zou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Yongping Huang
- Institute of Model Animal, Wuhan University, Wuhan, China
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Yanyan Zhang
- Institute of Model Animal, Wuhan University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yufeng Hu
- Institute of Model Animal, Wuhan University, Wuhan, China
- Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China
| | - Song Tian
- Institute of Model Animal, Wuhan University, Wuhan, China
- School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Juan Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Rufang Liao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lan Bai
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Jinhua Xue
- Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China
- Department of Pathophysiology, School of Basic Medical Sciences, Gannan Medical University, Ganzhou, China
| | - Yi Ding
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Manli Hu
- Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China
| | - Xiao-Jing Zhang
- Institute of Model Animal, Wuhan University, Wuhan, China
- School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Xin Zhang
- Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China
| | - Jingjing Zhao
- Department of Cardiology, Tongren Hospital of Wuhan University and Wuhan Third Hospital, Wuhan, China
| | - Xu Cheng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
- *Correspondence: Hongliang Li, ; Zhi-Gang She, ; Xu Cheng,
| | - Zhi-Gang She
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
- *Correspondence: Hongliang Li, ; Zhi-Gang She, ; Xu Cheng,
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
- School of Basic Medical Science, Wuhan University, Wuhan, China
- *Correspondence: Hongliang Li, ; Zhi-Gang She, ; Xu Cheng,
| |
Collapse
|
2
|
Percie du Sert N, Ahluwalia A, Alam S, Avey MT, Baker M, Browne WJ, Clark A, Cuthill IC, Dirnagl U, Emerson M, Garner P, Holgate ST, Howells DW, Hurst V, Karp NA, Lazic SE, Lidster K, MacCallum CJ, Macleod M, Pearl EJ, Petersen OH, Rawle F, Reynolds P, Rooney K, Sena ES, Silberberg SD, Steckler T, Würbel H. Reporting animal research: Explanation and elaboration for the ARRIVE guidelines 2.0. PLoS Biol 2020; 18:e3000411. [PMID: 32663221 PMCID: PMC7360025 DOI: 10.1371/journal.pbio.3000411] [Citation(s) in RCA: 1077] [Impact Index Per Article: 269.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Improving the reproducibility of biomedical research is a major challenge. Transparent and accurate reporting is vital to this process; it allows readers to assess the reliability of the findings and repeat or build upon the work of other researchers. The ARRIVE guidelines (Animal Research: Reporting In Vivo Experiments) were developed in 2010 to help authors and journals identify the minimum information necessary to report in publications describing in vivo experiments. Despite widespread endorsement by the scientific community, the impact of ARRIVE on the transparency of reporting in animal research publications has been limited. We have revised the ARRIVE guidelines to update them and facilitate their use in practice. The revised guidelines are published alongside this paper. This explanation and elaboration document was developed as part of the revision. It provides further information about each of the 21 items in ARRIVE 2.0, including the rationale and supporting evidence for their inclusion in the guidelines, elaboration of details to report, and examples of good reporting from the published literature. This document also covers advice and best practice in the design and conduct of animal studies to support researchers in improving standards from the start of the experimental design process through to publication.
Collapse
Affiliation(s)
| | - Amrita Ahluwalia
- The William Harvey Research Institute, London, United Kingdom
- Barts Cardiovascular CTU, Queen Mary University of London, London, United Kingdom
| | - Sabina Alam
- Taylor & Francis Group, London, United Kingdom
| | - Marc T. Avey
- Health Science Practice, ICF, Durham, North Carolina, United States of America
| | - Monya Baker
- Nature, San Francisco, California, United States of America
| | | | | | - Innes C. Cuthill
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Ulrich Dirnagl
- QUEST Center for Transforming Biomedical Research, Berlin Institute of Health & Department of Experimental Neurology, Charite Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Emerson
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Paul Garner
- Centre for Evidence Synthesis in Global Health, Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Stephen T. Holgate
- Clinical and Experimental Sciences, University of Southampton, Southampton, United Kingdom
| | - David W. Howells
- Tasmanian School of Medicine, University of Tasmania, Hobart, Australia
| | | | - Natasha A. Karp
- Data Sciences & Quantitative Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| | | | | | | | - Malcolm Macleod
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Ole H. Petersen
- Academia Europaea Knowledge Hub, Cardiff University, Cardiff, United Kingdom
| | | | - Penny Reynolds
- Statistics in Anesthesiology Research (STAR) Core, Department of Anesthesiology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Kieron Rooney
- Discipline of Exercise and Sport Science, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Emily S. Sena
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Shai D. Silberberg
- National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, United States of America
| | | | - Hanno Würbel
- Veterinary Public Health Institute, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
3
|
Cabana F, Plowman A, Van Nguyen T, Chin SC, Wu SL, Lo HY, Watabe H, Yamamoto F. Feeding Asian pangolins: An assessment of current diets fed in institutions worldwide. Zoo Biol 2017. [PMID: 28635047 DOI: 10.1002/zoo.21375] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Pangolins are ant specialists which are under intense threat from the illegal wildlife trade. Nutrition has notoriously been their downfall in captivity and is still an issue in regards to rescue and rehabilitation. We analyzed the nutrient content of diets used by institutions that are successfully keeping Asian pangolins and to assess the variety of the ingredients and nutrients, compared these with the nutritional requirements of potential nutritional model species. We performed intake studies at five institutions and also had data from three other institutions. We also analyzed five different wild food items to use as a proxy of wild diet. We observed two categories of captive diets: those mostly or completely composed of insects and those high in commercial feeds or animal meat. Nutrient values were broad and there was no clear rule. The non-protein energy to protein energy ratio of the diets were much higher than the wild food items, more so for those which receive less insects. The average contribution of carbohydrate, fat and protein energy were also further away from the wild samples the less insects they contained. The previously suggested nutritional model for pangolins is the domestic dog which is supported by our relatively large nutrient ranges of apparently successful diets, however due to their highly carnivorous nature; the upper most nutrient intake data are not consistent with this and favor the feline nutrient recommendations. We are unable to render a conclusion of what model is more appropriate based on our data collected.
Collapse
Affiliation(s)
- Francis Cabana
- Wildlife Nutrition Centre, Wildlife Reserves Singapore, Singapore
| | - Amy Plowman
- Paignton Zoo Environmental Park, Paignton, United Kingdom
| | - Thai Van Nguyen
- Save Vietnam's Wildlife, Cuc Phuong National Park, Ha Noi, Vietnam
| | | | | | | | | | | |
Collapse
|