1
|
Teboul L, Amos-Landgraf J, Benavides FJ, Birling MC, Brown SDM, Bryda E, Bunton-Stasyshyn R, Chin HJ, Crispo M, Delerue F, Dobbie M, Franklin CL, Fuchtbauer EM, Gao X, Golzio C, Haffner R, Hérault Y, Hrabe de Angelis M, Lloyd KCK, Magnuson TR, Montoliu L, Murray SA, Nam KH, Nutter LMJ, Pailhoux E, Pardo Manuel de Villena F, Peterson K, Reinholdt L, Sedlacek R, Seong JK, Shiroishi T, Smith C, Takeo T, Tinsley L, Vilotte JL, Warming S, Wells S, Whitelaw CB, Yoshiki A, Pavlovic G. Improving laboratory animal genetic reporting: LAG-R guidelines. Nat Commun 2024; 15:5574. [PMID: 38956430 PMCID: PMC11220107 DOI: 10.1038/s41467-024-49439-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/05/2024] [Indexed: 07/04/2024] Open
Abstract
The biomedical research community addresses reproducibility challenges in animal studies through standardized nomenclature, improved experimental design, transparent reporting, data sharing, and centralized repositories. The ARRIVE guidelines outline documentation standards for laboratory animals in experiments, but genetic information is often incomplete. To remedy this, we propose the Laboratory Animal Genetic Reporting (LAG-R) framework. LAG-R aims to document animals' genetic makeup in scientific publications, providing essential details for replication and appropriate model use. While verifying complete genetic compositions may be impractical, better reporting and validation efforts enhance reliability of research. LAG-R standardization will bolster reproducibility, peer review, and overall scientific rigor.
Collapse
Affiliation(s)
- Lydia Teboul
- The Mary Lyon Centre at MRC Harwell, Harwell Campus, Didcot, OX11 0RD, Oxon, UK.
| | - James Amos-Landgraf
- University of Missouri School of Medicine, Columbia, MO, USA
- University of Missouri College of Veterinary Medicine, Columbia, MO, USA
- Rat Resource and Research Center, University of Missouri, Columbia, MO, USA
| | - Fernando J Benavides
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marie-Christine Birling
- PHENOMIN-Institut Clinique de la Souris, CELPHEDIA, CNRS, INSERM, Université de Strasbourg, Illkirch-Grafenstaden, 67404, Strasbourg, France
| | - Steve D M Brown
- Visiting Scientist, Institut Clinique de la Souris, Université de Strasbourg, Illkirch-Grafenstaden, 67404, Strasbourg, France
| | - Elizabeth Bryda
- Rat Resource and Research Center, University of Missouri, Columbia, MO, 65201, USA
| | | | - Hsian-Jean Chin
- National Laboratory Animal Center (NLAC), NARLabs, Taipei, Taiwan
| | - Martina Crispo
- Laboratory Animal Biotechnology Unit, Institut Pasteur de Montevideo, Mataojo 2020, CP 1400, Montevideo, Uruguay
| | - Fabien Delerue
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael Dobbie
- Phenomics Australia, Australian National University, 131 Garran Road, Canberra, ACT 2601, Australia
| | - Craig L Franklin
- University of Missouri Mutant Mouse Resource and Research Center (MU MMRRC), University of Missouri, Columbia, MO, 65201, USA
| | | | - Xiang Gao
- National Resource Center of Mutant Mice (NRCMM), Nanjing Biomedical Research Institute, Nanjing University, Nanjing, China
| | - Christelle Golzio
- Université de Strasbourg, CNRS, Inserm, IGBMC UMR 7104- UMR-S 1258, F-67400, Illkirch, France
| | - Rebecca Haffner
- Department Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Yann Hérault
- PHENOMIN-Institut Clinique de la Souris, CELPHEDIA, CNRS, INSERM, Université de Strasbourg, Illkirch-Grafenstaden, 67404, Strasbourg, France
- Université de Strasbourg, CNRS, Inserm, IGBMC UMR 7104- UMR-S 1258, F-67400, Illkirch, France
| | - Martin Hrabe de Angelis
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstraße 1, 85764, Neuherberg, Germany
- Chair of Experimental Genetics, TUM School of Life Sciences, Technische Universität München, Alte Akademie 8, 85354, Freising, Germany
- German Center for Diabetes Research (DZD), Ingolstaedter Landstraße 1, 85764, Neuherberg, Germany
| | | | - Terry R Magnuson
- Department of Genetics, and Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7264, USA
| | - Lluis Montoliu
- Department of Molecular and Cellular Biology, National Centre for Biotechnology (CNB-CSIC), 28049, Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER-ISCIII), 28029, Madrid, Spain
| | | | - Ki-Hoan Nam
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | - Lauryl M J Nutter
- Genetics and Genome Biology, The Hospital for Sick Children and The Centre for Phenogenomics, Toronto, ON, M5T 3H7, Canada
| | - Eric Pailhoux
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France
| | - Fernando Pardo Manuel de Villena
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
| | | | | | - Radislav Sedlacek
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Je Kyung Seong
- Laboratory of Developmental Biology and Genomics, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, and Korea Mouse Phenotyping Center, Seoul, 08826, Republic of Korea
| | | | - Cynthia Smith
- Mouse Genome Informatics (MGI), Jackson Laboratory, Bar Harbor, ME, USA
| | - Toru Takeo
- Center for Animal Resources and Development (CARD), Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| | - Louise Tinsley
- The Mary Lyon Centre at MRC Harwell, Harwell Campus, Didcot, OX11 0RD, Oxon, UK
| | - Jean-Luc Vilotte
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Søren Warming
- Genentech, Inc., a member of the Roche group, South San Francisco, CA, USA
| | - Sara Wells
- The Mary Lyon Centre at MRC Harwell, Harwell Campus, Didcot, OX11 0RD, Oxon, UK
- Francis Crick Institute, London, NW1 1AT, UK
| | - C Bruce Whitelaw
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, EH25 9RG, UK
| | - Atsushi Yoshiki
- Experimental Animal Division, RIKEN BioResource Research Center, Tsukuba, Ibaraki, 305-0074, Japan
| | - Guillaume Pavlovic
- PHENOMIN-Institut Clinique de la Souris, CELPHEDIA, CNRS, INSERM, Université de Strasbourg, Illkirch-Grafenstaden, 67404, Strasbourg, France.
| |
Collapse
|
3
|
Chenouard V, Leray I, Tesson L, Remy S, Allan A, Archer D, Caulder A, Fortun A, Bernardeau K, Cherifi Y, Teboul L, David L, Anegon I. Excess of guide RNA reduces knockin efficiency and drastically increases on-target large deletions. iScience 2023; 26:106399. [PMID: 37034986 PMCID: PMC10074149 DOI: 10.1016/j.isci.2023.106399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/03/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
CRISPR-Cas9 cleavage efficacy and accuracy are the main challenges gene editing faces, and they are particularly affected by the optimal formation of the ribonucleoprotein (RNP) complex. We used nano differential scanning fluorimetry, a label and immobilization-free assay, to demonstrate that an equimolar ratio of Cas9 and guide RNA (gRNA) is optimal for RNP complex formation. We almost achieved 50% of green fluorescent protein (GFP) to blue fluorescent protein (BFP) conversion using a biallelic homozygous GFP human induced pluripotent stem cell line, when 0.4 μM of Cas9, equimolar Cas9/gRNA ratio and 2 μM of single-stranded oligonucleotide, were used and showed that increasing Cas9/gRNA ratio did not further improve KI efficiency. Additionally, excess gRNA decreased point mutation KI efficiency in rat embryos and drastically increased the occurrence of on-target large deletions. These findings highlight the importance of CRISPR/Cas9 stoichiometric optimization to ensure efficient and accurate KI generation, which will be applicable to other in vitro as well as in vivo models.
Collapse
Affiliation(s)
- Vanessa Chenouard
- INSERM, Nantes Université, CHU Nantes, Center for Research in Transplantation and Translational Immunology, UMR 1064, F-44000 Nantes, France
- genOway, Lyon 69007, France
| | - Isabelle Leray
- Nantes Université, CHU Nantes, Inserm, CNRS, BioCore, F-44000 Nantes, France
| | - Laurent Tesson
- INSERM, Nantes Université, CHU Nantes, Center for Research in Transplantation and Translational Immunology, UMR 1064, F-44000 Nantes, France
| | - Severine Remy
- INSERM, Nantes Université, CHU Nantes, Center for Research in Transplantation and Translational Immunology, UMR 1064, F-44000 Nantes, France
| | - Alasdair Allan
- Mary Lyon Centre, MRC Harwell Institute, Harwell Oxford, UK
| | - Daniel Archer
- Mary Lyon Centre, MRC Harwell Institute, Harwell Oxford, UK
| | - Adam Caulder
- Mary Lyon Centre, MRC Harwell Institute, Harwell Oxford, UK
| | - Agnès Fortun
- Nantes Université, CHU Nantes, CNRS, Inserm, BioCore, US16, Plateforme P2R, SFR Bonamy, F-44000 Nantes, France
- Cibles et Médicaments des Infections et du Cancer, IICiMed, Nantes Université, UR 1155, F-44000 Nantes, France
| | - Karine Bernardeau
- Nantes Université, CHU Nantes, CNRS, Inserm, BioCore, US16, Plateforme P2R, SFR Bonamy, F-44000 Nantes, France
| | | | - Lydia Teboul
- Mary Lyon Centre, MRC Harwell Institute, Harwell Oxford, UK
| | - Laurent David
- INSERM, Nantes Université, CHU Nantes, Center for Research in Transplantation and Translational Immunology, UMR 1064, F-44000 Nantes, France
- Nantes Université, CHU Nantes, Inserm, CNRS, BioCore, F-44000 Nantes, France
| | - Ignacio Anegon
- INSERM, Nantes Université, CHU Nantes, Center for Research in Transplantation and Translational Immunology, UMR 1064, F-44000 Nantes, France
| |
Collapse
|
4
|
Yoshida M, Saito T, Takayanagi Y, Totsuka Y, Onaka T. Necessity of integrated genomic analysis to establish a designed knock-in mouse from CRISPR-Cas9-induced mutants. Sci Rep 2022; 12:20390. [PMID: 36437283 PMCID: PMC9701781 DOI: 10.1038/s41598-022-24810-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
The CRISPR-Cas9 method for generation of knock-in mutations in rodent embryos yields many F0 generation candidates that may have the designed mutations. The first task for selection of promising F0 generations is to analyze genomic DNA which likely contains a mixture of designed and unexpected mutations. In our study, while generating Prlhr-Venus knock-in reporter mice, we found that genomic rearrangements near the targeted knock-in allele, tandem multicopies at a target allele locus, and mosaic genotypes for two different knock-in alleles occurred in addition to the designed knock-in mutation in the F0 generation. Conventional PCR and genomic sequencing were not able to detect mosaicism nor discriminate between the designed one-copy knock-in mutant and a multicopy-inserted mutant. However, by using a combination of Southern blotting and the next-generation sequencing-based RAISING method, these mutants were successfully detected in the F0 generation. In the F1 and F2 generations, droplet digital PCR assisted in establishing the strain, although a multicopy was falsely detected as one copy by analysis of the F0 generation. Thus, the combination of these methods allowed us to select promising F0 generations and facilitated establishment of the designed strain. We emphasize that focusing only on positive evidence of knock-in can lead to erroneous selection of undesirable strains.
Collapse
Affiliation(s)
- Masahide Yoshida
- grid.410804.90000000123090000Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498 Japan
| | - Tomoko Saito
- Institute of Immunology Co., Ltd., 1198-4 Iwazo, Utsunomiya, Tochigi 321-0973 Japan
| | - Yuki Takayanagi
- grid.410804.90000000123090000Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498 Japan
| | - Yoshikazu Totsuka
- Institute of Immunology Co., Ltd., 1198-4 Iwazo, Utsunomiya, Tochigi 321-0973 Japan
| | - Tatsushi Onaka
- grid.410804.90000000123090000Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498 Japan
| |
Collapse
|
6
|
Birling MC, Fray MD, Kasparek P, Kopkanova J, Massimi M, Matteoni R, Montoliu L, Nutter LMJ, Raspa M, Rozman J, Ryder EJ, Scavizzi F, Voikar V, Wells S, Pavlovic G, Teboul L. Importing genetically altered animals: ensuring quality. Mamm Genome 2021; 33:100-107. [PMID: 34536110 PMCID: PMC8913481 DOI: 10.1007/s00335-021-09908-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/26/2021] [Indexed: 11/30/2022]
Abstract
The reproducibility of research using laboratory animals requires reliable management of their quality, in particular of their genetics, health and environment, all of which contribute to their phenotypes. The point at which these biological materials are transferred between researchers is particularly sensitive, as it may result in a loss of integrity of the animals and/or their documentation. Here, we describe the various aspects of laboratory animal quality that should be confirmed when sharing rodent research models. We also discuss how repositories of biological materials support the scientific community to ensure the continuity of the quality of laboratory animals. Both the concept of quality and the role of repositories themselves extend to all exchanges of biological materials and all networks that support the sharing of these reagents.
Collapse
Affiliation(s)
- M-C Birling
- PHENOMIN-Institut Clinique de la Souris, CELPHEDIA, CNRS, INSERM, Université de Strasbourg, Illkirch-Graffenstaden, 67404, Strasbourg, France.
| | - M D Fray
- The Mary Lyon Centre, Medical Research Council Harwell, Harwell Campus, Didcot, OX11 0RD, Oxon, UK
| | - P Kasparek
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
| | - J Kopkanova
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
| | - M Massimi
- Institute of Biochemistry and Cell Biology, Italian National Research Council (CNR), Monterotondo Scalo, Rome, Italy
| | - R Matteoni
- Institute of Biochemistry and Cell Biology, Italian National Research Council (CNR), Monterotondo Scalo, Rome, Italy
| | - L Montoliu
- Department of Molecular and Cellular Biology, National Centre for Biotechnology (CNB-CSIC) Madrid and CIBERER-ISCIII, Madrid, Spain
| | - L M J Nutter
- The Centre for Phenogenomics, The Hospital for Sick Children, Toronto, ON, Canada
| | - M Raspa
- Institute of Biochemistry and Cell Biology, Italian National Research Council (CNR), Monterotondo Scalo, Rome, Italy
| | - J Rozman
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
| | - E J Ryder
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.,LGC, Sport and Specialised Analytical Services, Fordham, UK
| | - F Scavizzi
- Institute of Biochemistry and Cell Biology, Italian National Research Council (CNR), Monterotondo Scalo, Rome, Italy
| | - V Voikar
- Neuroscience Center and Laboratory Animal Center, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - S Wells
- The Mary Lyon Centre, Medical Research Council Harwell, Harwell Campus, Didcot, OX11 0RD, Oxon, UK
| | - G Pavlovic
- PHENOMIN-Institut Clinique de la Souris, CELPHEDIA, CNRS, INSERM, Université de Strasbourg, Illkirch-Graffenstaden, 67404, Strasbourg, France.
| | - L Teboul
- The Mary Lyon Centre, Medical Research Council Harwell, Harwell Campus, Didcot, OX11 0RD, Oxon, UK.
| |
Collapse
|