1
|
Liu S, Su L, Li J, Zhang Y, Hu X, Wang P, Liu P, Ye J. Inhibition of miR-146b-5p alleviates isoprenaline-induced cardiac hypertrophy via regulating DFCP1. Mol Cell Endocrinol 2024; 589:112252. [PMID: 38649132 DOI: 10.1016/j.mce.2024.112252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
Pathological cardiac hypertrophy often precedes heart failure due to various stimuli, yet effective clinical interventions remain limited. Recently, microRNAs (miRNAs) have been identified as critical regulators of cardiovascular development. In this study, we investigated the role of miR-146b-5p and its underlying mechanisms of action in cardiac hypertrophy. Isoprenaline (ISO) treatment induced significant hypertrophy and markedly enhanced the expression of miR-146b-5p in cultured neonatal rat cardiomyocytes and hearts of C57BL/6 mice. Transfection with the miR-146b-5p mimic led to cardiomyocyte hypertrophy accompanied by autophagy inhibition. Conversely, miR-146b-5p inhibition significantly alleviated ISO-induced autophagy depression, thereby mitigating cardiac hypertrophy both in vitro and in vivo. Our results showed that the autophagy-related mediator double FYVE domain-containing protein 1 (DFCP1) is a target of miR-146b-5p. MiR-146b-5p blocked autophagic flux in cardiomyocytes by suppressing DFCP1, thus contributing to hypertrophy. These findings revealed that miR-146b-5p is a potential regulator of autophagy associated with the onset of cardiac hypertrophy, suggesting a possible therapeutic strategy involving the inhibition of miR-146b-5p.
Collapse
Affiliation(s)
- Siling Liu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, China
| | - Linjie Su
- School of Pharmaceutical Sciences, Sun Yat-Sen University, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, China
| | - Jie Li
- School of Pharmaceutical Sciences, Sun Yat-Sen University, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, China
| | - Yuexin Zhang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, China
| | - Xiaopei Hu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, China
| | - Pengcheng Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, China
| | - Peiqing Liu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, China.
| | - Jiantao Ye
- School of Pharmaceutical Sciences, Sun Yat-Sen University, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, China.
| |
Collapse
|
2
|
Özdenoğlu FY, Ödemiş DA, Erciyas SK, Tunçer ŞB, Gültaşlar BK, Salduz A, Büyükkapu S, Olgaç NV, Kebudi R, Yazıcı H. High Expression of miR-218-5p in the Peripheral Blood Stream and Tumor Tissues of Pediatric Patients with Sarcomas. Biochem Genet 2024:10.1007/s10528-024-10873-8. [PMID: 38954213 DOI: 10.1007/s10528-024-10873-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024]
Abstract
Sarcomas are malignant tumors that may metastasize and the course of the disease is highly aggressive in children and young adults. Because of the rare incidence of sarcomas and the heterogeneity of tumors, there is a need for non-invasive diagnostic and prognostic biomarkers in sarcomas. The aim of the study was to investigate the level of miR-218-5p in peripheral blood and tumor tissue samples of Ewing's sarcoma, osteosarcoma, spindle cell sarcoma patients, and healthy controls, and assessed whether the corresponding molecule was a diagnostic and prognostic biomarker. The study was performed patients (n = 22) diagnosed and treated with Ewing's sarcoma and osteosarcoma and in a control group of 22 healthy children who were matched for age, gender, and ethnicity with the patient group. The expression level of miR-218-5p in RNA samples from peripheral blood and tissue samples were analyzed using the RT-PCR and the expression level of miR-218-5p was evaluated by comparison with the levels in patients and healthy controls. The expression level of miR-218-5p was found to be statistically higher (3.33-fold, p = 0.006) in pediatric patients with sarcomas and when the target genes of miR-218-5p were investigated using the bioinformatics tools, the miR-218-5p was found as an important miRNA in cancer. In this study, the miR-218-5p was shown for the first time to have been highly expressed in the peripheral blood and tumor tissue of sarcoma patients. The results suggest that miR-218-5p can be used as a diagnostic and prognostic biomarker in sarcomas and will be evaluated as an important therapeutic target.
Collapse
Affiliation(s)
- Fazilet Yıldız Özdenoğlu
- Division of Cancer Genetics, Department of Basic Oncology, Oncology Institute, Istanbul University, 34093, Fatih, Istanbul, Türkiye
- Division of Cancer Genetics, Department of Basic Oncology, Health Sciences Institute, Istanbul University, 34093, Fatih, Istanbul, Türkiye
- Vocational School of Health Service, Medical LaboratortyTechniquies, İstanbul Okan University, Tuzla, Istanbul, Türkiye
| | - Demet Akdeniz Ödemiş
- Division of Cancer Genetics, Department of Basic Oncology, Oncology Institute, Istanbul University, 34093, Fatih, Istanbul, Türkiye
- Turkey Cancer Institute, Health Institutes of Turkey, 34734, Kadıköy, Istanbul, Türkiye
| | - Seda Kılıç Erciyas
- Division of Cancer Genetics, Department of Basic Oncology, Oncology Institute, Istanbul University, 34093, Fatih, Istanbul, Türkiye
| | - Şeref Buğra Tunçer
- Division of Cancer Genetics, Department of Basic Oncology, Oncology Institute, Istanbul University, 34093, Fatih, Istanbul, Türkiye
| | - Büşra Kurt Gültaşlar
- Division of Cancer Genetics, Department of Basic Oncology, Oncology Institute, Istanbul University, 34093, Fatih, Istanbul, Türkiye
| | - Ahmet Salduz
- Istanbul Faculty of Medicine, Department of Orthopedics and Traumatology, Istanbul University, Istanbul, Türkiye
| | - Sema Büyükkapu
- Division of Pediatric Hematology and Oncology, Department of Clinical Oncology, Oncology Institute, Istanbul University, 34093, Fatih, Istanbul, Türkiye
| | - Necat Vakur Olgaç
- Faculty of Dentistry, Department of Oral Pathology, Istanbul University, 34093, Fatih, Istanbul, Türkiye
| | - Rejin Kebudi
- Division of Pediatric Hematology and Oncology, Department of Clinical Oncology, Oncology Institute, Istanbul University, 34093, Fatih, Istanbul, Türkiye
| | - Hülya Yazıcı
- Division of Cancer Genetics, Department of Basic Oncology, Oncology Institute, Istanbul University, 34093, Fatih, Istanbul, Türkiye.
- Istanbul Arel Medical Faculty, Department of Medical Biology and Genetics, Istanbul Arel University, 34010, Zeytinburnu, Istanbul, Türkiye.
| |
Collapse
|
3
|
Development, characterisation, and in vitro anti-tumor effect of self-microemulsifying drug delivery system containing polyphyllin I. Drug Deliv Transl Res 2023; 13:356-370. [PMID: 35877046 DOI: 10.1007/s13346-022-01212-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2022] [Indexed: 01/01/2023]
Abstract
Polyphyllin I (PPI), an effective active ingredient in Paris polyphylla, has a diverse set of pharmacological properties. However, due to its poor solubility and oral absorption, its application and development are limited. In the study, we were committed to improving the solubility of PPI by developing a self-microemulsifying drug delivery system of PPI (PPI-SMEDDS), screening the best preparation process, and evaluating the quality and the in vivo pharmacokinetics of PPI, and PPI-SMEDDS following oral administration to rats were also studied. In addition, the pharmacological activities against human lung adenocarcinoma cell A549 in vitro were assessed. The best formulation had 15.89% ethyl oleate, 47.38% Cremophor RH40, and 36.73% 1,2 propylene glycol. The produced PPI-SMEDDS was clear and transparent, with an average particle size of 24.51 nm and a zeta potential of -17.54 ± 0.51 mV. In vitro, the cumulative release rate of PPI-SMEDDS was nearly 80% within 2 h. PPI-SMEDDS had a substantially greater area under the curve than PPI following oral treatment in rats, and the relative bioavailability of PPI in rats was 278.99%. More importantly, the anti-tumor effect of PPI-SMEDDS in vitro was significantly greater than that of PPI. These findings suggested that PPI-SMEDDS has the potential to improve the solubility, oral bioavailability of PPI, and anti-tumor effect, laying the groundwork for future research on the new PPI dosage form.
Collapse
|
4
|
The Long Noncoding RNA MEG3 Retains Epithelial-Mesenchymal Transition by Sponging miR-146b-5p to Regulate SLFN5 Expression in Breast Cancer Cells. J Immunol Res 2022; 2022:1824166. [PMID: 36033389 PMCID: PMC9411926 DOI: 10.1155/2022/1824166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/10/2022] [Indexed: 12/24/2022] Open
Abstract
More and more studies have shown that long noncoding RNAs (lncRNAs) play essential roles in malignant tumors. The lncRNA MEG3 serves as a crucial molecule in breast cancer development, but the specific molecular mechanism needs to be further explored. We previously reported that Schlafen family member 5 (SLFN5) inhibits breast cancer malignant development by regulating epithelial-mesenchymal transition (EMT), invasion, and proliferation/apoptosis. Herein, we demonstrated that MEG3 was downregulated in pan-cancers and correlated with SLFN5 expression positively in breast cancer by bioinformatics analysis of TCGA and UCSC Xena data. Intervention with MEG3 positively affected SLFN5 expression in breast cancer cells. MEG3 repressed EMT and migration/invasion, similar to our previously reported functions of SLFN5 in breast cancer. Through bioinformatics analysis of starBase and LncBase data, 12 miRNAs were found to regulate both SLFN5 and MEG3, in which miR-146b-5p was confirmed to be regulated by MEG3 using MEG3 siRNA and overexpression method. MiR-146b-5p could bind to both SLFN5 3′UTR and MEG3, and inhibit their expression in a competing endogenous RNA mechanism, assayed by luciferase reporter and RNA pull down methods. Therefore, we conclude that MEG3 positively modulates SLFN5 expression by sponging miR-146b-5p and inhibits breast cancer development.
Collapse
|
5
|
Karlina I, Schroeder BA, Kirgizov K, Romantsova O, Istranov AL, Nedorubov A, Timashev P, Ulasov I. Latest developments in the pathobiology of Ewing sarcoma. J Bone Oncol 2022; 35:100440. [PMID: 35855933 PMCID: PMC9287185 DOI: 10.1016/j.jbo.2022.100440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 06/20/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- Irina Karlina
- Group of Experimental Biotherapy and Diagnostics, Institute for Regenerative Medicine, World-Class Research Centre “Digital Biodesign and Personalized Healthcare”, I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Brett A. Schroeder
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA
| | - Kirill Kirgizov
- Research Institute of Pediatric Oncology and Hematology at N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia Moscow, 115478, Russia
| | - Olga Romantsova
- Research Institute of Pediatric Oncology and Hematology at N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia Moscow, 115478, Russia
| | - Andrey L. Istranov
- Department of Oncology, radiation therapy and plastic surgery, I.M. Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Andrey Nedorubov
- Center for Preclinical Research, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Peter Timashev
- World-Class Research Centre “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Ilya Ulasov
- Group of Experimental Biotherapy and Diagnostics, Institute for Regenerative Medicine, World-Class Research Centre “Digital Biodesign and Personalized Healthcare”, I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
- Corresponding author at: Group of Experimental Biotherapy and Diagnostics, Institute for Regenerative Medicine, World-Class Research Centre “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia.
| |
Collapse
|
6
|
Barrett C, Budhiraja A, Parashar V, Batish M. The Landscape of Regulatory Noncoding RNAs in Ewing's Sarcoma. Biomedicines 2021; 9:933. [PMID: 34440137 PMCID: PMC8391329 DOI: 10.3390/biomedicines9080933] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/21/2021] [Accepted: 07/27/2021] [Indexed: 02/07/2023] Open
Abstract
Ewing's sarcoma (ES) is a pediatric sarcoma caused by a chromosomal translocation. Unlike in most cancers, the genomes of ES patients are very stable. The translocation product of the EWS-FLI1 fusion is most often the predominant genetic driver of oncogenesis, and it is pertinent to explore the role of epigenetic alterations in the onset and progression of ES. Several types of noncoding RNAs, primarily microRNAs and long noncoding RNAs, are key epigenetic regulators that have been shown to play critical roles in various cancers. The functions of these epigenetic regulators are just beginning to be appreciated in ES. Here, we performed a comprehensive literature review to identify these noncoding RNAs. We identified clinically relevant tumor suppressor microRNAs, tumor promoter microRNAs and long noncoding RNAs. We then explored the known interplay between different classes of noncoding RNAs and described the currently unmet need for expanding the noncoding RNA repertoire of ES. We concluded the review with a discussion of epigenetic regulation of ES via regulatory noncoding RNAs. These noncoding RNAs provide new avenues of exploration to develop better therapeutics and identify novel biomarkers.
Collapse
Affiliation(s)
| | | | | | - Mona Batish
- Department of Medical and Molecular Sciences, University of Delaware, Newark, DE 19716, USA; (C.B.); (A.B.); (V.P.)
| |
Collapse
|