1
|
Jiao Q, Zhu S, Liao B, Liu H, Guo X, Wu L, Chen C, Peng L, Xie C. An NLR family member X1 mutation (p.Arg707Cys) suppresses hepatitis B virus infection in hepatocytes and favors the interaction of retinoic acid-inducible gene 1 with mitochondrial antiviral signaling protein. Arch Virol 2024; 169:238. [PMID: 39499386 PMCID: PMC11538211 DOI: 10.1007/s00705-024-06133-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 07/25/2024] [Indexed: 11/07/2024]
Abstract
NLR family member X1 (NLRX1) is an important member of the NOD-like receptor (NLR) family and plays unique roles in immune system regulation. Patients with hepatitis B virus (HBV) infection are more likely to have the NLRX1 mutation p.Arg707Cys than healthy individuals. It has been reported that NLRX1 increases the infection rate of HBV in HepG2 cells expressing sodium taurocholate cotransporting polypeptide (NTCP). However, the role of NLRX1 mutation (p.Arg707Cys) in hepatitis remains unclear. We constructed Huh7 cells that stably overexpressed NTCP, using LV003 lentivirus. First, wild-type (WT) and mutant (MT) NLRX1 overexpression plasmids were constructed. The MT plasmid contained a point mutation at position 707 of the WT overexpression plasmid. Then, Huh7-NTCP cells were transfected with the WT or MT NLRX1 overexpression plasmid, and subsequent NLRX1 expression was analyzed using real-time quantitative polymerase chain reaction (RT-qPCR) and western blot. HBV RNA levels were determined using RT-qPCR. HBsAg and HBcAg levels were confirmed immunohistochemically. Interferon alpha (IFN-α), interleukin 6 (IL-6), and type I interferon beta (IFN-β) levels were determined using enzyme-linked immunosorbent assay kits. p-p65, p-interferon regulatory factor (IRF) 3, and p-IRF7 expression levels were examined using western blot. The interaction of NLRX1 and retinoic acid-inducible gene (RIG)-1/mitochondrial antiviral signaling (MAVS) protein was confirmed by coimmunoprecipitation. The interaction of NLRX1 with IFN-α, IL-6, or IFN-β was analyzed by dual luciferase reporter gene assay. The levels of HBV RNA, HBsAg, and HBcAg in infected cells transfected with the WT NLRX1 or MT NLRX1 expression plasmid were higher than those in the untransfected control group; and these levels were lower in the cells transfected with MT NLRX1 than in those transfected with WT NLRX1. The levels of IFN-α, IFN-β, IL-6, p-p65, p-IRF3, and p-IRF7 were lower in cells transfected with WT NLRX1 or MT NLRX1 than in control cells. The levels of IFN-β, p-p65, p-IRF3, and p-IRF7 were higher in cells transfected with MT NLRX1 than in those transfected with WT NLRX1. Moreover, NLRX1 competitively inhibited RIG1 binding to MAVS, but the mutation in MT NLRX1 reduced this inhibitory effect. In addition, NLRX1 decreased the promoter activity of IFN-α, IFN-β, and IL-6. Our findings revealed that NLRX1 is a regulatory factor that inhibits the anti-HBV ability of hepatocytes and that the mutation p.Arg707Cys in NLRX1 suppresses HBV infection and activates the IFN/nuclear factor κB pathway.
Collapse
Affiliation(s)
- Qian Jiao
- Department of Hepatology, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510060, China
| | - Shu Zhu
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Tianhe District Guangzhou, Guangzhou, Guangdong, 510630, China
| | - Baolin Liao
- Department of Hepatology, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510060, China
| | - Huiyuan Liu
- Department of Hepatology, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510060, China
| | - Xiaoyan Guo
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Tianhe District Guangzhou, Guangzhou, Guangdong, 510630, China
| | - Lina Wu
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Tianhe District Guangzhou, Guangzhou, Guangdong, 510630, China
| | - Chuming Chen
- Department of Infectious Diseases, Third People's Hospital of Shenzhen, Shenzhen, Guangdong, 518112, China
| | - Liang Peng
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Tianhe District Guangzhou, Guangzhou, Guangdong, 510630, China.
| | - Chan Xie
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Tianhe District Guangzhou, Guangzhou, Guangdong, 510630, China.
| |
Collapse
|
2
|
Zhao X, An LL, Gong XY, Dan C, Qu ZL, Sun HY, Guo WH, Gui JF, Zhang YB. A zebrafish NLRX1 isoform downregulates fish IFN responses by targeting the adaptor STING. J Virol 2024; 98:e0180123. [PMID: 38193691 PMCID: PMC10878056 DOI: 10.1128/jvi.01801-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 12/08/2023] [Indexed: 01/10/2024] Open
Abstract
In mammals, NLRX1 is a unique member of the nucleotide-binding domain and leucine-rich repeat (NLR) family showing an ability to negatively regulate IFN antiviral immunity. Intron-containing genes, including NLRX1, have more than one transcript due to alternative splicing; however, little is known about the function of its splicing variants. Here, we identified a transcript variant of NLRX1 in zebrafish (Danio rerio), termed NLRX1-tv4, as a negative regulator of fish IFN response. Zebrafish NLRX1-tv4 was slightly induced by viral infection, with an expression pattern similar to the full-length NLRX1. Despite the lack of an N-terminal domain that exists in the full-length NLRX1, overexpression of NLRX1-tv4 still impaired fish IFN antiviral response and promoted viral replication in fish cells, similar to the full-length NLRX1. Mechanistically, NLRX1-tv4 targeted STING for proteasome-dependent protein degradation by recruiting an E3 ubiquitin ligase RNF5 to drive the K48-linked ubiquitination, eventually downregulating the IFN antiviral response. Mapping of NLRX1-tv4 domains showed that its N-terminal and C-terminal regions exhibited a similar potential to inhibit STING-mediated IFN antiviral response. Our findings reveal that like the full-length NLRX1, zebrafish NLRX-tv4 functions as an inhibitor to shape fish IFN antiviral response.IMPORTANCEIn this study, we demonstrate that a transcript variant of zebrafish NLRX1, termed NLRX1-tv4, downregulates fish IFN response and promotes virus replication by targeting STING for protein degradation and impairing the interaction of STING and TBK1 and that its N- and C-terminus exhibit a similar inhibitory potential. Our results are helpful in clarifying the current contradictory understanding of structure and function of vertebrate NLRX1s.
Collapse
Affiliation(s)
- Xiang Zhao
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- Yue lu shan Lab, Fisheries College, Hunan Agricultural University, Changsha, China
| | - Li-Li An
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiu-Ying Gong
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Cheng Dan
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zi-Ling Qu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hao-Yu Sun
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wen-Hao Guo
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jian-Fang Gui
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Yi-Bing Zhang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
3
|
Yuan H, Li S, Zhao Z, Wang Y. Regulation of Interferon-β-Modified Human Umbilical Cord Mesenchymal Stem Cell-Derived Exosomes in Proliferation and Apoptosis of Prostate Cancer Cells. Organogenesis 2023; 19:2285836. [PMID: 38031805 PMCID: PMC10761067 DOI: 10.1080/15476278.2023.2285836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 11/16/2023] [Indexed: 12/01/2023] Open
Abstract
Prostate cancer (PCa) poses a serious burden to men. Interferon-β (IFN-β) is implicated in cancer cell growth. This study hence explored the regulation of IFN-β-modified human umbilical cord mesenchymal stem cell-derived exosomes (hUCMSC-Exos) in PCa cells. In vitro-cultured hUCMSCs were transfected with pcDNA3.1-IFN-β plasmid or IFN-β siRNA. hUCMSC-Exos were extracted by ultracentrifugation and identified. PCa cells (PC3 and LNCap) were treated with Exos. Cellular internalization of Exos by cells was detected by uptake assay. Cell proliferation, cycle, and apoptosis were evaluated by CCK-8, EdU staining, and flow cytometry. Levels of cell cycle-related proteins (cyclin D/cyclin E) were determined by Western blot. The effect of IFN-β-modified hUCMSC-Exos in vivo was analyzed. IFN-β-modified hUCMSC-Exos (Exooe-IFN-β or Exosi-IFN-β) were successfully isolated. IFN-β was encapsulated in Exos, and PCa cells could uptake Exos. After treating with Exooe-IFN-β, PCa cell proliferation was impeded, the percentage of cells in the G0/G1 phase, cyclin D/cyclin E levels, and cell apoptotic rate were elevated, while cells treated with Exooe-IFN-β exhibited contrary trends. IFN-β-modified hUCMSC-Exos reduced PCa tumor size and weight in vivo. Conjointly, IFN-β-modified hUCMSC-Exos suppress PCa cell proliferation and facilitate apoptosis.
Collapse
Affiliation(s)
- Haichao Yuan
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, P.R. China
| | | | - Zhengping Zhao
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, P.R. China
| | - Yan Wang
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, P.R. China
| |
Collapse
|
4
|
Nagai-Singer MA, Woolls MK, Leedy K, Hendricks-Wenger A, Brock RM, Coutermarsh-Ott S, Paul T, Morrison HA, Imran KM, Tupik JD, Fletcher EJ, Brown DA, Allen IC. Cellular Context Dictates the Suppression or Augmentation of Triple-Negative Mammary Tumor Metastasis by NLRX1. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1844-1857. [PMID: 37909827 PMCID: PMC10694032 DOI: 10.4049/jimmunol.2200834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 10/12/2023] [Indexed: 11/03/2023]
Abstract
Prior studies have defined multiple, but inconsistent, roles for the enigmatic pattern recognition receptor NLRX1 in regulating several cancer-associated biological functions. In this study, we explore the role of NLRX1 in the highly metastatic murine 4T1 mammary tumor model. We describe a functional dichotomy of NLRX1 between two different cellular contexts: expression in healthy host cells versus expression in the 4T1 tumor cells. Using Nlrx1-/- mice engrafted with 4T1 tumors, we demonstrate that NLRX1 functions as a tumor suppressor when expressed in the host cells. Specifically, NLRX1 in healthy host cells attenuates tumor growth and lung metastasis through suppressing characteristics of epithelial-mesenchymal transition and the lung metastatic niche. Conversely, we demonstrate that NLRX1 functions as a tumor promoter when expressed in 4T1 tumor cells using gain- and loss-of-function studies both in vitro and in vivo. Mechanistically, NLRX1 in the tumor cells augments 4T1 aggressiveness and metastasis through regulating epithelial-mesenchymal transition hallmarks, cell death, proliferation, migration, reactive oxygen species levels, and mitochondrial respiration. Collectively, we provide critical insight into NLRX1 function and establish a dichotomous role of NLRX1 in the 4T1 murine mammary carcinoma model that is dictated by cellular context.
Collapse
Affiliation(s)
- Margaret A. Nagai-Singer
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| | - Mackenzie K. Woolls
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| | - Katerina Leedy
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| | | | - Rebecca M. Brock
- Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Roanoke, VA
| | - Sheryl Coutermarsh-Ott
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| | - Tamalika Paul
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| | - Holly A. Morrison
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| | - Khan M. Imran
- Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Roanoke, VA
| | - Juselyn D. Tupik
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| | - Endia J. Fletcher
- Postbaccalaureate Research Education Program, Virginia Tech, Blacksburg, VA
| | | | - Irving C. Allen
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| |
Collapse
|
5
|
Xu A, Zhu X, Song T, Zhang Z, Fei F, Zhu Q, Chang X, Liu H, Chen F, Xu F, Li L, Liu X. Molecular characterization of a novel mitochondrial NOD-like receptor X1 in chicken that negatively regulates IFN-β expression via STING. Poult Sci 2023; 102:103077. [PMID: 37741116 PMCID: PMC10520534 DOI: 10.1016/j.psj.2023.103077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/25/2023] Open
Abstract
NOD-like receptor X1 (NLRX1) is known for its unique mitochondrial localization and plays a negative role in innate immunity. The initial characterization and function of chicken NLRX1 remain unclear. Here, chicken mitochondrial-targeted NLRX1 (chNLRX1) protein was identified. It had relatively conserved domains, a unique N-terminal "X" mitochondrial-targeting domain (MT) and 2 highly conserved motifs at positions 510-520 and 412-421. Furthermore, chNLRX1 had a unique 53aa N-terminus-MT consistent with its localization to mitochondria. Additionally, chNLRX1 was observed to reduce the DNA sensing adaptor stimulator of interferon genes (STING)-induced IFN-β by attenuating the STING-TANK-binding kinase 1 (TBK1) interaction, which is a requisite for the STING-TBK1-IFN-β signaling pathway. These results suggested that chNLRX1 negatively regulated type-I interferon production via STING in host innate immunity.
Collapse
Affiliation(s)
- Aiyun Xu
- Anhui Province Key Lab of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; International Immunology Center, Anhui Agricultural University, Hefei 230036, China
| | - Xiang Zhu
- Agricultural Comprehensive Administrative Law Enforcement Brigade, Mingguang 239400, China
| | - Tao Song
- Anhui Province Key Lab of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; International Immunology Center, Anhui Agricultural University, Hefei 230036, China
| | - Zhenyuan Zhang
- Anhui Province Key Lab of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; International Immunology Center, Anhui Agricultural University, Hefei 230036, China
| | - Fei Fei
- Anhui Province Key Lab of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; International Immunology Center, Anhui Agricultural University, Hefei 230036, China
| | - Qingxiao Zhu
- Anhui Province Key Lab of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; International Immunology Center, Anhui Agricultural University, Hefei 230036, China
| | - Xinyue Chang
- International Immunology Center, Anhui Agricultural University, Hefei 230036, China
| | - Hongmei Liu
- Anhui Province Key Lab of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Fangfang Chen
- Anhui Province Key Lab of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Fazhi Xu
- Anhui Province Key Lab of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Lin Li
- Animal-derived Food Safety Innovation Team, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xuelan Liu
- Anhui Province Key Lab of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; International Immunology Center, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
6
|
Shi H, Zhou ZM, Zhu L, Chen L, Jiang ZL, Wu XT. Underlying Mechanisms and Related Diseases Behind the Complex Regulatory Role of NOD-Like Receptor X1. DNA Cell Biol 2022; 41:469-478. [PMID: 35363060 DOI: 10.1089/dna.2022.0051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Among nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs), NOD-like receptor X1 (NLRX1) is the only known NLR family member that is targeted to the mitochondria, which contains a C-terminal leucine-rich repeat domain, a central conserved nucleotide-binding domain, and an unconventional N-terminal effector domain. It is unique due to several atypical features, such as mitochondrial localization, noninflammasome forming, and relatively undefined N-terminal domain. NLRX1 has multiple functions, including negative regulation of type-I interferon signaling, attenuation of proinflammatory nuclear factor kappa B (NF-κB) signaling, autophagy induction, modulation of reactive oxygen species production, cell death regulation, and participating in cellular senescence. In addition, due to its diverse functions, NLRX1 has been associated with various human diseases, including respiratory, circulatory, motor, urinary, nervous, and digestive systems, to name but a few. However, the exact regulatory mechanisms of NLRX1 are still unclear in many related diseases since conflicting and controversial topics on NLRX1 in the previous studies remain. In this review, we review recent research advances on the underlying mechanisms and related disorders behind the complex regulatory role of NLRX1, which may provide a promising target to prevent and/or treat the corresponding diseases.
Collapse
Affiliation(s)
- Hang Shi
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zhi-Min Zhou
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Lei Zhu
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Lu Chen
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zan-Li Jiang
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Xiao-Tao Wu
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|