Hossain S, Jalil MA, Islam T, Mahmud RU, Kader A, Islam MK. Enhancement of antibacterial and UV protection properties of blended wool/acrylic and silk fabrics by dyeing with the extract of
Mimusops elengi leaves and metal salts.
Heliyon 2024;
10:e25273. [PMID:
38371960 PMCID:
PMC10873651 DOI:
10.1016/j.heliyon.2024.e25273]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 01/04/2024] [Accepted: 01/23/2024] [Indexed: 02/20/2024] Open
Abstract
In response to the heightened awareness of infectious diseases and the growing emphasis on personal protection in daily life, the utilization of natural bioresources for textile fabric dyeing has garnered substantial research attention. This is particularly due to their ability to confer antibacterial and UV protection properties to fabrics. In this study, the dyeing properties of Mimusops elengi Linn extract, alone and mordanted, were evaluated on blended wool/acrylic and silk fabrics, along with an assessment of their antibacterial and UV protection characteristics. The dyed fabrics exhibited good color strength and color fastness. Quantitative assessment of antibacterial activity was conducted using the reduction percentage test, while UV protection properties were determined through the measurement of Ultraviolet Protection Factor (UPF). Aqueous extract alone, when applied to blended wool/acrylic fabric, demonstrated an impressive 99.88 % reduction against Staphylococcus aureus, and 48.33 % for silk fabric, albeit less effective against Escherichia coli. Notably, when fabrics were dyed with a combination of leaves extract and various metal salt mordants, a substantial improvement in antibacterial properties was observed. Zinc and copper salts, in particular, exhibited the ability to enhance antibacterial properties to almost 100 % against Staphylococcus aureus and Escherichia coli in both blended wool/acrylic and silk fabrics. Concurrently, this combination contributed to an increase in the UV protection property of both fabrics. The findings underscore the potential of plant-based natural dye for blended wool/acrylic and silk fabrics, imparting antimicrobial and UV protection properties. This has significant implications in preventing the spread of infections and skin diseases, emphasizing the vital role of such textiles in promoting health and well-being.
Collapse